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Abstract: Visual programming is widely adopted for teaching purposes, considered as an appropriate starting base 
before introducing learners to typical programming languages. However, the progress in such tools is very 
slow and limited compared to standard programming environments. Moreover, there is no systematic 
classification regarding the most important requirements to improve the support of visual programming 
tasks. In this context, we introduce programming experience as the context-specific notion of user-
experience for the programming domain. Then, we identify three groups of requirements relating to 
language, interaction and tools, and elaborate with specific requirements per group. In this analysis, we 
study related examples from current tools in various domains, while we propose scenarios inspired from 
source-based programming environments. 

1 INTRODUCTION 

The notion of visual programming concerns methods 
to define programs in a multi-dimensional fashion 
(Myers, 1990). The latter is not linked to the 
underlying program representation, but concerns the 
interactive visual means through which a program is 
created, refined and managed. Hence, text-based 
code is considered as one-dimension method and is 
therefore not treated as visual programming. 

While visual programming adoption ranges from 
rapid application development, interactive software 
configurations, and system administration, it became 
popular for educational purposes, in particular for 
teaching programming skills. In this framework, 
Scratch (Maloney et al., 2010), a block-based tool 
and Lego Mindstorms™ (Vallance et al., 2009) are 
amongst the most well-known visual tools in 
learning contexts. Historically, visual programing 
systems have been deployed to introduce students in 
the programming universe before being enabled to 
manage and master professional source-based 
programming languages. In this context, their scope 
is generally considered to be restricted in the early 
stages of acquiring programming skills. But today, 
there are visual tools for professional development 
purposes, ranging from business process, Internet of 

Things, 3d graphics and robotics, meaning their 
scope is not merely restricted to learning activities.  

 

Figure 1: Adoption of visual development tools for 
continuous learning in professional programming. 

Also, such tools support an important activity in 
the development lifecycle that is not always 
substituted by text-based counterparts, thus retaining 
a distinct and critical role. In this sense, for certain 
development skills, professional programmers may 
still have to learn using visual tools before switching 
(if they ever do) to the most powerful programming-
language basis. This interplay between visual tools 
for leaning, with typical professional programming 
environments, is depicted under Figure 1.  
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In an educational context, emphasis is put on 
blending user experience (Law et al., 2009) with 
learning experience (Tawfik et al., 2021) to 
optimally support programming tasks. We define 
this combination as programming experience (see 
Figure 2) to better highlight and contextualise the 
importance of the programming task. 

 

Figure 2: Programming experience as the overall user and 
learning experience in programming-related activities. 

In this context, we carried out a systematic 
analysis briefed in this paper, resulting in key design 
requirements linking to programming experience, 
with a summary provided under Figure 3. 

1. Language Requirements 
• Explicit Language Paradigm 
• Visible Syntax and Semantics 
• Intelligent Editing Automations 
• Extra Optional Elements 
2. Interaction Requirements 
• Appropriate Element Metaphor 
• Reasonable Visual Complexity 
• Configurable Level of Detail 
• Extensible Code Annotations 
3. Tool Requirements 
• Project Management 
• Debugging Facilities 
• Programming Assistants 
• Custom Static Analyzers 

Figure 3: Overview of the list of programming experience 
requirements for visual development environments. 

2 RELATED WORK 

In (Kiper et al., 1997) there is one of the earliest 
taxonomies with criteria judging visual languages, in 
particular: visual nature, functionality, ease of 
comprehension, paradigm support and scalability. 
Although the analysis is outdated, it is historically 

the first systematic effort in setting specific driving 
principles for visual programming systems. 

In (McGuffin & Fuhrman, 2020), the focus is 
shifted on the classification of visual programming 
techniques rather than on the design requirements. 

In (Repenning, 2017), although no design 
requirements are negotiated, it is important to note 
the critique regarding the lack of semantic tools like 
context-sensitive pragmatic explanations (mostly 
evaluation time) that would improve the user 
experience. 

3 LANGUAGE REQUIREMENTS 

This category concerns the linkage to an underlying 
programming language category, fully or partially. It 
is the theoretical foundation of the visual 
programming system, the formal backend for which 
the visual system provides a friendlier fronted. 

3.1 Explicit Language Paradigm 

The visual programming system should rely on an 
explicit underlying theoretically-oriented language 
paradigm, sometimes carefully chosen combinations 
of paradigms such as: imperative, object-oriented, 
event-driven, flow-based, batch processing, 
functional programming, message passing, 
constrained systems, etc. 

Clearly, it is crucial to document and explain the 
primary reason a specific paradigm is chosen for the 
target learner audience and domain (if one or some 
are explicit targeted), setting an anticipated learning 
curve and engineering criteria like: ease-of-use, 
intuitive deployment, rapid development, error 
prevention, engineering scalability, proximity to a 
real language that learners might have to use, etc. 

Once the paradigm is selected, designers may 
optionally expose ideas and techniques regarding the 
way the primary programming elements of the 
paradigm may be mapped to visual counterparts, and 
the reason such a mapping is considered appropriate 
and consistent. In certain cases, when visual designs 
aim for specific purposes or tasks, even if the 
underlying language paradigm is of general purpose, 
it has to be explicitly stated and justified. 
Examples: The most common programming 

language paradigm is the imperative, with variables, 
assignments, statements and expressions, and the 
flow-based, blending functional characteristics with 
event-oriented elements. In particular, Scratch offers 
blocks reflecting a purely imperative paradigm, 
while Lego Mindstorms Ev3 (Vallance et al., 2009) 
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provides elements with an imperative look, but a 
genuine functional style. Business Process 
Modelling and Notation (BPMN, Ko et al., 2009) is 
a domain-specific visual language that adopts the 
flow-based programming paradigm (FBP, 
Morrisson, 1994). The roots of FBP are in control-
flow and stream processing, while it borrows 
elements from functional composition, batch 
processing and event-driven systems. 

In general, we refer to such cases as visual 
syntactic illusions when the graphical language 
conveys an underlying paradigm but with a frontend 
that mimics alternative more familiar paradigms. 

Touch Develop by Microsoft (Ball et al., 2016) 
combined the imperative programming style with 
typical object-based elements (not including any 
class definition or inheritance features), while 
offering the syntactic illusion of message-passing 
regarding method invocations. 

Finally, Blockly by Google (Pasternak et al., 
2017) offers an API to create new types of blocks 
and to map them semantically to an underlying 
implementation. For example, it is common to 
introduce custom blocks combining the object-based 
and event-based paradigms. 

3.2 Visible Syntax and Semantics 

Visual languages adopted for learning purposes 
become stepping stones to acquire more advanced 
skills and further exploit the expressive power of a 
real language. Essentially, visual languages are 
blankets which hide or abstract the underlying 
complexity of the real language and its detailed 
programming model. However, this does not imply 
that the syntax and semantics of the backend 
language should not be transferred in the visual 
frontend. Completely separating those two, not only 
makes the transition to the real language harder, but 
may reduce the chances to educationally deliver 
fundamental concepts that are only present within 
the original language syntax and semantics. In 
particular, visual syntax concerns all geometric and 
graphical rules applying to visual program 
composition that also map directly to the 
grammatical elements of the underlying language.  

As mentioned earlier, due to syntactic illusions, 
this mapping need not be very precise. However, it 
is crucial that the visual language is delivered in a 
way that its visual syntax and the corresponding 
semantics are explicitly and naturally mapped, 
linking unambiguously to backend language 
semantics. Elements like recursion, repetition, 

nesting and scoping should be appropriately 
represented by corresponding visual structures. 
Examples: Spreadsheets are treated as visual 

programming systems with their backend relying on 
grid formulas and constraints. Theoretically, 
formulas reflect a functional style that users directly 
deploy over a visual grid, with interactive facilities 
to refer to grid cells, individually or collectively, via 
pick or group selection. The syntax and semantics of 
the underlying language are completely visible, 
implying spreadsheets are less visual languages and 
more scripting systems on grid elements. 

 

Figure 4: Scratch visual syntax relies on geometric shapes, 
however, it conveys no other syntactic information. 

Scratch (Maloney et al., 2010) adopts a concise 
visual syntax, with encoding of elements and 
placeholders (as outlined under Figure 4) that maps 
directly to the text language. However, there is a 
simplification and potential information loss, since 
sub-categories of expressions and statements all map 
to just a single syntactic visual symbol. 

 

Figure 5: Code-Chips syntax-directed definition, besides 
drag-n-drop blocks, makes the underlying grammar 
explicit in block-based program composition. 

An increasingly popular visual system is Node-
RED (Open JS Foundation, 2022), adopting the 
flow-based paradigm that hides the underlying 
details of event-driven programming via consumer-
producer chains. As a result, the syntax of event 
blocks is hidden, while event management is 
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semantically treated as data flows. But still to 
introduce new custom nodes, one should directly 
program them in JavaScript. Overall, learners using 
exclusively Node-RED may never gain a deep 
understanding of asynchronous event management. 
Clearly, this is a well-known tradeoff between 
expressive power and ease-of-use. Finally, a tool 
unifying the visual and text syntax is presented in 
(Agapakis, 2021), supporting syntax-directed editing 
combined with interactive blocks (see Figure 5). It 
offers interactive syntax, making learners aware of 
the grammatical profile of every program element. 

3.3 Intelligent Editing Automations 

Editing automations are commonly referred to as 
IntelliSense, including at least four key features: 
quick info, go-to definition, auto completion and 
parameter help in function calls. The benefits of 
such automations go beyond rapid development, 
enabling better understanding of the source code. 

While typical dropdown suggestions for fields 
and methods are integrated in most visual tools like 
Scratch, Blockly and Touch Develop, quick info, 
that is available in professional development tools, is 
not fully included. For visual programming, auto 
completion features may be extended to support: (i) 
context-sensitive element suggestion; and (ii) guided 
or assisted visual element composition.  

 

Figure 6: Mockup for auto-completion in when blocks, 
with automatic suggestion of variable event-target 
placeholders with successive dropdown lists. 

Examples: The mock-up of Figure 6 resolves the 
necessity of multiple distinct “when” blocks in 
Scratch, per event type and target, with just a single 
block. It depicts event target specifiers, defining the 
event target expression, followed at the end by the 
actual event type.  

For example, in 2d games, sprite targets require 
firstly the main category “sprite” and then the sprite 
class, like “shield”, with the contextually applicable 
event types suggested via a dropdown list.  

Another mockup, illustrated under Figure 7, 
concerns flow-based programming, and suggests the 

provision of adaptive tooltips between connected 
elements, carrying brief information on the type of 
propagated data items. When interactive updates 
change the output data types, all outdated visual cues 
must be automatically refreshed and synced.  Quick 
information is usually provided as informative 
tooltips, something known to encourage users in 
interactively exploring features and functionality. 

 

Figure 7: Mockup for auto-completion of data-related 
information (auto callouts) in consumer-producer flows. 

 

Figure 8: Hot areas for tooltips (shown as callouts) in 
Scratch blocks, providing semantic information to better 
support learning programming during visual-code editing. 

 

Figure 9: Mockup for auto-extension by suggesting 
consumer types matching a selected producer block. 
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In Figure 8 we show how block-level editors 
may introduce tooltips to inform learners in using 
programming elements. Such tooltips offer a live, 
brief, and interactive tutorial of the visual language. 
In Figure 9, in flow-based programming, if a 
producer is selected, an appropriate dropdown list of 
matching consumers is composed and shown, based 
on the type of the output port and the information on 
the input ports of all available consumer types. 

3.4 Extra Optional Elements 

Being learning tools, visual programming systems 
strike for a balance between programming facilities 
and ease-of-use. Thus, more advanced programming 
techniques may be left out, restricting deployment to 
small-scale projects. In this context, optional 
programming features may be provided targeted to 
more advanced learners as listed below: 

• Scopes may be defined by visual grouping, with 
local variables being geometrically contained. 

• Modules allow split programs into multiple 
units and reuse them in one or more projects. 

• Hybrid code enables contrast the visual code 
and its respective textual form altogether, 
enabling mixed editing, while keeping both 
views fully-synced and well-formed. 

• Source code that complements visual code, 
helpful for implementing complex modules, and 
also for supporting the cooperation of learners 
with experienced programmers. 

4 INTERACTION 
EQUIREMENTS 

4.1 Appropriate Element Metaphor 

In visual programming there is always a primary 
geometric element with some degree of graphical 
variability and styling. For instance, it is a jigsaw 
puzzle block in Scratch and Blockly, a game card in 
Kodu (MacLaurin, 2011), a consumer-producer 
block in Node-RED, a process block in BPMN, a 
circuit block in LEGO Mindstorms Eve3, and a 
command block in Touch Develop. This primary 
element plays a crucial role, since its choice and 
representation, commonly as a real-world world 
metaphor, is extremely important for the quality of 
the programming experience. To assume a single 
visual element is capable to model all program 
elements is questionable and likely optimistic. 

 

Figure 10: Mismatch of blocks (left) implying scope 
nesting (right) and the event-driven paradigm. 

In fact, there is no such analogy in programming 
languages, since elements with distinct and diverse 
semantics like classes, functions, expressions and 
variables coexist, but with notable structural 
differences at the source-code definition level. 

Also, a potential mismatch may occur if the 
visual structures on the graphical domain differ 
significantly from the implied semantic structures in 
the underlying programing language paradigm. 

 

Figure 11: The previous example in a flow-based 
metaphor better matches the model of cascaded scope-free 
event-based consumer-producer handlers. 

For instance, consider consumer-producer chains 
in event management using jigsaw blocks. With 
independent when blocks (as in Scratch) 
dependencies are not shown as linked, while via 
sequential blocks, only a single contained handler is 
allowed. Thus, to visually express any possible event 
associations, blocks must be nested, as depicted 
under Figure 10 (left part). However, as also shown 
in Figure 10 (right part), semantically the nested 
structures imply scoped event handlers, something 
not always true in underlying source code domain. 

 

Figure 12: Potential mismatch between the jigsaw-puzzle 
metaphor and the hierarchical program structure. 

CSEDU 2022 - 14th International Conference on Computer Supported Education

288



 

The same scenario in a flow-based paradigm is 
represented with connected event handlers, but 
without implying nested scopes, as shown under 
Figure 11. Thus, for certain programming scenarios, 
it is clear that some visual metaphors are more 
appropriate than others. Interestingly, as outlined 
under Figure 12, while programs are genuine 
hierarchical structures, jig-saw puzzles have a two-
dimensional tabular structure, without a hierarchy. 
In this sense, the jigsaw metaphor is either a 
mismatch for the target domain, or else and more 
precisely it is not used as in the real world, but only 
as a choice of visual style or abstract naming. One of 
the most notable cases is the flow-based paradigm, 
since, based on the original definition in (Morisson, 
1994), is more a programming model than a visual 
metaphor. In fact, as outlined under Figure 13, 
historically there have been many flow-based visual 
styles, like flowcharts, processes (far before BPMN), 
and dataflow diagrams. As a real world analogy, the 
electric circuit constitutes the physical metaphor for 
all flow-based programming approaches. 

 

Figure 13: Flow-based metaphor with varying forms, with 
the electric circuit being the original physical metaphor. 

As mentioned earlier, there is no silver bullet in 
choosing a single metaphor for visual programming, 
even when it seems to be particularly suitable for a 
target domain. Visual metaphors are abstractions on 
top of programming languages and models, meaning 
they hardly match all language constructs and the 
host application domain functionality. In this 
context, progress is needed to allow mixing 
metaphors together, likely with the interoperation of 
various visual editors, enabling switching to the 
most appropriate metaphor per case.  
 

 

Figure 14: Combining metaphors enables adopting the 
most suitable paradigm in a given programming context. 

As depicted under Figure 14, when 
implementing various parts of a single visual 
program, users may be able to switch between 
alternative forms and representations, supported by 
various connected and cooperating editors. Multi-
paradigm and multi-metaphor visual environments 
reflect in a more integrated manner the varying 
semantic challenges of programming. 

4.2 Reasonable Visual Complexity 

When program size and complexity scales up, the 
layout policy should guarantee learners are enabled 
to manage the program in a reasonable manner. 
Clearly, programs may become quite large and 
complicated, making the overall programming task 
an inherently difficult and demanding activity.  

In this context, the graphical representation of 
elements plays a critical role on the overall 
complexity, not only in terms of the overhead in 
perception and understanding, but also on how easy 
or difficult it is to extend and modify even 
moderately large programs. Existing visual systems 
significantly vary against this criterion. 

As shown under Figure 15, flow-based structures 
tend to explode in visual complexity exponentially 
as the number of processes and connections tends to 
linearly increase. Effectively, programmers may lose 
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Figure 15: Visual complexity increase in relationship to 
program size for the three most popular paradigms. 

control of the program and the component 
associations very easily, unless there are extra 
facilities helping them to organize large flow-based 
networks in a divide and conquer fashion. 

On the opposite side sit batch processes, like 
Kudo game cards, possessing constant complexity, 
when streams of sequential operations grow with 
new entries. Finally, block-based visual systems fall 
somewhere in the middle in terms of visual 
complexity, since complexity mostly grows linearly 
with the number of involved program blocks. 

4.3 Interactive Level of Detail 

Interactively configurable level-of-detail enables to 
control which program parts remain visible during 
editing. Such facilities rely on structural, syntactic or 
semantic grouping, and may enable learners to 
switch on-the-fly between various views, hiding 
temporarily details that are unnecessary for the 
current editing task. In Figure 16, we depict folding 
and unfolding options in Scratch, helping reduce the 
overall visually occupied area of a program. 

 

Figure 16: Mockup scenario showing folding / unfolding 
in block-based editors (here illustrated for Scratch). 

Similar semantic folding may apply to flow-
based editors as well, enabling to selectively display: 
(i) only the event sources of a certain type or 
category, like network messages or critical sensor 
notifications, (ii) consumers of a particular category 
such as widgets; and (iii) all items preceding or 
following in the flow a particular process block. 

4.4 Tagged Annotations and Notes 

Code annotations are user-defined comments, such 
as hints for corrections or improvements. In source 
code, they are usually inserted as text inside 
comments, mixed with code, while prefixed with 
some tags users may easily recognize and recall, like 
TODO and FIXME. Some tools like App Inventor 
(Wolber et al., 2014), allow comments on blocks in 
the form of editable callouts, but tagging is not 
semantically supported. An example mockup for 
introducing user-defined tagged notes in the App 
Inventor editor is outlined under Figure 17. 

 

Figure 17: Tagged notes mockup for App Inventor, with 
display control and author info (user icon with title). 

5 TOOL REQUIREMENTS 

5.1 Project Management 

Such features allow organize the programming work 
into distinct units or modules and may include extra 
facilities, like domain-specific instrumentation that 
may assists learners to setup a new program 
solution. For example, for small-scale games tools 
for terrain editing and asset authoring may be 
offered (Savidis & Katsarakis, 2021), while in the 
Internet of Things, management of smart device 
ecosystems might be provided (Savidis et al., 2021). 
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5.2 Debugging Facilities 

Although visual programming systems are mostly 
targeted in learning where error resolution is crucial, 
visual debugging remains an underexplored 
territory. Such facilities should operate in alignment 
with the underlying language paradigm and the 
visual metaphor and layout, with program tracing 
working at the level of visual program units. For 
example, the block-level debugger for Blockly 
presented in (Savidis & Savaki, 2019) offers block-
level tracing, with step commands operating 
syntactically at the level of distinct blocks. Finally, 
advanced features useful in learning may include: 
reverse execution and why lines (Myers et al., 2017). 

5.3 Programming Assistants 

Such tools are known as wizards and may guide 
learners in the process of visual coding. Their design 
should match the visual metaphor, but semantically 
they are more coupled with the underlying language 
paradigm. Thus, general-purpose tools may be 
developed working with editors of the same 
underlying programming model. Interactively, they 
may include coding templates, Q&A sessions, 
recommendations and procedural guidance (how-to). 
Syntax-directed editors (Agapakis, 2021) with 
descriptive tooltips and semantic help may also play 
a role similar to live coding assistants. 

5.4 Custom Static Analysers 

Since the programs in a learning context are 
typically small, such analysers should emphasize 
improvements and educational recommendations. 
For example, an analyser may suggest equivalent but 
simplified loop versions, propose the conversion of a 
code fragment to a function, or offer an alternative 
more readable and clean way to write a particular 
logical or arithmetic expression. 

6 CONCLUSIONS 

Visual programming systems are currently the 
primary instruments for the early teaching of basic 
programming skills, while they are increasingly 
deployed in various domains for rapid development 
by non-professional programmers. Compared to 
tools for professional programming, there are many 
functionality layers and features that can be 
introduced to improve the programming experience 
and better support the overall learning process.  

In this paper, we presented a brief but systematic 
account of key design requirements for future visual 
development systems, relying on the new notion of 
programming experience, while having a primary 
learning orientation. Overall, we believe that such 
requirements can be more effectively addressed 
separately, by cooperating tools, within open and 
extensible future visual development environments. 
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