
Applying GitHub Services to Support Teaching-learning Strategies
in Computer Science Courses

Manel Mena a, Javier Criado b, Isabel M. del Águila c,
Joaquı́n Cañadas d and Luis Iribarne e

Department of Informatics, University of Almerı́a, Spain

Keywords: GitHub, Classroom, Feedback, Automation, Tests, Teamwork Collaboration.

Abstract: Computer Science students need to acquire both theoretical and practical use of the knowledge that is covered
by the subjects or courses of their degrees. However, sometimes they attend lectures about theoretical concepts
that they cannot apply with real development tools that are part of the industry. Therefore, we believe that
students have to start working as soon as possible in a similar way to the one they will use in their work once
they have finished their studies, considering each course or each deliverable activity as a software development
project. This paper describes the solutions adopted and applied to five Computer Science courses in two
innovation teaching projects of the University of Almerı́a. Furthermore, we present a series of support teaching
tools for managing and creating GitHub projects as GitHub is the core technology for developing teaching-
learning activities because of its widespread use. Each course manages its own strategy according to its specific
characteristics (i.e., learning objectives, number of students, schedule or programming languages).

1 INTRODUCTION

Computer Science courses should provide not only
both solid theoretical and practical foundations in
many knowledge areas, but also teamwork to prepare
the students for their careers (Gutica, 2018). Besides,
with the demands of technological advances in soft-
ware, it is required that software development teams
work in a collaborative way, skills that every student
must learn from the very beginning in their Computer
Science courses (CC2020 Task Force, 2020).

Nowadays, one of the most widely used cloud
services to store collaborative software artifacts is
GitHub. GitHub is an online repository support plat-
form for managing projects and controlling code ver-
sions, reaching the social network level designed for
developers because millions of people worldwide use
its services to cooperate on it. It offers distributed ver-
sion control and source code management functional-
ities, plus its own features and integrations with many
external applications. It also provides access control

a https://orcid.org/0000-0003-1084-8489
b https://orcid.org/0000-0002-8035-5260
c https://orcid.org/0000-0001-9896-7196
d https://orcid.org/0000-0001-5391-965X
e https://orcid.org/0000-0003-1815-4721

and several collaborative services such as feature re-
quests, tasks management, code merging or continu-
ous integration.

We believe that the students should start as soon as
possible to work with this kind of platform daily, that
is like they are going to work as engineers once they
finish their studies. This work shows the solutions
adopted for the embedding of GitHub in the learning
processes of several courses for the Computer Sci-
ence discipline at the University of Almerı́a (UAL).
Each one manages their own strategy and takes ad-
vantage of the specific features of GitHub according
to the semester it is scheduled and the particular learn-
ing objectives defined for the course.

The goal of this work is to develop strategies and
methodologies based on GitHub where the steps fol-
lowed by the students in the execution of the different
courses activities are linked with the steps of a soft-
ware development process. The approach is under
evaluation, and the proposed strategies have been in-
stantiated in the courses described in this article from
different perspectives. In some courses, the matu-
rity level in the use of GitHub services is higher than
in others, as well as the number of applied features.
Thanks to the involved innovation teaching projects,
an effort is being made to unify the strategies estab-
lishing a common methodology.

Mena, M., Criado, J., Águila, I., Cañadas, J. and Iribarne, L.
Applying GitHub Services to Support Teaching-learning Strategies in Computer Science Courses.
DOI: 10.5220/0011071000003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 1, pages 289-296
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

289



2 GitHub SERVICES FOR
CLASSROOM MANAGEMENT

Nowadays, GitHub is the most popular Web-based so-
cial code sharing service in the software industry, and
many companies in technology areas use it1. It is not
only used to develop software and to write technical
documentation, but also to collaborate in a variety of
domains (Feliciano et al., 2016).

One of these soaring knowledge-area that exploits
GitHub services is education, specifically for Com-
puter Science courses that involve software develop-
ment (Zagalsky et al., 2015; Tushev et al., 2020) and
programming (Angulo and Aktunc, 2019; Glazunova
et al., 2021), but other disciplines have also deployed
successful solutions (Fiksel et al., 2019; Nelson and
Ponciano, 2021).

Just from the boost of WWW in the mid-nineties,
online facilities had been applying to support teach-
ing. Those software tools allowed teachers to host
and distribute the material to their students and fa-
cilitated interrelationships through emails and forums
threads. Learning Management Systems (LMS) such
as Canvas, Moodle or Blackboard were groundbreak-
ing tools still widely used today. These tools estab-
lished a new milestone in education because they pro-
vide instructors with various services for managing
and administering courses.

The features offered by LMS are evaluating stu-
dents, evaluating courses and instructors, creating
class discussions, creating computer-based instruc-
tion, and so on (Malikowski et al., 2007). How-
ever, while these tools allow communication between
teachers and students, they do not promote collabo-
ration because both roles are separated. GitHub goes
a bit further because besides enabling future profes-
sionals to learn how to manage and collaborate on
their software development projects, its services allow
teachers to define innovative teaching-learning pro-
cesses that can be customized according to specific
characteristics of their courses. We have defined five
categories of supporting areas that have been instanti-
ated in the different courses described in Section 3.

2.1 Supporting Shareable Material

The most usual approach to sharing course contents
in this kind of platform is to include the documents
and material in a specific repository giving access to
the enrolled students.

Public repositories offer the possibility to share
content publicly without any access restrictions. On

1GitHub Octoverse – https://octoverse.github.com/

the other hand, private repositories enable sharing
contents only to enrolled students, to students and
teachers, or only between teachers, giving desired
users the proper access to the repository.

However, were an entire repository to be shared,
for instance, a software tool, this approach would not
be valid. A better solution is to define an organization
that could support the different materials arranged in
several repositories. The definition of an organization
also facilitates the use of GitHub Classroom.

Besides the definition of an organization to sup-
port a given course, multiple teaching resources and
reference material on can be shared using GitHub.
Specifically, the feature called GitHub Pages makes
it easy and free to publish a static website hosted as
“. github.io”. This feature has been the starting point
to release several teaching resources to promote the
use of serious games2 or to share coding problems as
learning objects (Águila et al., 2021).

2.2 Project Management

GitHub collaborative features can be leveraged during
the entire life cycle of a project. One of the most crit-
ical stages in software development is project man-
agement, and GitHub provides the Projects view for
this goal. For example, it is possible to create project
boards with a Kanban style (Malakar, 2021) and link
the task written on the board with issues related to
project development. Furthermore, issues can be de-
scribed with additional information (e.g., relevance,
priority, or related milestones) and assigned to spe-
cific collaborators. Finally, the status of the task and
issues can be tracked and managed.

This way, project management activities can be
applied to support the activities assignment, the track-
ing and monitoring of the exercises, as well as the
analysis of the learning objectives that users are
achieving (e.g. using the milestone concept).

2.3 Collaborative Working

Once the project scope has been identified in the man-
agement stage, each functionality will be managed
and implemented (i.e., solved). In a teaching-learning
process, this work execution can be analogous to the
moment the students build the solutions to the prob-
lems presented. In Computer Science courses, the
collaborative work includes the development of dif-
ferent artifacts involved in the course, for instance,
the specific solutions or reports for students’ assign-
ments or the software components that are part of a
software application.

2Serious Games Repo – https://cutt.ly/TIO98SI

CSEDU 2022 - 14th International Conference on Computer Supported Education

290



Some exercises have to be solved individually, but
others require forming teams or working groups that
can solve a problem collaboratively. In this sense,
GitHub provides the necessary infrastructure, allow-
ing (i) assignment of issues to several students, (ii)
repository sharing, (iii) forks to build alternatives, (iv)
merging mechanism to gather partial solutions from
different students, and (v) reporting of contributions
by author, among other possible features.

2.4 Guidelines and Patterns

When students start to develop a solution for an exer-
cise, especially when it is related to courses of the first
academic years, they need to receive frequent feed-
back and specific information about the exercise they
are solving. Therefore, it is not enough to make gen-
eral and theoretical contents available for them, be-
cause their application could be difficult.

GitHub provides two approaches that can be used
for this purpose. The direct strategy is related to creat-
ing help content in the form of incomplete solutions or
templates that can and should be reused by students.
Teachers can create repositories to provide these tem-
plates so that users can clone them and have this set
of guides available to them. Another option is for stu-
dents to start directly by forking these repositories,
then developing their specific solutions and pushing
them in a new repository or as a pull request of the
original one.

The indirect strategy relies on the application of
continuous integration and continuous deployment
(CI/CD) processes to run validation tests on the ma-
terial pushed to the repositories. The application of
automated testing helps the students progress and en-
ables early error detection. Moreover, the feedback
information provided from the test executions can
be used as the guidelines to solve the corresponding
tasks, and the guidelines define a set of good prac-
tices that help transmit (teachers) and acquire (stu-
dents) patterns related to software development. This
strategy can be achieved using different alternatives
such as GitHub Classroom autograding, GitHub Ac-
tions, Jenkins, or GitLab CI/CD.

2.5 Support Teaching Tools

In Section 2, we have identified the different ways
in which we use GitHub. To support those different
purposes, we have developed an application (ITSI-
GITSI) for the generation and automatic management
of course repositories on GitHub that allows us to per-
form a series of repetitive tasks around functionality
offered by GitHub. Among the features of the appli-

1 apiVersion: 1
2 op: create
3 org: ualits
4 metadata:
5 repos:
6 -
7 name: "test2"
8 users:
9 - "javicriado"

10 - "manelme"
11 private: false
12 labels:
13 -
14 name: "1"
15 description: "low difficulty issue"
16 color: "ededed"
17 milestones:
18 -
19 title: "FirstMilestone"
20 description: "A milestone for the repository"
21 issues:
22 -
23 title: "Prueba1 test1"
24 description: "Issue description"
25 labels:
26 - "1"

Listing 1: Config file for repository creation.

cation, we have the following:
• Automatic generation of students’ and teachers’

repositories in a specific organization.
• Bulk generation of repositories using a .csv file.
• Generation of issues and milestones related to

course assignments, either when creating a repos-
itory or a posteriori.

• Calculator of scores for the users of the reposito-
ries, taking into account the issues resolved, either
simply counting one by one the issues or using
possible score tags of the particular issue.

• Automatic modification of a markdown file to
capture the scores.

• Fast deletion of multiple repositories.
This application uses some configuration files to

execute the different named functionalities . The
tool executes the configuration file passed in the pa-
rameter. This file has to be in .yml format. In it,
we establish the functionality to be executed and the
configuration parameters for that functionality, using
the paradigm known as configuration as code (CaC)
(Rahman et al., 2018). As an example, the Listing 1
reflects the proposed configuration for the creation of
a repository. In the listing, we can see how in line 2,
we establish the operation, in this case, create. In line
3, we define the organization where the repositories
will be created. A posteriori, we enter the metadata
of each of the repositories that will be created (lines
4-26). Moreover, inside this metadata, we define the
repositories themselves (lines 5-11), the possible la-
bels (lines 15-16), the milestones of the project (lines

Applying GitHub Services to Support Teaching-learning Strategies in Computer Science Courses

291



17-20) and the issues to which we can assign the la-
bels and milestones previously created. In the ITSI-
GITSI3 public repository, we defined a series of ex-
amples with the possible operations to be executed,
as well as the requirements of the application.

3 EXPERIENCE IN COURSES

As part of the work of the teaching groups, the strate-
gies described in Section 2 are being applied in dif-
ferent Computer Science courses. Table 1 shows the
strategies applied in the involved courses (from sev-
eral degrees and semesters). This section describes
the specific actions carried out for each of these
courses and analyzes some of the results obtained.

3.1 Software Engineering

The course Software Engineering allowed us to apply
a different perspective to the common use of a GitHub
repository. Normally, a repository is intended for ver-
sion control of the source code files of a software sys-
tem. However, in the Software Engineering course,
this type of source file is not needed because the main
objective is to teach students to model software sys-
tems using Unified Modeling Language (UML) (Seidl
et al., 2015) use case, class and sequence diagrams.

With this aim, students receive the system speci-
fications that they have to model, and build the cor-
responding UML diagrams. From these diagrams,
students generate the UML models in an XML-based
format that can be managed by the version control of
GitHub. In addition, the UML models uploaded to
the repositories can be automatically checked by ex-
ecuting a continuous integration process with Jenkins
(Smart, 2011).

Following this approach, we developed a Domain-
Specific Language, or DSL (Gronback, 2009), with
two objectives: (1) describe the infrastructure of
GitHub repositories and Jenkins jobs for each student,
and (2) describe the internal structure of the tests ap-
plied to the diagrams. Using this language, we can
automatically generate the required infrastructure for
the assessment of UML models (Criado et al., 2020).

The proposed workflow of the teaching-learning
processes is described as follows. Starting from a
problem specification, teachers will generate a model
with the tests (considering the optimal solution for
each required UML diagram) that have to be exe-
cuted. This model is used for generating the JUnit
tests (Ammann and Offutt, 2016) that will be exe-

3ITSI-GITSI - https://github.com/ualits/itsi-gitsi

cuted when the models constructed by the students are
pushed to their repositories. The results of test execu-
tions provided by Jenkins will be analyzed by the stu-
dents for evaluating the correctness of their solutions.
These steps will be repeated until the students consid-
ers that the solution is correct, i.e., the tests have been
passed, and the specification has been fulfilled.

As a summary, GitHub has been used with the fol-
lowing perspectives. In the first place, teachers use
repositories to share and manage the course mate-
rial. Secondly, the students repositories are used for
the collaborative development of UML diagrams and
models. And third, the feedback obtained for the tests
executions should be used as the guidelines to under-
stand which modeling directives and design patterns
have to be applied from the specifications.

In the next Software Engineering courses, we are
planning to use the GitHub project view to (a) as-
sign the exercises to the accomplished by students,
(b) track the progress of these exercises, and (c) au-
tomatically score the finished exercises by updating
the description for each student’s repository. Further-
more, GitHub actions features are being evaluated to
run the automatic process of checking UML models
stored in students’ repositories. This would remove
the necessity for using an external tool like Jenkins
for such tasks, simplifying the supporting infrastruc-
ture in the course.

The application of this approach in the Software
Engineering course is providing positive results. Dur-
ing the current academic year (2021-2022), a high
percentage of students have used this proposal to im-
prove their modeling skills. Of 165 students, 107
passed all the tests (65%). Of those who passed all
the tests, 63 passed the subject’s final exam, for which
they had to apply the acquired modeling knowledge.
This is a 58% from the set of the students passing the
tests, and a 38% from the total of students.

3.2 Software Eng. Tools and Methods

Version control systems are one of the main topics of
the Software Engineering Tools and Methods course,
together with software testing, build automation and
continuous integration and deployment. Teamwork
is an important soft skill that students should reach
along the course. With that aim, several software de-
velopment activities and a final project are proposed
to students’ teams to learn and put into practice the
main contents of the course.

Students reach the course with some previous
knowledge of Git and GitHub basics, so at the be-
ginning, we focus on conflict resolution when merg-
ing changes from different users, presenting different

CSEDU 2022 - 14th International Conference on Computer Supported Education

292



Table 1: Involved courses.

Course Degree Semester Used approach(es)
Software Engineering Computer Science 3rd Project management, Autograding, Teamwork col-

lab, CI/CD
Software Engineering
Tools and Methods

Computer Science 6th Project management, Teamwork collab, CI/CD

Rapid Application
Development

Computer Science 8th Project management, Autograding, Teamwork col-
lab, CI/CD, Course material

Software Engineering
Processes II

Computer Science 8th Project management, Teamwork collab, Course
material

Programming Mechanical, Electric, Industrial Electron-
ics and Industrial Chemical Engineering

2nd Project management, Teamwork collab, Course
material

situations when conflicts can appear and how to re-
solve them. Different branches strategies that allow
developers to isolate their work and to minimize con-
flicts when working in teams are reviewed and ap-
plied. GitHub is used for enabling team collaboration,
presenting two different approaches: 1) The central
repository model, when all teammates have ‘write’
permissions on the same remote GitHub repository,
and 2) The “fork and pull request” model, when only
one member has ’write’ access to the main repository,
called upstream, and the rest of team members have
only ‘read’ access in the upstream repository. We fo-
cus our interest on the last one since it is widely used
in the industry.

To promote commitment and individual effort in
collaborative activities, we review the GitHub feature
called Insights that provides a report of contributions
by each author along the time, showing summarized
information of what contributions were made by each
team member and when. Moreover, to ensure that the
author of a change is whom GitHub says, students
learn how to sign their commits.

Some alternatives to GitHub, such as GitLab and
Bitbucket, were evaluated several years ago. For
some years, GitLab was used in the course, which
provides a standalone version that can be downloaded
and installed into a machine managed by the stu-
dents’ team. Operating their own service support-
ing Git repositories was quite interesting for students,
as far as the feedback we received, even from lo-
cal companies that did not want to upload their pro-
prietary code into an online service such as GitHub,
which was historically known for hosting open source
software projects. However, this activity negatively
affected the course schedule since students used to
spend much more time on managing the server for
installing GitLab, setting up GitLab itself, creating
users and managing permissions, and they were not
able to start working on Git topics until everything
was properly set up. As an alternative of a Git-
Lab service operated by each student team was using
Gitlab.com, the online GitLab service; however, the
widespread use of GitHub and the additional educa-

tional resources that GitHub provides to higher insti-
tution students made us choose GitHub against others.

3.3 Rapid Application Development

In the course of Rapid Application Development, we
use the tools provided by GitHub to monitor and eval-
uate students. The fundamentals of this course, as the
name suggests, lies in the students being able to de-
velop applications in an efficient and fast way through
the use of a series of frameworks that in turn imple-
ment development patterns widely used in the world
of programming.

To do this, we divide the course into three different
milestones:

• Backend. It includes all artifacts necessary for
the deployment of a backend, e.g., establishing
databases, message queues, APIs or whatever
middleware required.

• Frontend. It includes the software artifacts related
to a front web application that allows a user to
access and interact directly with the data provided
by the backend.

• Deployment. Artifacts developed in the two previ-
ous points, generating an infrastructure based on
containers for the different applications.

In order for students to meet the established ob-
jectives in the three milestones, apart from teaching
the theoretical concepts related to them, we propose
to the student the creation of two applications that, in
turn, will be used to evaluate them. The first one is
developed individually by the student. The student
establishes the theme and technologies, this way, the
student becomes much more involved in the learning
process. We only demand from the student that the
application meets the three milestones. On the other
hand, the second application is a project that will be
made collaboratively. The teacher defines the theme
and technologies and coincides with the ones learned
in the course.

In the case of the individual application, the stu-
dent creates a private repository required to comply

Applying GitHub Services to Support Teaching-learning Strategies in Computer Science Courses

293



with a mainline branching strategy (Fowler, 2020).
In this strategy, the student have to generate a new
branch for each feature to implement and possi-
ble bugs detected in their application. The teacher,
throughout the course, is carrying out a detailed
follow-up of each private repository, in which he/she
controls if the student is fulfilling the milestones. In
turn, if any error is detected in the development of the
individual project, the teacher can create issues that
the student must resolve for the positive evaluation.

The modus operandi of the development of the
collective application is a little different. As we will
see below, we introduce the student in a more real
situation about the development of a project in a com-
pany. The teacher generates a team in the course or-
ganization. Next, a public repository is generated that
has an associated project to which the previously es-
tablished team is assigned. The milestones are estab-
lished in that repository, backend, frontend, and de-
ployment. In the associated project, we generate a
Kanban board to track students’ tasks. In this board,
the teacher generates five columns in which we es-
tablish a Scrum (Subra and Vannieuwenhuyse, 2018)
Board, agile development methodology that the sub-
ject follows for the project.

We have a series of fully automated columns in
which both students and teachers can follow the tasks
that are being developed at any given time. These
columns are as follows:

• Backlog: This column establishes all the issues
that both students and teachers generate in the
project development.

• Sprint Backlog: This column has all the issues be-
longing to the milestone that we are developing.
In the development of the collective project, we
established three different sprints of one month
each that coincides with the three milestones.

• In Progress: The moment an issue is assigned to a
student, it goes to this column.

• Under Review: When the student makes a Pull
Request indicating the issue number that he or she
has solved, the task goes to this column, being the
moment in which the teacher decides if this task
has a positive evaluation (accepts Pull Request) or
negative (rejects the Pull Request).

• Done: Once the Pull Request is accepted, the is-
sue is considered completed.

For the student evaluation, the teacher assigns a score
(in the range 0 to 5) to each issue generated in the
collective project. that indicates the issue difficulty.
Besides, each project issue is associated with one of
the course milestones. Furthermore, the student has

the power to assign him/herself an issue whenever
he/she wants, but only one at a time. In turn, it is
required that the student meets a minimum score in
each milestone so that part of the subject is consid-
ered passed. For the resolution of each issue, stu-
dents must first fork of the course public repository,
in which they must work resolving the relevant is-
sue. Then, once they consider that they have solved
the particular issue, the student makes a Pull Request,
with the issue number they have resolved must ap-
pear, that the teacher will validate. Throughout the
course, the teacher launches the evaluation program
presented in Section 2 to check the student’ score in
each milestone. Score that will be taken into account
when evaluating them, and that we can check man-
ually in the project Kanban in the tasks that are ar-
ranged in the Done column. As you can see, the ob-
jective we have when studying this course is not only
that the student learns the concepts that are seen in it,
but that they acquire the necessary competence to be
able to work on a collaborative project.

3.4 Software Engineering Processes 2

The topics covered by this course are vast and di-
verse, but they are arranged in two well differenti-
ated aspects. First, fundamental issues for the exer-
cise of software engineers’ profession that include in-
ternational and national standards or the profession’s
ethics. Besides, it covers the measurements and met-
rics techniques that allow quality control, and the
study of how the software product development pro-
cesses have been applied, including all the analytic
processes of those metrics and the refactoring actions
selection.

Because this course is planned in the last semester
and coincidental with Rapid Application Develop-
ment, students are used to managing and develop-
ing software supported by the GitHub platform. We
outline the use of GitHub with a multi-project point
of view, which means that a student has to develop
projects in different domains (not always software re-
lated) belonging to various aleatory built teams. On
the one hand, students are forced to self-organize the
teams they belong to, and each team has the power
to decide how they will work. On the other hand,
each student individually suffers the pressure of the
deadlines of the issues assigned to them by their class-
mates.

Project boards are the most used GitHub feature in
this course because the only rule we set is that all the
tasks performed in the project have to be recorded,
assigned, monitored and commented using notes in
a Kanban board. This rule allows teachers to con-

CSEDU 2022 - 14th International Conference on Computer Supported Education

294



trol and evaluate students’ work. Furthermore, teach-
ers can sometimes define ad-hoc tasks assigned to the
team or specific students given feedback or improve-
ments/warnings to the built solutions.

In addition to multi projects coordination, another
point that students have to deal with is the connec-
tion and management of additional applications such
as Overleaf4, Codacy5, or SonarCloud6. The first one
is used to develop a report about how to instantiate the
set of standard terminology and guidelines for project
management, Project Management Body of Knowl-
edge, to a project for elaborating their final undergrad-
uate dissertation. In this assignment, the use of latex
as an external tool supported by a GitHub repository
and the project management for a not software project
are combined.

The Codacy application is used to automate code
reviews (bugs and vulnerabilities) on the commits and
pull requests of an easy software project. Each team
(two students) decides the programming language and
who is responsible for code and for review. The stu-
dent that reviews for a team is the coder in another
team. The followed rule is using GitHub issues and
tasks to communicate each other. Finally, Sonar-
Cloud, which has similar features to Codacy, is used
in a given software application, and a student has to
apply refactor actions (Fowler, 2018) that have to be
justified using issues and commit comments.

In all the assignments/projects, the GitHub repos-
itories are the submissions content to be evaluated by
the teachers, while commits and issued tracks are also
evaluation instruments.

3.5 Programming

Programming is an introductory course of the first
year in the Mechanical Engineering, Electric Engi-
neering, Industrial Electronics Engineering and In-
dustrial Chemical Engineering degrees at the UAL.
Because current teaching methodologies focus on the
student’s work, the course is based on problem-based
learning and collaborative team-working (Garcı́a-
Lázaro et al., 2015; Sol. et al., 2021).

This course is included in the competencies ”Soft-
ware Development Fundamentals” area of the Com-
puting Curricula, which recommends the fluency in
at least a programming language, accomplished with
essential programming skills and programming con-
cepts, such as basic computation, simple and file I/O,
standard conditional and iterative structures, the defi-
nition of functions, and parameter passing.

4Overleaf – www.overleaf.com
5Codacy – www.codacy.com/
6SonarCloud – sonarcloud.io/

The lectures and laboratory lessons are based on
problems that require programming skills. The prob-
lems are scheduled in 13 cooperative working tasks
(CWT) and 15 autonomous tasks (AT). Each CWT is
described in a written instruction document that in-
cludes 3 or 6 problems that have to be collectively
solved by a team of 3 or 4 aleatory selected students.
Because the plan is common to all the students, it
is not pure problem-based learning. Nevertheless,
team members may decide the particular techniques
or C coding strategy. The AT assignments are no-
classroom activities. Instead, each one collects the ex-
ercises or problems to be done/coded autonomously.

Until last year, students used some Integrated De-
velopment Environment (IDE) in C/C++ program-
ming language that they can install in their personal
computers, and the solutions were reviewed manually
by the teachers. However, for the academic course
2022, a new workflow has been defined based on the
GitHub services (Águila et al., 2022). Most of the
contents are going to be released on a GitHub organi-
zation. A repository containing a set of problems in
the field of Industrial Engineering has been released
on the GitHub page and can be used as learning ob-
jects (Águila et al., 2021). The CWT and AT in-
structions have been included as readable files in two
repositories. These contents are written in Markdown,
a markup language that facilitates the production of
texts for the web. Because it is destination indepen-
dent, these texts can be reused to create other learning
materials, such as teachers’ or students’ notes.

Another GitHub feature that is going to be ap-
plied is the version control to help and promote co-
operative team working (Águila et al., 2022). The
students are arranged in several teams sharing a com-
mon repository that the different teammates will com-
plete. Each student has to manage two repositories,
the first one to collect AT solutions and a second one
to solve group assignments, CWT. These tasks are
structured in smaller problems where positive inter-
dependence is needed. Finally, the exercises are dis-
tributed among the members, and the solutions have
to be agreed upon and merged. The use of teamwork
and commits history will help teachers analyze how
effective their learning strategy is.

4 CONCLUSIONS

This article describes the set of solutions and strate-
gies that have been applied to five courses related to
the Computer Science domain as part of the research
work of two innovation teaching projects of the Uni-
versity of Almerı́a (UAL).

Applying GitHub Services to Support Teaching-learning Strategies in Computer Science Courses

295



These strategies apply GitHub services to sup-
port and improve the teaching-learning processes, due
to the provided features and the widespread use of
this technology. In this article, we define the differ-
ent strategies and approaches supported by the use
of GitHub, like project management, collaborative
working, the use of CI/CD processes for automatic
validation of exercises, or simply by sharing material
thanks to the capabilities provided by the platform.
Furthermore, we provide a tool for creating and man-
aging GitHub repositories, to avoid repetitive tasks
such as creating an issue in multiple repositories.

The results obtained by applying the strategies in
the different courses are promising. They have made
it possible to unify teaching-learning strategies within
the Degree of Computer Science of the UAL.

There are still open research lines for building spe-
cific protocols and methodologies for each course,
and for extrapolate the established strategies to other
courses with similar characteristics.

ACKNOWLEDGEMENTS

This work has been funded by 21-22-2-13C and 21-
22-1-11C projects, call for the Creation of Teaching
Groups for Innovation and Good Practices and for the
Creation of Teaching Materials of the UAL. Manel
Mena has been funded by a grant (ref. FPU17/02010)
from the Spanish Government.

REFERENCES

Águila, I., Cañadas, J., and Garcı́a, J. R. (2022). Github
repository with learning objects for industrial engi-
neering degrees in programming. In Proc. IEEE
EDUCON. Global Engineering Education.

Águila, I., Garcı́a, J. R., Guirado, R., and Miranda, C. M.
(2021). Github repository with learning objects for in-
dustrial engineering degrees in programming. In Proc.
VII CINAIC’2021, pages 86–90.

Ammann, P. and Offutt, J. (2016). Introduction to software
testing. Cambridge University Press.

Angulo, M. A. and Aktunc, O. (2019). Using github as a
teaching tool for programming courses. In 2018 Gulf
Southwest Section Conference.

CC2020 Task Force (2020). Computing curricula 2020:
Paradigms for global computing education.

Criado, J., Cañadas, J., Iribarne, L., and Miranda, C. (2020).
Automatic assessment of uml models for improving
the learning of software engineering students. In Proc.
ICERI2020, pages 1855–1858.

Feliciano, J., Storey, M.-A., and Zagalsky, A. (2016). Stu-
dent experiences using github in software engineering

courses: a case study. In Proc. IEEE/ACM 38th ICSE-
C, pages 422–431. IEEE.

Fiksel, J., Jager, L. R., Hardin, J. S., and Taub, M. A.
(2019). Using github classroom to teach statistics.
Journal of Statistics Education, 27(2):110–119.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Fowler, M. (2020). Patterns for managing source code
branches. https://cutt.ly/jIO6X55. [Online; accessed
19-January-2022].

Garcı́a-Lázaro, J., Moreno-Ruiz, J., Aguilla Cano, I., and
Guirado Clavijo, R. (2015). Teaching computer pro-
gramming in the degrees of industrial engineering
with collaborative and problem-based learning. In
Proc. EDULEARN15, pages 7623–7633.

Glazunova, O., Parhomenko, O., Korolchuk, V., and
Voloshyna, T. (2021). The effectiveness of github
cloud services for implementing a programming train-
ing project: students’ point of view. J. Phys.: Conf.
Ser., 1840:012030.

Gronback, R. C. (2009). Eclipse modeling project: a
domain-specific language (DSL) toolkit. Pearson Ed-
ucation.

Gutica, M. (2018). Improving students’ engagement with
large-team software development projects. In Proc.
23rd ACM ITiCSE, pages 356–357.

Malakar, S. (2021). AGILE in Practice: Practical Use-
cases on Project Management Methods including Ag-
ile, Kanban and Scrum. BPB Publications.

Malikowski, S. R., Thompson, M. E., and Theis, J. G.
(2007). A model for research into course management
systems: Bridging technology and learning theory. J.
Educ. Comput. Res., 36(2):149–173.

Nelson, M. A. and Ponciano, L. (2021). Experiences and in-
sights from using github classroom to support project-
based courses. arXiv preprint arXiv:2103.07242.

Rahman, A., Partho, A., Morrison, P., and Williams, L.
(2018). What questions do programmers ask about
configuration as code? In Proc. 4th RCoSE, pages
16–22.

Seidl, M., Scholz, M., Huemer, C., and Kappel, G. (2015).
UML@ classroom: An introduction to object-oriented
modeling. Springer.

Smart, J. F. (2011). Jenkins: The Definitive Guide. O’Reilly
Media, Inc.

Sol., R., Santos., E., Reis., M., and Pereira., L. (2021).
Computer supported collaborative learning for pro-
gramming: A systematic review. In Proc. 13th
CSEDU, pages 184–191.

Subra, J.-P. and Vannieuwenhuyse, A. (2018). Scrum: un
método ágil para sus proyectos. Ediciones ENI.

Tushev, M., Williams, G., and Mahmoud, A. (2020). Us-
ing github in large software engineering classes. an
exploratory case study. Computer Science Education,
30(2):155–186.

Zagalsky, A., Feliciano, J., Storey, M.-A., Zhao, Y., and
Wang, W. (2015). The emergence of github as a col-
laborative platform for education. In Proc. 18th ACM
CSCW, pages 1906–1917.

CSEDU 2022 - 14th International Conference on Computer Supported Education

296


