
Improving Developer Productivity on Internet of Things using JavaScript

Fernando L. Oliveira1 a, Rafael R. Parizi1 b and Júlio C. B. Mattos2 c

1Lardev Research Group, Federal Institute Farroupilha, 305 Otaviano Mendes st, São Borja, Brazil
2Technological Development Center – CDTec, 373 Gonçalves Chaves St., Pelotas, Brazil

Keywords: Internet of Things, Embedded Software, JavaScript.

Abstract: C is a compiled language traditionally used to develop Internet of Things (IoT) systems. It requires higher tar-
get domain knowledge and attention to manual issues like memory management, particularly on constrained
devices. In addition, the growing complexity of applications has fostered the use of interpreted languages
for programming embedded software. However, little is known about how interpreted languages improve the
development of IoT software. This paper reports an experiment comparing JavaScript and C languages over
performance and coding. We implemented solutions for the same problem at hand through each language,
keeping the same hardware platform. As a result, we identified that the JavaScript language could be consid-
ered an alternative for the Design Space Exploration phase. Since the perceived benefits from the programmer
perspective overcome the higher performance achieved in the C-based solution, collaborating to better under-
stand the trade-off between development, maintainability, and optimization on constrained devices.

1 INTRODUCTION

Over the years, the Internet of Things (IoT) has be-
come pervasive in our daily routine. It has supported
innovation in the industry, agriculture, transport, com-
merce, health, home automation, to name but a few.
According to Transforma Insights (Transforma In-
sights, 2021), the forecast until the year 2030 will be a
total of 24.1 billion active IoT devices, with a growth
rate of 11% per year.

Commonly IoT devices are constrained in terms
of processing, memory, storage, and power consump-
tion. These characteristics imply a software develop-
ment process that must consider resource limitations.
Hence, developers are forced, except for a few cases,
to build specific hardware platform-based solutions
(Liggesmeyer and Trapp, 2009).

Traditionally, embedded software development
uses compiled programming languages such as C lan-
guage. C dominates constrained devices (Ebert and
Jones, 2009), (Severin et al., 2020), (Eclipse Foun-
dation, 2020); it is also a natural choice for embed-
ded coding because most microcontrollers support it.
Also, it is the only option for some devices due to

a https://orcid.org/0000-0002-9158-8879
b https://orcid.org/0000-0001-8550-1135
c https://orcid.org/0000-0002-0619-9271

their constrained properties. Moreover, the C com-
piler introduces optimizations (interprocedural opti-
mizations) to achieve performance, reduce the binary
footprint, and best manage resources (Oshana and
Kraeling, 2019).

However, the increasing complexity of embedded
software imposes requirements on the software de-
sign. It needs to attend non exclusively resource man-
agement but also consider the aspects of software de-
velopment, such as maintainability, reuse, and testa-
bility (Papadopoulos et al., 2018), (Oliveira et al.,
2008). Therefore, the C language can be unsuitable
considering the language structure and the lack of
utility functions. For instance, pointers management
might have difficulty understanding the logic imple-
mentation, and memory management need extra at-
tention to avoid memory leaks.

At the same time, the hardware evolution allows
the introduction of new approaches, techniques, and
technologies. Thus, the Design Space Exploration
(DSE) can explore different design alternatives for
modeling and planning applications and standards
(Thole and Ramu, 2020). Therefore, DSE for em-
bedded systems explores the design space to make
choices about which technologies should be used and
consider optimization objectives and software engi-
neering metrics (Pimentel, 2016).

In this paper, we introduce JavaScript (JS) lan-

Oliveira, F., Parizi, R. and Mattos, J.
Improving Developer Productivity on Internet of Things using JavaScript.
DOI: 10.5220/0011082200003194
In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (IoTBDS 2022), pages 223-230
ISBN: 978-989-758-564-7; ISSN: 2184-4976
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

223

guage as an alternative to a programming language
that can be considered at the DSE phase. We devel-
oped two versions of the same application using C and
JavaScript language. Both solutions were deployed in
the same hardware platform (ESP8266 NodeMCU-
12E (ESP8266 NoDEMCU-12E, 2021)). We ex-
tracted data about execution and resource consump-
tion. Also, we performed analyses from the source
code using software quality metrics. Our findings
show that although the C language has better per-
formance than JavaScript, the developer perspective’s
benefits can overcome the poor performance. Further-
more, we identified that the JS language could be a
key to creating a cross-platform development environ-
ment.

The outline of this paper is as follows: Section
2 presents the essential concepts about source code
analysis in a nutshell; Section 3 describes the method-
ological process of the research; Section 4 shows the
results and discussions, and finally, Section 5 con-
cludes this paper and gives an outlook on future work.

2 BACKGROUND

The search for application development improve-
ments has been investigated in detail by the re-
searchers. There are many techniques, approaches,
and methodologies to contribute, somehow, toward
better software development.

Choosing of programming language is one of the
most complex decision-making that the software en-
gineer must take (Bhattacharya and Neamtiu, 2011).
Several items could impact the decision process, such
as implementation cost, quality of result, learning
curve, maintainability, language ecosystem, among
others. Therefore, each language has different traits
that should be considered in selecting a fitting lan-
guage (Farshidi et al., 2021).

Thereby the software engineering concerns of
software product quality to achieve software require-
ments. Thus, the programming language features
have a strong impact on the programming attributes
like usability, cost, product, supplies, and maintain-
ability. Then knowledge about programming lan-
guages assumes an essential role in the developer pro-
cess, in particular, in the embedded system domain
(Farshidi et al., 2021).

Given the context, source code analysis aims to
seek code quality. Nevertheless, the analysis can be
performed considering distinct goals; for instance,
optimization, maintenance, and reuse are interested in
software engineering perspective, even though com-
plexity, code size, and available resource are needs

from the environment or device (Mushtaq et al.,
2017).

Therefore, the source code analysis may take stat-
ically, dynamically, or combined using tools. More-
over, the static analysis evaluates the raw source code
to extract information about the program (Binkley,
2007). These analyses help the developers detect log-
ical defects, better understand the program flow, min-
imize security issues, and measure code complexity,
among others.

The Halstead Metrics (Halstead, 1977) is one of
the classic and widely used tools for software qual-
ity metrics. It was proposed by Maurice Halstead and
comprehends software complexity measures based on
the numbers of operators and operands from source
code. In this way, it is possible to assess different lan-
guages and use them as a quality parameter to com-
pare them.

Static code analysis allows us to perform statis-
tical analysis to evaluate and compare programming
languages against each other. Likewise, the empirical
study of programming language could evidence fac-
tors that led the designers to adopt or not determined
language, helping in the decision making about which
the best fitting programming language for one specific
scenario (Meyerovich and Rabkin, 2013).

2.1 Related Work

The overwhelming majority of research from litera-
ture addresses code analysis over the desktop, server,
or web perspective. We have been selected works that,
in some way, address code analysis from the embed-
ded systems outlook.

Prashant and Gurumurthy (Joshi and Gurumurthy,
2014) investigate optimizations at the source code
level to ARM processors in the embedded system
context. Their research addresses loop transformation
techniques; Their results point to a gain of 40% con-
cerning the code density and by 30% in the speed of
operation.

Kienle et al. (Kienle et al., 2012) explore static
code analysis up a specific system. They presented
a case study of an industrial embedded system devel-
oped with C language. As a result, the authors re-
ported insights that can be used as a complement to
more generic code analysis tools.

Otherwise, Oliveira et al. (Oliveira et al., 2008) in-
vestigate the relationship between quality metrics for
software products and physical metrics for embedded
systems. They used Java language and concluded a
strong correlation between quality metrics for tradi-
tional software products and performance metrics for
embedded systems.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

224

Commonly, code analysis approaches for em-
bedded systems concern the devices’ performance
and sometimes overlook the software quality met-
rics. Therefore, it is essential to evaluate the impact
over source code apart from performance considering
other panoramas such as the developer or software en-
gineering perspective.

We explore JavaScript as an alternative to pro-
gramming language in the Internet of Things context.
Furthermore, to the best of our knowledge, this is
the first evaluation of the JavaScript language over-
development viewpoint applied in the embedded soft-
ware domain. In particular, we investigate the advan-
tages and disadvantages (focusing on constrained de-
vices) of JS against C language regarding resource
consumption and software quality metrics such as
complexity, maintenance, and reuse.

3 METHODOLOGY

We developed two versions of the same applica-
tion using C and JavaScript language. The appli-
cation consists of home automation integrated with
the Google Smart Home platform (Google Actions,
2021). It allows users to control their devices through
the Google Home app, Google Assistant (via voice
command), and custom applications. In particular,
this automation proposal controls an automatic garage
door opener through 433MHz frequency.

Each command from the server to the IoT device
is represented as a JSON object (JavaScript Object
Notation) that describes the request, device, and ac-
tion to perform. This object is called Google Home-
Graph. Furthermore, we included an extra parame-
ter (RFCode) inside the model, which contains the bi-
nary code to interact with the garage opener. Finally,
we collected the RF code to open and close the door
through the RF receiver sensor.

Regard the hardware, we elected the ESP8266
NodeMCU-12E (NodeMCU) (ESP8266 NoDEMCU-
12E, 2021) as the microcontroller. It is a popular de-
velopment board integrated with a Wi-Fi communi-
cation chip, 80MHz CPU frequency, 64kB of mem-
ory, and 4MB for storage. According to the RFC
7228 (RFC 7228: Terminology for constrained-node
network, 2021) parameters, it is considered a con-
strained IoT device. In addition, we use the FS1000A
433MHz RF transmitter (Components Info, 2021) for
wireless communication between the IoT device and
embedded garage door circuit. Figure 1 presents the
application flow for the proposed application.

Figure 1 shows that the user can start the interac-
tion by saying a command. It is processed at Google

Execute
Intent

Node MCU
Context Awareness

UM2C

Power Meter Power Supply

RF
433MHz

Application
Back-end

(JavaScript)

IoT Device

CJS

Hey google

Google Cloud

Command Status

Figure 1: Application flow.

cloud, which finds an intent and sent to the application
server, and finally, it notifies the edge device. This
process could be started without voice command us-
ing the Google Home app or any in-house applica-
tion. If the user has Google devices in the same net-
work, the command cannot need to be processed on
the cloud server because these devices can load and
run custom applications (written in JS) inside upon.
From that, the communication is over Wi-Fi, reduc-
ing the latency and increasing reliability.

To enable JavaScript on IoT devices, we need
an interpreter to execute JS code. For this experi-
ment, we selected Espruino (Espruino, 2021). Espru-
ino is an Open Source JavaScript engine for Micro-
controllers that has a full coverage of ES51 and par-
tially ES6 features. Furthermore, Espruino provides
firmware with support ESP8266 board and web IDE
to development.

We collect execution time and memory usage
from JavaScript performance API and ESP8266 SDK
on JS and C algorithms. C program was compiled
over Arduino IDE by default optimization settings.
Regarding power consumption, we connected a mul-
timeter in series with a battery and supplied ESP8266
from that. As a power meter, we selected the UM2C
USB (UM24c USB Tester, 2021).

We performed a static code analysis from C and
JavaScript source code to extract software quality
metrics. For that, we selected the Halstead-Metrics-
Tool (Software Engineering Research Group at Po-
litecnico di Torino, 2021) to collect Halstead Metrics
and Lizard tool (Terry Yin, 2021) to collect Cyclo-
matic Complexity. In addition, to insurance the evalu-
ation approach, we apply the code analysis tools over
the Ostrich Benchmark Suite (Khan, Faiz and Foley-
Bourgon, Vincent and Kathrotia, Sujay and Lavoie,
Erick, 2014), aiming to evaluate the results of these
tools on external (neutral) codes and compare them
with the results obtained from our source code to find
behavior patterns.

1ES is an acronym for ECMAScript; This is the official
name of JavaScript language used in its specification.

Improving Developer Productivity on Internet of Things using JavaScript

225

4 RESULTS AND DISCUSSION

Programmers can propose different solutions to the
same problem. We developed the algorithms to keep
the source code as simple as possible, defining only
the necessary structure and importing some libraries
in order to facilitate the development. This section
shows the analysis from performance and developer
overview.

The algorithms comprise a web server that re-
ceives and processes post requests. We created RF
and STATUS endpoints to send radio-frequency com-
mands (RF) and get the device status, respectively.
All the requests contain a JSON object for data in-
terchange between the layers following the Google
HomeGraph format.

4.1 Performance Analysis

The data extraction was performed from a set of ex-
ecutions of each algorithm. Every single request was
repeated 50 times to obtain data consistency and more
reliable analytical information. The results represent
the average of the executions or the sum of them.

Although both algorithms were deployed over the
same hardware, the experiment points out significant
performance variations regarding memory consump-
tion. Table 1 shows the memory usage details.

Table 1: Memory consumption (bytes).

Lang. Used (%) Free memory Total

C 5924 (11,09) 47512 53436
JS 19880 (62,12) 12120 32000

JavaScript solution attained in huge memory con-
sumption compared to the C algorithm. This high-
memory consumption occurs because the JavaScript
engine reserves memory space for the entire
JavaScript heap. Also, external libraries, which typi-
cally use buffers, demand a large amount of memory
(Hong and Shin, 2020).

Moreover, the available memory for each imple-
mentation is distinct as well. The C solution had
≈ 53kB, and at the same time, the JavaScript ap-
proach had 32kB only. That happens because part
of the memory space is reserved for ESP8266 SDK
to support Wi-Fi and TCP/IP protocol. In particular,
the Espruino engine uses 20kB for itself plus 8kB for
TCP/IP buffers.

Regarding execution time, we measured how long
it took to process each request, and we clustered the
results by algorithms. Figure 2 resumes performance
data by language. In addition, each graph shows

JavaScript results twice because Espruino sets the
ESP8266 clock to 160MHz by default, but the C al-
gorithm works over 80MHz. In this way, we decided
to expose all of the data.

Section “a” in Figure 2 reports the experiment in
which the 433MHz RF transmitter is used to open or
close the garage door. C algorithm has taken a longer
time than JS. In a deep analysis, we found that most
time is spent sending RF commands through the RC-
switch library. In contrast, section “b” exposes that C
is, at least, four times more efficient than JavaScript.
Finally, Figure 2 still reveals the data about energy
consumption.

The results represent the sum of power consump-
tion from 50 runs recorded over the whole executions.
In general, JS figures out to consume more energy
to develop the algorithms. It happens because the
JavaScript engine performs optimizations in order to
gain performance. Such analysis implies direct CPU
usage, so it has an extra energy cost. The only excep-
tion is when RF commands are used, and C had the
worst consumption.

Overall, C’s performance is better than JavaScript,
as it was supposed. However, the JavaScript applica-
tion got a satisfactory outcome, and the decision to
use it is not merely about performance issues. We
consider other aspects around the developer process
or associate to post-development, such as mainte-
nance and reuse. Thus, We processed the solutions
from the programmer’s perspective.

4.2 Developer Analysis

Listings 1 and 2 present chunks of the source code
from both algorithms; configuration and device con-
trols have been suppressed, keeping the focus on busi-
ness logic. The full code can be found at the GitHub
(The garage door, 2022).

1 // ...

2 void loop() {

3 server.handleClient();

4 }

5 bool isOpened() {

6 return digitalRead(magnet_switch) == HIGH;

7 }

8 void handlerStatus() {

9 if (isValidRequest()) {

10 const size_t bufferSize = 2 * (

JSON_ARRAY_SIZE(2) + JSON_OBJECT_SIZE(6));

11 DynamicJsonDocument requestArgs(bufferSize);

12 deserializeJson(requestArgs , server.arg("

plain"));

13

14 DynamicJsonDocument doc(128);

15 doc["success"] = true;

16 doc["requestId"] = requestArgs["requestId"];

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

226

0

100

200

300

400

500

C JS (80MHz) JS (160MHz)

Ti
m

e
in

 m
ill

ise
co

nd
s

(a) RF Request

0

0,5

1

1,5

2

2,5

3

3,5

C JS (80MHz) JS (160MHz)

Ti
m

e
in

 m
ili

se
co

nd
s

(b) STATUS request

0

0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8

C JS (80MHz) JS (160MHz)

En
er

gy
 M

ill
iw

at
t-

ho
ur

s
(m

W
h)

(c) RF Request

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

C JS (80MHz) JS (160MHz)

En
er

gy
 M

ill
iw

at
t-

ho
ur

s
(m

W
h)

(d) STATUS request
Figure 2: Execution time / Energy consumption by endpoint.

17 doc["isOpened"] = isOpened();

18 sendResponse(doc);

19 }

20 }

21 void handlerRF() {

22 if (isValidRequest()) {

23 const size_t bufferSize = 2 * (

JSON_ARRAY_SIZE(4) + JSON_OBJECT_SIZE (11));

24 DynamicJsonDocument requestArgs(bufferSize);

25 deserializeJson(requestArgs , server.arg("

plain"));

26 DynamicJsonDocument cmd = requestArgs["inputs

"][0]["payload"]["commands"][0]["execution"

][0];

27 const char* action = cmd["command"];

28 const int perc = cmd["params"]["openPercent"

];

29 const long RFCode = cmd["params"]["RFCode"];

30 if (strcmp(action , "...commands.OpenClose")

== 0) {

31 bool executed = false;

32 String message;

33 if (perc == 100) {

34 if (!isOpened()) {

35 executed = performRF(RFCode);

36 message = "Opening the door";

37 } else {

38 message = "Door is already open";

39 }

40 } else {

41 if (isOpened()) {

42 executed = performRF(RFCode);

43 message = "Closing the door";

44 } else {

45 message = "Door is already close";

46 }

47 }

48 DynamicJsonDocument doc(128);

49 doc["success"] = executed;

50 doc["requestId"] = requestArgs["requestId"];

51 doc["message"] = message;

52 sendResponse(doc);

53 } else {

54 server.send(400, "text/plain", "Invalid

command");

55 }

56 }

57 }

Listing 1: C chunk of code.

Listing 1 represents the C implementation in

which the endpoints are defined on method “hander-
Status” (lines 8-20) and “handlerRF” (lines 21-56).
Entry parameters and return are expected in JSON
format, and for this reason, it requires manual man-
agement of the space in memory in order to allocate
the data (lines 10; 23).

Moreover, Google’s operating model presupposes
that the garage door control has an open percentage
level. In this sense, we consider the value of 100 per-
cent to open the door and any value different from
this to close one. Listing 2 shows the JavaScript im-
plementation.

1 // ...

2 const LightExpress = require("light -express");

3 const NodeMcu = require("node -mcu");

4 const node = new NodeMcu();

5 const server = new LightExpress();

6 server.post("/rf", (req, res) => {

7 const cmd = req.body.inputs[0].payload.commands

[0].execution[0];

8 const result = node.performRF(

9 cmd.command ,

10 cmd.params.openPercent ,

11 cmd.params.RFCode

12);

13 if (result) {

14 result.requestId = data.requestId;

15 res.end(JSON.stringify(result));

16 } else {

17 res.writeHead (400);

18 res.end("Invalid command");

19 }

20 });

21 server.post("/status", (req, res) => {

22 const data = req.body;

23 const result = {

24 requestId: data.requestId ,

25 isOpened: node.isOpened(),

26 };

27 res.end(JSON.stringify(result));

28 });

29 server.listen(80);

Listing 2: JavaScript chunk of code.

Note that the business logic is, apparently, differ-
ent between the two algorithms. For instance, the log-
ical process from lines 30 until 47 on Listing 1 does
not appear on Listing 2. This feeling occurred be-

Improving Developer Productivity on Internet of Things using JavaScript

227

cause the chunk of code was isolated in a common
class to reuse it on other application layers. Listing 3
exposes the standardized code.

1 class ExecutionHandler {

2 performRF(action , perc , RFCode) {

3 if (action == "...commands.OpenClose") {

4 let message;

5 let executed = false;

6 if (perc == 100) {

7 if (!this.isOpened()) {

8 this.sendRF(RFCode);

9 message = "Opening the door";

10 executed = true;

11 } else {

12 message = "Door is already open";

13 }

14 } else {

15 if (this.isOpened()) {

16 this.sendRF(RFCode);

17 message = "Closing the door";

18 executed = true;

19 } else {

20 message = "Door is already close";

21 }

22 }

23 return {

24 success: executed ,

25 message: message ,

26 };

27 }

28 }

29 }

Listing 3: JavaScript standard class.

The class ExecutionHandler encapsulates the ap-
plication logic, and it should be noted that the meth-
ods “isOpened” and “sendRF” do not exist in this
class. In this case, we follow best practices for de-
veloping adopting the Template Method design pat-
tern, aiming the specific implementation in a sepa-
rated class. This is essential to promote flexibility and
contribute to interoperability among layers since each
microcontroller may have distinct hardware specifica-
tions. Finally, Listing 4 show the specific board class.

1 class NodeMCU extends ExecutionHandler {

2 isOpened() {

3 return digitalRead(D2) == 1; ;

4 }

5 sendRF(code) {

6 require("RcSwitch").connect(6, D4, 3).send(

code , 28);

7 }

8 }

Listing 4: JavaScript modeMcu class.

Listing 4 represents the custom implementation
for the ESP8266 NodeMCU board. For example, if
we needed to implement to another microcontroller,
like Raspberry PI, we would need to create only one

class to give the abstract methods, and the rest of the
structure could be reused. Table 2 presents the static
code analysis from the algorithms; the values inside
the table represent a number on a magnitude scale ac-
cording to each criterion.

Table 2: Code analysis details.

Metric C JavaScript

Program length 803.0 440
Program vocabulary 140 100
Estimated length 905.56 567.29
Purity ratio 1.13 1.29
Volume 5724.81 2923.30
Difficulty 52.03 45.00
Program effort 297887.75 131548.35
Time to program (h) 4.6 2.03
Cyclomatic complexity 2.1 1.8

As before illustrated, the measures shown in Ta-
ble 2 point to the overall quality of the produced pro-
grams. We conducted the code analysis over the C file
and all JavaScript files; the JavaScript measurements
mean the average ones. In contrast to the performance
examination, JavaScript overcomes C in all items, and
in some cases, the results can be almost twice:
• Program length: The size of the program;
• Program vocabulary: Number of operators and

operands that composes the program;
• Estimated length: Metric of size estimated remov-

ing everything from program except operators and
operands;

• Purity ratio: This metric assesses the code length
based on its actual length. This is an optimiza-
tion indicator, so the lower the ratio is, the greater
the chance that excessive code implements func-
tionality, and a higher ratio (above 1.00) indicates
optimized code;

• Volume: Its measures the size of the implementa-
tion of an algorithm;

• Difficulty: Difficulty level or error proneness of
the program is calculated from the number of
unique program operators;

• Program effort: Represents the mental activity a
programmer performs to transform an algorithm
into a program;

• Time required to program: It represents the time
to develop or understand a program;

• Cyclomatic complexity: It indicates the complex-
ity of a program based on the number of deci-
sion statements in the code, methods, and lines of
code.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

228

Regarding the cyclomatic complexity index, this
measure represents how complex each code was con-
sidered. Empirical verification shows that the C algo-
rithm got a higher complexity index than JS. Table 3
shows the detailed complexity analysis.

Table 3: Cyclomatic complexity details.

lang. nloc1 token2 Funct. count CCN3

C 102 78.6 8 2.1
JS 74 51.8 6 1.8
1 Number of lines of code without comments;
2 Token count of functions
3 Cyclomatic Complexity Number

Although the advantage of JavaScript over the C
language is clear, it was conducted from a source de-
veloped and proposed by us. Thus, we decided to
apply the same tools over an external set of algo-
rithms to compare the results and find some behav-
ior patterns. For that, we selected the Ostrich Bench-
mark Suite (Khan, Faiz and Foley-Bourgon, Vin-
cent and Kathrotia, Sujay and Lavoie, Erick, 2014).
This benchmark provides some facilities for evaluat-
ing JavaScript against C because it gives the same im-
plementation of the algorithm in both languages.

The code analysis results2 from the Ostrich bench-
mark showed that JavaScript has a balance or superior
behavior; it matches with the analysis performed from
code produced in this experiment, leaving us confi-
dent about the result achieved. Also, it allows us to
indicate JavaScript as an alternative for the Design
Space Exploration phase.

Nonetheless, IoT solutions are not simple as we
proposed. But, the experiment demonstrated that JS
could enhance the reuse of code and enable the build
of standard components. For instance, on automa-
tion systems that need to consider different hardware
sensors and actuators, JavaScript provides the tools
to create solutions, frameworks, and libraries to inte-
grate all of them, increasing the developer experience.

Regarding performance, It is strongly related to
the JavaScript engine. Few engines are available
on constrained devices, and the consumption of re-
sources depends on how optimized it is. The algo-
rithm by itself has a significant contribution to how
the application performs, which can vary accord the
JS engine. So programming on IoT devices is not a
trivial task. We need to find the balance between de-
velopment, execution, and resource consumption.

Moreover, JSON format has become a common
format to transfer data inter applications. To use it on

2The full analysis can be found in the appendix at the
GitHub repository (Paper Appendix, 2022)

the C algorithm, we need external libraries and per-
form calculations to allocate the objects in a balanced
way. On the other hand, JavaScript can facilitate some
action, and their event-based model has a strong ad-
herence to the IoT execution model.

JavaScript architecture for this proposal was pro-
jected to be simple and understandable, and at the
same time to enhance the software quality and stan-
dardize the developer process. These approaches in-
crease the level of abstraction and improve design
productivity. Also, it is clear that software quality
has a strong relation to the consumption of resources
(Oliveira et al., 2008), (Papadopoulos et al., 2018).

Finally, the developing application for heteroge-
neous context like IoT, behind challenging, requires a
simple programming model to be feasible (Krishna-
murthy and Maheswaran, 2016). Also, the advance of
virtual machines like Espruino, Duktape, JerryScript,
and Moddable make JS a real option to programming
constrained devices.

5 FINAL REMARKS

This paper evaluated whether JavaScript could be
used as alternative to C language for coding on the
IoT-context. We were able to develop two version
of the same application and collect information about
the consumption of resources such as execution time,
memory, battery and analyzed the source code using
software quality metrics.

We could identify that the JavaScript performance
penalty is acceptable compared to the gain in abstrac-
tion and reuse in embedded system design. In addi-
tion, embedded software is not a stand-alone artifact.
Thus, using the same language in all application-stack
simplifies and standardizes the development process,
implying positively in a more suitable environment
for interoperability, reducing cost, and optimizing
maintainability.

In future studies, we intend to explore which as-
pects of JavaScript language impact more device per-
formance, mainly related to memory consumption.
Also, we will deepen the investigation of how to
JavaScript engine could affect this process since it is
key to enable JavaScript as a language for the IoT en-
vironment.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior -

Improving Developer Productivity on Internet of Things using JavaScript

229

Brasil (CAPES) - Finance Code 001.

REFERENCES

Bhattacharya, P. and Neamtiu, I. (2011). Assessing pro-
gramming language impact on development and main-
tenance: A study on c and c++. In 2011 33rd Inter-
national Conference on Software Engineering (ICSE),
pages 171–180. IEEE.

Binkley, D. (2007). Source code analysis: A road map.
In Future of Software Engineering (FOSE ’07), pages
104–119.

Components Info (2021). Fs1000a 433mhz rf trans-
mitter. https://www.componentsinfo.com/fs1000a-
433mhz-rf-transmitter-xy-mk-5v-receiver-module-
explanation-pinout/. Accessed: Mar. 2022.

Ebert, C. and Jones, C. (2009). Embedded software: Facts,
figures, and future. Computer, 42(4):42–52.

Eclipse Foundation (2020). Iot developer survey
2020. https://outreach.eclipse.foundation/eclipse-iot-
developer-survey-2020. Accessed: Mar. 2022.

ESP8266 NoDEMCU-12E (2021). Espressif official doc-
umentation. https://www.espressif.com/en/support/
documents/technical-documents. Accessed: Mar.
2022.

Espruino (2021). Javascript interpreter for microcontrollers.
https://www.espruino.com. Accessed: Mar. 2022.

Farshidi, S., Jansen, S., and Deldar, M. (2021). A deci-
sion model for programming language ecosystem se-
lection: Seven industry case studies. Information and
Software Technology, 139:106640.

Google Actions (2021). Google smart home platform. https:
//developers.google.com/assistant/smarthome. Ac-
cessed: Mar. 2022.

Halstead, M. H. (1977). Elements of Software Science (Op-
erating and Programming Systems Series). Elsevier
Science Inc., USA.

Hong, G. and Shin, D. (2020). Segment-based multiple-
base compressed addressing for flexible javascript
heap allocation. IEEE Access, 8:185405–185415.

Joshi, P. V. and Gurumurthy, K. (2014). Analysing and im-
proving the performance of software code for real time
embedded systems. In 2014 2nd International Con-
ference on Devices, Circuits and Systems (ICDCS),
pages 1–5. IEEE.

Khan, Faiz and Foley-Bourgon, Vincent and Kathrotia, Su-
jay and Lavoie, Erick (2014). Ostrich benchmark
suite.

Kienle, H. M., Kraft, J., and Nolte, T. (2012). System-
specific static code analyses: a case study in the com-
plex embedded systems domain. Software quality
journal, 20(2):337–367.

Krishnamurthy, J. and Maheswaran, M. (2016). Chapter 5
- programming frameworks for internet of things. In
Buyya, R. and Vahid Dastjerdi, A., editors, Internet of
Things, pages 79–102. Morgan Kaufmann.

Liggesmeyer, P. and Trapp, M. (2009). Trends in embedded
software engineering. IEEE software, 26(3):19–25.

Meyerovich, L. A. and Rabkin, A. S. (2013). Empirical
analysis of programming language adoption. SIG-
PLAN Not., 48(10):1–18.

Mushtaq, Z., Rasool, G., and Shehzad, B. (2017). Multi-
lingual source code analysis: A systematic literature
review. IEEE Access, 5:11307–11336.

Oliveira, M. F., Redin, R. M., Carro, L., da Cunha Lamb,
L., and Wagner, F. R. (2008). Software quality met-
rics and their impact on embedded software. In 2008
5Th International Workshop on Model-based Method-
ologies for Pervasive and Embedded Software, pages
68–77. IEEE.

Oshana, R. and Kraeling, M. (2019). Software engineering
for embedded systems: Methods, practical techniques,
and applications. Newnes.

Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou,
A., Chatzigeorgiou, A., and Soudris, D. (2018). In-
terrelations between software quality metrics, perfor-
mance and energy consumption in embedded applica-
tions. In Proceedings of the 21st International Work-
shop on software and compilers for embedded sys-
tems, pages 62–65.

Paper Appendix (2022). Appendix a: Source code
analysis from ostrich benchmark algorithms on
github repository. https://github.com/fernandotetu/
the-garage-door-opener/blob/main/Appendix A.pdf.
Accessed: Mar. 2022.

Pimentel, A. D. (2016). Exploring exploration: A tutorial
introduction to embedded systems design space explo-
ration. IEEE Design & Test, 34(1):77–90.

RFC 7228: Terminology for constrained-node network
(2021). Internet engineering task force (ietf). https:
//tools.ietf.org/html/rfc7228. Accessed: Mar. 2022.

Severin, T., Culic, I., and Radovici, A. (2020). Enabling
high-level programming languages on iot devices. In
2020 19th RoEduNet Conference: Networking in Ed-
ucation and Research (RoEduNet), pages 1–6.

Software Engineering Research Group at Politecnico
di Torino (2021). Halstead metrics tool. https:
//github.com/SoftengPoliTo/Halstead-Metrics-Tool.
Accessed: Mar. 2022.

Terry Yin (2021). Lizard cyclomatic complexity analyzer.
https://github.com/terryyin/lizard. Accessed: Mar.
2022.

The garage door (2022). Github repository. https://github.
com/fernandotetu/the-garage-door-opener. Accessed:
Mar. 2022.

Thole, S. P. and Ramu, P. (2020). Design space
exploration and optimization using self-organizing
maps. Structural and Multidisciplinary Optimization,
62(3):1071–1088.

Transforma Insights (2021). The inter-
net of things (iot) market 2019-2030.
https://transformainsights.com/news/
iot-market-24-billion-usd15-trillion-revenue-2030.
Accessed: Mar. 2022.

UM24c USB Tester (2021). Hangzhou ruideng technolo-
gies. https://rdtech.en.alibaba.com/. Accessed: Mar.
2022.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

230

