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Abstract: Apache Kafka is a widely used, distributed, open-source event streaming platform, which is available as a
basic reference architecture for IoT use cases of the Autonomous Systems National Laboratory and other
initiatives in Hungary, e.g. related to development of cyber-medical systems. This reference architecture
offers a base for setting up a multi-node Kafka cluster on a Hungarian research infrastructure, ELKH Cloud.
However, the capacity, accessibility or the availability of a given deployment using a single data center might
not be sufficient. In this case Apache Kafka can be extended with additional nodes provisioned in the given
cloud, but our solution also enables the expansion of the cluster by involving other cloud providers. In this
paper we present our proposed approach for enhancing the existing basic reference architecture towards cloud
continuum, i.e. allowing the supported IoT use cases to expand the resources of an already deployed Apache
Kafka cluster with resources allocated even in third-party commercial cloud providers, such as Microsoft
Azure and AWS leveraging on the functionalities of the Occopus cloud orchestrator.

1 INTRODUCTION

Cloud continuum reflects not only the rapidly grow-
ing penetration of cloud computing technologies but
also the diversity of various use cases that requires
(among others) agility to bring clouds to a wide
range of users by expanding the cloud technolo-
gies towards edge, fog and cloud robotics. In Hun-
gary, the use cases (Fényes et al., 2021) defined
by the Autonomous Systems National Laboratory
(ARNL, 2021) combined with the ELKH science
cloud (ELKH, 2021) and other commercial providers
might be considered as an illustrative example for
such cloud continuum related efforts. Our institute,
as the leader of this national lab and the ELKH Cloud
research infrastructure, took the opportunity and has
been gaining the expertise as well as the best practices
in order to provide the first set of enhanced reference
architectures accessible and seamlessly deployable by
the national lab members.

The OpenStack-based ELKH Cloud offers a plat-
form for enabling and accelerating AI-related, indus-
trial IoT related and other current research activities.
One of the reference architectures offered is Apache
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Kafka (Kafka, 2021b; Kreps et al., 2011), a widely
used event streaming platform, which can be applied
as the basis for many different applications, includ-
ing the new developments of cyber-medical systems
(Eigner et al., 2020).

The base platform for the Apache Kafka reference
architecture is the ELKH Cloud (ELKH, 2021). In
certain cases it may be possible to tune the perfor-
mance of Kafka for the application (Le Noac’h et al.,
2017), however it can happen that due to some reason
the capacity allocated for the given project inside the
ELKH Cloud is not enough to a larger Kafka clus-
ter, or geographical distribution of the Kafka cluster
is necessary (Kato et al., 2018).

In this paper we present our work to enable the
deployment of the Kafka reference architecture onto
cloud infrastructures beside the ELKH Cloud, as
well. Our work leveraged on the Occopus orches-
trator (Kovács and Kacsuk, 2018), which is capable
of accessing APIs of multiple cloud providers (like
OpenStack, OpenNebula (Kumar et al., 2014), AWS,
Azure), thus allows the building of hybrid cloud in-
frastructures (Lovas et al., 2018; Kovács et al., 2018)
in a seamless way. Occopus is also the integrated part
of the MiCADO-Edge framework (Ullah et al., 2021)
addressing the Cloud-to-Edge computing continuum.
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The structure of the paper is as follows: first we
give an overview on the available achievements re-
lated to the deployment of Kafka clusters in hybrid
cloud environments. Afterwards, in order to introduce
the existing reference architecture, we present both a
virtual machine-based and a container-based version.
Next, we compare the different possibilities to create
a hybrid cloud variant of the reference architecture,
and present two implementations, one using virtual
machines in Azure, and one using Azure Container
Instances (ACI). Afterwards, the startup times and the
message throughput performance will be evaluated on
the hybrid infrastructure applying the different tech-
nologies. Finally, we conclude our results, and high-
light the possible future work.

All of the infrastructure descriptions, node defini-
tions and different log files mentioned in this paper
are available for download, examination and repro-
ducibility in a Gitlab repository dedicated for this pa-
per (Farkas, 2021).

2 RELATED WORK

As Kafka is a distributed platform, a number of so-
lutions to make it work on multiple cloud providers
already exist. In article (Waehner, 2021) authors de-
scribe the implementation a solution where existing
legacy (non-cloud) application deployments can be
modernized by involving a geographically distributed
Kafka cluster to extend the infrastructure serving
the application with resources coming from multiple
cloud providers.

When considering fresh Kafka deployments, mul-
tiple proprietary solutions are available. For exam-
ple, Canonical offers the deployment of a distributed
Kafka cluster onto various cloud providers (Canoni-
cal, 2021). Confluent Cloud also offers the possibil-
ity to deploy a distributed Kafka cluster onto multiple
cloud resources (Confluent, 2021)(du Preez, 2021).

Authors of (Torres et al., 2021) show an open-
source framework for serving AI applications over
cloud and edge clusters. The framework uses Kafka-
ML (Martı́n et al., 2020), which allows the manage-
ment of machine learning and AI pipelines through
the data streams of Kafka. The authors evaluate the
performance of the hybrid cloud-edge architecture in
different scenarios, using on-premise, IoT and Google
Cloud Platform (GCP) resources.

Author of (Sabharwal, 2016) shows the deploy-
ment of a Kafka clusters in a hybrid cloud environ-
ment, mixing on-premise and publicly available cloud
resources. The article shows how Kafka MirrorMaker
(Kafka, 2021a) can be used to replicate existing Kafka

data onto a hybrid environment.
Although most of the related work shown here can

be used as the basis for building hybrid Kafka clus-
ters, the solution presented in this paper offers a user-
friendly and convenient way to build and manage such
a cluster. Its most important advantage is the encap-
sulation of the solution and best practices into a ref-
erence architecture description that might be the sub-
ject of an orchestrator tool - Occopus - for building or
extending the hybrid Kafka cluster infrastructure in a
highly automatized way.

3 APACHE KAFKA REFERENCE
ARCHITECTURE FOR ELKH
CLOUD USERS

Users of ELKH Cloud and supported researchers of
the Autonomous Systems National Laboratory can
access different sets of so called reference architec-
tures (RAs). RAs can be used as a base to build an
infrastructure in the cloud for supporting a given a
computation. Examples for such RAs are the Docker
Swarm cluster (Kovács et al., 2018), the Apache
Spark RA with Hadoop (Lovas et al., 2018), a Ku-
bernetes cluster, a Tensorflow-Keras-Jupyter stack or
the Apache Kafka RA.

The different reference architectures can be built
up in the ELKH Cloud with the help of a cloud or-
chestrator tool, like Terraform or Occopus. The ad-
vantage of using these tools is that the users do not
need to work with the APIs of the underlying cloud
providers; they simply have to specify the necessary
credentials and instruct the orchestrator tool to build
the infrastructure in the target cloud.

The Apache Kafka RA offered is implemented
with the help of Occopus. Occopus, as a cloud or-
chestrator can interface with a number of cloud re-
sources: AWS, Azure, OpenStack- or OpenNebula-
based clouds. The connection with the different tar-
get clouds is implemented through different plug-
ins, which provide different set of functionalities,
like starting virtual machines with a contextualization
script, or to start containers based on user-defined im-
ages.

Infrastructures created with Occopus consist of
two parts: an infrastructure description and a set of
node definition, all written in YAML format. The in-
frastructure description describes the nodes of the in-
frastructure, and also defines deployment dependen-
cies between the nodes. On the other hand, node
definitions describe the deployment information of
the different nodes in the different target clouds. As
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the ELKH Cloud is based on OpenStack, the Apache
Kafka RA is implemented with the help of the nova
plugin of Occopus.

The structure of the infrastructure created by the
Apache Kafka RA can be seen in Figure 1. As it can
be seen in the figure, the user is interacting with Oc-
copus in order to provision the infrastructure.

Occopus
orchestrator

VM

Zookeeper

VM
Kafka

VM
Kafka

VM
Kafka

VM
Kafka

Figure 1: Apache Kafka RA in the ELKH Cloud.

The Apache Kafka RA consists of two types of
nodes: a Zookeeper node, and a set of Kafka bro-
ker nodes. Zookeeper in this setup is used to keep
track of the status of the Kafka cluster nodes and to
keep track of Kafka topics and partitions. The infras-
tructure description of the Apache Kafka RA can be
found in the Gitlab repository (Farkas, 2021), in the
directory kafka.vm, called as infra-kafka.yaml).
The description is self-explanatory, but details can
be found in the Occopus documentation. There are
two nodes called as zookeeper and kafka, where the
kafka node must have at least 2, and at most 10 in-
stances. The kafka nodes depend on the zookeeper
node, thus Occopus will create the zookeeper node
first. The respective node definitions are called
zookeeper node and kafka node. We are not plac-
ing the node definitions and the related contextual-
ization scripts in the paper, as they are quite long.
In a nutshell, the node definitions describe the nec-
essary properties to create an adequate VM for the
nodes in the OpenStack-based ELKH Cloud, and also
define the different health-checking methods (TCP
ports 2181 and 9092 should accept connections for
the zookeeper and kafka nodes, respectively). The
contextualization scripts of the different nodes are
cloudinit scripts, which deploy, configure, and start
the given software components on the nodes. In case
of the kafka nodes, the IP address of the zookeeper
node is also used in the contextualization script,
so that Kafka brokers know where to look for the
Zookeeper service.

The logs for starting up the infrastructure, scal-
ing the infrastructure, and destroying the infrastruc-

ture can be found in the log files 01 build elkh.log,
02 scale elkh.log and 04 destroy infra.log
respectively, in the directory kafka.vm/logs.

The deployed Kafka cluster can be examined
through different user interfaces for Kafka. We
choose Kafka UI (UI, 2021), as it can be set up
quickly through Docker, and is capable of giving a
quick overview of the cluster. Figure 2 shows the
scaled up cluster’s overview. Once a producer is con-
nected to the Kafka cluster, we can examine the mes-
sages produced, too.

Figure 2: Kafka UI for the cluster in ELKH Cloud.

3.1 Containerized Version of the
Reference Architecture

Although the deployment of Kafka services onto VM
is portable thanks to the cloudinit script used, ap-
plying container images to run the services offers
an even more portable way to bring up the archi-
tecture. Basically, any containerization environment
(like Docker or Kubernetes) can use them. In case of
the ELKH Cloud there is no native container support
yet, so in order to bring up the containerized version
of the Apache Kafka reference architecture, we have
to start virtual machines on the ELKH Cloud, make
sure Docker is deployed on them, and finally start up
the proper container images on the VM hosts.

One problem related to the networking of Kafka
can arise in this case: the advertised listener addresses
may be unreachable from other containers. Thus, in
this case we need to make sure that properly config-
ured listeners are set up for the given Kafka service.
Apache Kafka has the following configuration prop-
erties related to its listeners:

• listeners: enumerates the different lis-
teners with a given name, for example
EXTERNAL://:9092,

• advertised.listeners: enumerates the
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listeners the given Kafka node will adver-
tise towards it connected clients, for example
EXTERNAL://193.215.220.107:9092,

• inter.broker.listener.name: the name of the
listener to be used for inter-broker communica-
tion, for example EXTERNAL.

In case of the containerized deployment, if we do
not define the virtual machine’s IP address as the IP
address of the listeners, then the brokers will propa-
gate the IP address assigned to the Docker container,
which is not accessible from the other VMs, as a con-
sequence, the brokers will not be able to communicate
with each other.

In order to overcome this issue, in the container-
ized deployment, for each Kafka service running in-
side the container, we are specifying only one listener
(called as EXTERNAL), and set its advertised address
to include the IP address of the VM running the con-
tainer. This listener is also configured to be used as
the inter-broker listener. Figure 3 shows this architec-
ture.

Virtual
Machine

Docker

Kafka
Broker

IP address

Listener

Virtual
Machine

Docker

Kafka
Broker

IP address

Listener

Figure 3: Listeners and IP addresses in the containerized
architecture.

The containerized version of the reference archi-
tecture is available in the Gitlab repository (Farkas,
2021), in the kafka.container directory, contains
both the infrastructure descriptions and the node defi-
nitions, and also includes logs files of starting up and
destroying the infrastructures.

4 ENABLING HYBRID CLOUD
OPERATION FOR THE
REFERENCE ARCHITECTURE

As mentioned in the previous section, Occopus is
using two descriptions for an infrastructure: the in-
frastructure description itself, and the node defini-

tions for each node participating in the infrastruc-
ture. The infrastructure description is a resource-
independent YAML file, whereas the node defini-
tions are the YAML files which actually contain the
cloud-specific provisioning information for the differ-
ent node.

In Occopus, one node may have multiple node
definitions, for example the Kafka node in the Apache
Kafka RA can have one definition for the OpenStack-
based ELKH Cloud, and one definition for Azure. In
this case, when Occopus is about to bring up an in-
stance of the Kafka node in the RA, then it will de-
cide randomly which node definition to use for the
given instance.

It follows from the above, that we have two op-
tions for creating the hybrid version of the Apache
Kafka RA:

1. leave the infrastructure description unmodified,
but add a node definition for the Kafka node to
use another cloud resource,

2. extend the infrastructure description with an ad-
ditional Kafka node, which also depends on the
Zookeeper node, and has a new node definition
for some other cloud resource.

Figure 4 shows the differences between two ap-
proaches. The top part of the figure shows the struc-
tures of the different infrastructures. The left hand
case shows where we have only one Kafka node,
but it has multiple node definitions: one for the
ELKH Cloud, and one for Azure. The case shown
on the right side shows that we have two different
Kafka nodes in the infrastructure, one for the ELKH
Cloud (with a node definition belonging to the ELKH
Cloud), and one for Azure (with the relevant node def-
inition attached).
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Figure 4: Approaches for creating hybrid infrastructures.

As it was mentioned earlier, in case of the un-
modified infrastructure description extension method,
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Occopus will decide randomly between node defini-
tions when provisioning new node instances, thus we
propose to use the updated infrastructure description
method instead. In this case, the user can explicitly
define how many Kafka nodes should be created in
the ELKH Cloud, or in Azure, or in any other cloud
provider for which a Kafka node definition exists.

The updated infrastructure description providing
Kafka nodes in both the ELKH Cloud and Azure
can be found in the Gitlab repository for the paper
(Farkas, 2021), in the directory kafka.vm, the file is
called infra-kafka-hybrid.yaml. This infrastruc-
ture description shows the structure of the infrastruc-
ture: one Zookeeper node is used, and there are two
Kafka nodes, one (as earlier) for the ELKH Cloud,
and one for Azure. Both ELKH Cloud and Azure
variants should have at least 2, at most 10 instances
when scaling the nodes.

If an ELKH Cloud user has already created an in-
frastructure based on the ELKH Cloud-only Apache
Kafka reference architecture, then Occopus enables
the extension of the available infrastructure with the
new additional Azure-based Kafka nodes. The user
simply has to instruct Occopus to build an infrastruc-
ture, based on the existing one, and using the new
infrastructure description. Occopus will check if the
nodes of the existing infrastructure are still alive (if
not, will provision new ones), and will also create the
Azure-based Kafka node instances.

The node definition part belonging to the updated,
hybrid infrastructure depends on the target cloud
used. In the following subsections we will examine
how the extension can be implemented in Azure us-
ing virtual machines and in Azure using container in-
stances. Occopus, beside others, has support for han-
dling these cloud types.

4.1 Azure VM-based Kafka Nodes

Azure-based virtual machines in Occopus are handled
by the azure vm resource handler plugin. Through
this plugin users can instantiate virtual machines in
the different regions of Azure, cloudinit scripts are
available for contextualization, just like in case of the
OpenStack-based ELKH Cloud. The Occopus doc-
umentation provides detailed instructions on how to
prepare a node definition for the azure vm plugin, so
we are only enumerating the necessary steps in a nut-
shell here:
• set authentication data to be used with Azure (us-

ing Azure service principal),
• set node properties, like region, virtual machine

size, publisher,
• create contextualization script for the service.

As it was already mentioned, the Occopus doc-
umentation covers most cases. Also, as Azure pro-
vides cloudinit-based contextualization, very likely
the contextualization script used for ELKH Cloud-
based nodes can also be used for Azure.

However, a slight modification is necessary. As
shown in Figure 3, the Kafka nodes are communicat-
ing with each other. As the ELKH Cloud-based in-
stances, and the Azure-based instances are running on
completely different networks, the different nodes in
this hybrid scenario must have a public IP assigned,
and this public IP address should be used as the ad-
vertised listener, and the listener used for inter-broker
communication, too. Most cloud providers offer a
way to query the public IP address associated to the
virtual machine from inside the virtual machine, but
this method differs for the clouds. Thus, the con-
textualization script of the Azure-based instances will
differ from the ELKH Cloud-based ones in this man-
ner: for querying the public IP address of the VM,
the Azure Instance Metadata Service(IMDS, 2021) is
used.

With the updated cloudinit script, we can start
to extend the existing infrastructure in the ELKH
Cloud with Kafka nodes coming from Azure, using
the azure vm plugin. The output of the Occopus
command to extend the infrastructure can be found
in the Gitlab repository’s kafka.vm directory, in the
file logs/03 extend hybrid.log.

After the extension of the infrastructure, we will
have one Zookeeper node running in the ELKH
Cloud, 5 Kafka nodes running in the ELKH Cloud,
and 2 additional Kafka nodes running in Azure.

At this point, we can start to attach new producers
and consumers to the extended cluster. They can con-
nect either to the ELKH Cloud-based or Azure-based
nodes, but it is important to note, that according to
the Kafka documentation new servers will not auto-
matically be assigned any data partitions, so unless
partitions are moved to them they will not be doing
any work until new topics are created.

4.2 Azure Container-based Kafka
Nodes

Containers offer a simple solution for running pre-
packaged applications in versatile environments. As it
was mentioned earlier, ELKH Cloud does not provide
a native service for running containers, but users are
required to deploy some sort of container service (for
example Docker Engine or Kubernetes) onto virtual
machines, and run containers on top of that service.

Azure includes a service called Azure Container
Instances (ACI), which enables Azure users to start
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up containers without the need to allocate any host-
ing virtual machines beforehand. The functionality is
straightforward and simplified: the user has to spec-
ify some basic container properties, like vCPU, RAM
and GPU requirements, base image, networking re-
quirements, and ACI will make sure that a container
based on the specified image is started up, without the
need to allocate VMs. This enables quicker service
startups and easier migration when needed.

Occopus has support for exploiting the function-
alities of ACI through the azure aci plugin. In order
to start container instances in Azure with Occopus,
the user has to set the Azure credentials, and the basic
properties for the container to be started. Features like
specifying environment variables and the command to
be run inside the container are also supported.

Migrating the existing reference architecture
nodes to ACI is relatively easy, as the container image
is already available. The only problem is that in order
to set the advertised listening address for the service,
we need to query the public IP address as described
in the previous, VM-based deployment. In case of
ACI, we do not have a service similar to the Azure
Instance Metadata Service, so we cannot get the pub-
lic IP address of the container from inside the con-
tainer (for example, before the startup of the Kafka
service). However, when allocating an ACI container,
Occopus has the possibility to generate a base FQDN
for the container’s public IP address, through which
other service can access it. And this functionality can
be used to pass the container’s pre-allocated public
FQDN as an environment variable to the container,
so the Kafka listener addresses can be configured
when starting up the service. The dedicated environ-
ment variable is called OCCOPUS ALLOCATED FQDN.
The startup script of the existing Kafka container im-
age has been updated to check if this environment
variable is set, and if yes, then its value is used as
the external advertised listener address for the Kafka
service.

With these updates, ACI-based Kafka nodes can
also participate in a hybrid cluster. The ACI-based
hybrid infrastructure can be found in the Gitlab repos-
itory’s kafka.container directory. The log file
logs/01 build hybrid aci.log shows the output
of the Occopus infrastructure build command for
the infra-kafka-hybrid-aci.yaml infrastructure
description. This contains an ELKH Cloud-based
Zookeeper node, 2 ELKH Cloud-based Kafka nodes
(the Kafka service is run inside Docker containers),
and 2 Azure ACI-based Kafka nodes. Figure 5 shows
the Kafka UI for the hybrid infrastructure, after 2,5
million short messages have been sent to a message
topic with the replication factor of 4.

Figure 5: Kafka UI overview for hybrid cluster using con-
tainers.

5 PERFORMANCE EVALUATION

In this section of the paper we evaluate the perfor-
mance of a hybrid Kafka cluster deployment, running
Kafka brokers both in the ELKH Cloud and in AWS.
AWS was chosen to show that the presented hybrid
approach is not tied only to the ELKH Cloud and
Azure, but can also be adapted to AWS as well.

A number of papers discuss the performance eval-
uation of Apache Kafka clusters.

Authors of (Wu et al., 2019) propose a queuing-
based model to predict the performance of an Apache
Kafka cluster. The metrics the authors are able to pre-
dict with very high accuracy based on their measure-
ments includes message throughput (both for Kafka
producers and consumers) and end-to-end latency (for
real-time applications).

In paper (Hesse et al., 2020) authors present a
monitoring framework for examining different perfor-
mance metrics of Java Virtual Machine-based mes-
sage broker systems, like Apache Kafka. Although
the paper uses an evaluation in scenarios with only
one Kafka node, but the different results, like the need
to rely on multiple producers are applied in this paper
as well.

We already referenced paper (Le Noac’h et al.,
2017), in which authors overview how changing dif-
ferent parameters (like message size, batch size, repli-
cation properties for a topic) impacts different met-
rics of the Kafka cluster (like the number of messages
accepted per seconds, or the message accepting la-
tency). In our paper we do not have the possibility
to evaluate the overall hybrid performance from all
these aspects, but as we will show later, we are using
a given configuration throughout the evaluation.

Beyond performance metrics, there are other as-
pects which can be examined while evaluating an
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Apache Kafka cluster, like network fault tolerance
(Raza et al., 2021). However, these are out of the
scope of our paper, so we are not discussing them.

The Kafka cluster used for the evaluation was set
up based on the following nodes: one Zookeeper node
in the ELKH Cloud (2 vCPUs, 4 GB RAM, 100 GB
SSD storage with 300 MB/s throughput), two Kafka
nodes also in the ELKH Cloud (2 vCPUs, 4 GB RAM,
2 TB SSD storage with 300 MB/s throughput for each
node), and two Kafka nodes in AWS (c5ad.large in-
stance type - 2 vCPUs, 4 GB RAM, 400 GB gp3 vol-
ume attached for Kafka with 300 MB/s throughput
for each node). Every node had a public IP address
allocated, and the brokers were using their public IP
as the advertised listener. The version of Kafka used
was 3.0.0, without any special fine-tuning in the de-
fault configuration (except for the listener configura-
tion to use the public IP address).

To monitor the different metrics of the Kafka
cluster, we have set up a Grafana deployment with
Prometheus as described in an article (Ahuja, 2022).
The core of the monitoring solution is a JMX agent
for Prometheus, which is able to query Kafka broker-
specific metrics.

We have created the following topics for the eval-
uation (for each topic, the replication factor is 1, and
the number of minimum in sync replicas is also 1):

• ELKH: this topic was set up with 2 partitions allo-
cated to the two ELKH Cloud brokers,

• AWS: this topic was set up with 2 partitions allo-
cated to the two AWS brokers,

• Hybrid: this topic was set up with 4 partitions
allocated to the four available brokers (two from
ELKH Cloud and two from AWS).

For the message throughput evaluation, we ran the
stock kafka-producer-perf-test.sh script avail-
able in the Kafka distribution. The common config-
uration for the producers was to publish 500M mes-
sages with 100 random bytes each, not limiting the
throughput from the producer side, have 64 MB of
memory for buffering messages, and use a batch size
of 64000 (pack at most so many messages into one
request). The variable configuration for the producers
was the topic to send the messages to, and the set of
bootstrap Kafka brokers. During testing, we ran mul-
tiple producers in parallel, each producer had 2 vC-
PUS and 4 GB of RAM available, producers running
in the ELKH Cloud were using the ELKH Cloud-
based brokers as the bootstrap brokers (using their
private IP addresses), whereas producers running in
AWS were using the AWS brokers as the bootstrap
brokers (using their public IP addresses).

The producers were started with the help of Occo-

pus, which has the feature to start independent infras-
tructure nodes in parallel. Each node of the infras-
tructure description were above-described producer
nodes, either run on the ELKH Cloud or AWS. All
the infrastructure descriptions, the measurements and
figures are available in the Gitlab repository of the pa-
per (Farkas, 2021), in the directory performance.

5.1 Evaluation 1: Maximum
Throughput of the ELKH
Cloud-based Brokers

In this scenario, we were interested in the maximum
message throughput of the ELKH Cloud-based bro-
kers. In order to measure this, we have started an in-
creasing number of producers in parallel in the ELKH
Cloud to produce messages to the ELKH topic. Table 1
summarizes the results.

Table 1: ELKH Cloud-based broker message throughput.

Number of producers Max message throughput
(messages/s)

6 2.861.774
12 3.540.749
18 3.458.745

The graphs for the monitored message throughput
for the 6, 12 and 18 producer cases can be seen in
Figures 6, 7 and 8, respectively.
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Figure 6: 6 ELKH Cloud-based producers.
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Figure 7: 12 ELKH Cloud-based producers.

We can state that the maximum throughput of the
two ELKH Cloud-based brokers, when messages are
produced by local producers is around 3,5 million
messages/seconds. As both the brokers, topics and
producers used were running on the ELKH Cloud,
this is the stand-alone performance of the ELKH
Cloud-based setup.
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Figure 8: 18 ELKH Cloud-based producers.

5.2 Evaluation 2/a: Hybrid Setup,
Per-data Center Topics

In this scenario, we have utilized the AWS-based bro-
kers, as well. We were running multiple producers
both in the ELKH Cloud and AWS, where ELKH
Cloud-based producers were using the ELKH Cloud-
based brokers as the bootstrap servers, and were send-
ing messages to the ELKH topic, while the AWS-based
producers were connecting to the AWS-based bro-
kers, and were sending messages to the AWS topic.
Thus, the cluster was set up in a hybrid manner, but
the topic configuration allows us to stay inside a data
center when producing messages. Later of course the
topics can be mirrored to the other brokers, but now
we were interested in the message throughput capac-
ity of the setup. Table 2 summarizes the results.

Table 2: ELKH Cloud+AWS broker message throughput.

Producers ELKH AWS Aggregated
6-6 2.753.677 2.691.826 5.431.932

12-12 3.446.712 3.056.977 6.477.289

As it can be seen, aggregated message throughput
of the four brokers is close to the double of the mes-
sage throughput of two brokers as show in Table 1.
The message throughput of the different topics for the
6-6 and 12-12 producer cases is shown in Figures 9
and 10, respectively.
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Figure 9: 6 ELKH Cloud- and 6 AWS-based producers.

5.3 Evaluation 2/b: Hybrid Setup, One
Topic

This scenario is similar to the previous one, but in-
stead of using dedicated topics in the different data
centers, we have used one topic called Hybrid, which
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Figure 10: 12 ELKH Cloud- and 12 AWS-based producers.

had four partitions allocated to the four brokers par-
ticipating in the cluster. Our expectation was, that
due to the communication requirements between the
brokers, the message throughput will decrease in this
case.

Similarly to the previous case, we have started 6-
6 and 12-12 producers, all of the producers sending
messages to topic Hybrid, the ELKH Cloud-based
producers connecting to the ELKH Cloud-based bro-
kers as the bootstrap servers, while the AWS-based
producers connecting to the AWS-based brokers as
bootstrap servers.

Table 3 shows our measurements, while Figures
11 and 12 show the message throughput graph as dis-
played by Grafana during the experiments.

Table 3: Hybrid topic throughput.

Number of producers Max message throughput
(messages/s)

6-6 899.013
12-12 1.964.962
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Figure 11: 6 ELKH Cloud- and 6 AWS-based producers.
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Figure 12: 12 ELKH Cloud- and 12 AWS-based producers.

5.4 Evaluation Summary

As it can be seen from the results of Evaluation 2/a
and 2/b, that in case of a hybrid setup, the partition-
ing of topics has a notable impact on the message
throughput. If we are about to increase the perfor-
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mance of a Kafka cluster with new brokers from other
data centers, then it is recommended to use new mes-
sage topics partitioned only in the new data center, as
in this case the overall message throughput is the sum-
mary of the local message throughput in the different
data centers. If a topic is partitioned between different
data centers, then we can expect performance degra-
dation, which is very likely caused by the inter-broker
communication.

6 SUMMARY AND FUTURE
WORK

In this paper we presented our approach of en-
abling the hybrid cloud deployment of an Apache
Kafka reference architecture, originally targeting the
OpenStack-based ELKH science cloud. The pre-
sented work shows how the existing VM-based archi-
tecture can be moved onto a container-based solution,
and how the hybrid operation is enabled in Azure us-
ing virtual machines or containers towards cloud con-
tinuum. We also performed a message throughput
evaluation of the hybrid architecture, running on the
ELKH Cloud and AWS resources.

The most important advantage of our approach is
the encapsulation of the entire method and the related
best practices into reference architecture descriptions
that might be the subject of cloud orchestration in-line
with the cloud continuum approach. For orchestra-
tion purposes the open-source Occopus tool has been
chosen but the presented results could be applied for
other higher level (Ullah et al., 2021) or third-party
orchestration tools as well.

Regarding future work, the need of performing ad-
ditional measurements of the hybrid infrastructures
has been already identified. During the evaluation
the focus was on the startup time of the infrastruc-
tures, and some basic message throughput character-
istics, but from the applications’ point of view addi-
tional metrics could also be considered, e.g. (i) how
effectively consumers can process messaging sent to
the different topics, or (ii) what is the performance
of topic mirroring between different data centers in a
hybrid setup. Following the results here, we aim at
evaluating other performance metrics of different ap-
plications on hybrid Kafka clusters, running on top
of VM- or container-based deployments, having con-
nected the cluster nodes in different setups, such as
connecting directly or through a Virtual Private Net-
work connection. Further validation of results are to
be performed with use case providers, involving ex-
perts from the field of autonomous and cyber-medical
systems.
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KÖ-40/2020. On behalf of the Occopus Project we
thank for the usage of ELKH Cloud (https://science-
cloud.hu/) that significantly helped us achieving the
results published in this paper. The presented work of
R. Lovas was also supported by the Janos Bolyai Re-
search Scholarship of the Hungarian Academy of Sci-
ences. This work was funded by European Union’s
Horizon 2020 project titled ”Digital twins bringing
agility and innovation to manufacturing SMEs, by
empowering a network of DIHs with an integrated
digital platform that enables Manufacturing as a Ser-
vice (MaaS)” (DIGITbrain) under grant agreement
no. 952071.

REFERENCES

Ahuja, M. (2022). Kafka monitoring using prometheus.
https://www.metricfire.com/blog/kafka-monitoring-
using-prometheus/. Accessed: 2022-01-10.

ARNL (2021). The national laboratory for autonomous sys-
tems website. https://autonom.nemzetilabor.hu/. Ac-
cessed: 2021-11-01.

Canonical (2021). Managed kafka on ubuntu.
https://ubuntu.com/managed/apps/kafka. Accessed:
2021-12-01.

Confluent (2021). Confluent multi-cloud - the complete
guide. https://www.confluent.io/learn/multi-cloud/.
Accessed: 2021-12-01.

du Preez, D. (2021). Confluent aims to make it easier to
set data in motion across hybrid and multi-cloud.
https://diginomica.com/confluent-aims-make-it-
easier-set-data-motion-across-hybrid-and-multi-
cloud. Accessed: 2021-12-01.

Eigner, G., Nagy, M., and Kovács, L. (2020). Machine
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