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Abstract: There has been significant innovation in the domain of Internet of Things (IoT) as nowadays wireless data 
transmission is playing an essential role in various organizations like agriculture, defence, transportation, etc. 
Batteries are the most common option to power wireless devices. However, using batteries to power IoT 
devices has drawbacks including the cost and disruption of frequent battery replacement, and environmental 
concerns about battery disposal. Solar energy harvesting is a promising solution for long-term operation 
applications. However, solar energy harvesting varies drastically over location and time. Due to fluctuating 
weather conditions and the environmental effects on PV surface condition, output could be reduced and 
become insufficient. Environmental conditions including temperature, wind, solar irradiance, humidity, tilt 
angle and the dust accumulated over time on the photovoltaic (PV) module surface affects the amount of 
energy harvested. To address this issue, a novel solution is required to autonomously predict the harvested 
energy and plan the IoT device tasks accordingly, to enhance its performance and lifetime. Using Machine 
Learning (ML) algorithms could make it possible to predict how much energy can be harvested using weather 
forecast data. This research is ongoing, and aims to apply ML algorithms on historical weather data including 
environmental factors to generate solar energy predictions for IoT device energy budget planning. 

1 INTRODUCTION 

It is estimated by Arm that about 1 trillion devices 
will be connected and become part of everyday life 
by the year 2035 (Sparks, 2017). The Internet of 
Things (IoT) has the potential to make our 
surroundings, houses, and vehicles smarter and more 
quantifiable (Loh, 2021). Moreover, IoT devices such 
as sensors, lights, and meters provide data and 
information to smart cities for collection and analysis. 
This data can be used to improve services, 
infrastructure, utilities, and other aspects of life 
(Gyrard, 2018). 

A sensory IoT node consists of sensors, a 
processor, a transceiver, and a power supply. 
Batteries are the most common source of energy used 
to supply power to wireless IoT nodes, which can 
either be recharged or replaced according to the 
installation conditions (Tong, 2011). Batteries are 
often the largest part of an IoT device and, in most 
cases, will need to be replaced during the system 
lifetime—however, the cost of replacing batteries is 
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frequently higher than the cost of the IoT device 
itself.  Owing to cost and environmental concerns, 
some systems now use alternative energy supplies 
which can exploit ambient energy (Khan, 2015). 
Energy can be harvested from various renewable and 
ambient energy resources, for example, 
vibration/movement, wind, solar, heat, or radio 
frequency waves (Garg, 2017). Powering IoT devices 
through harvesting sustainable energy has proved to 
be an effective solution, extending their operation 
lifetime and simplifying their installation. Solar 
energy has gained more attention due to the 
availability of light in many applications, along with 
its simplicity and low component cost. However, 
solar energy harvesting depends on the site's 
conditions, such as geographical location, weather, 
solar irradiance, temperature, and solar angle. The 
output power of PV panels is dependent on the solar 
irradiance. However, PV efficiency is indirectly 
related to the other parameters, including relative 
humidity, dust accumulation, wind speed, and 
temperature (Yang, 2014). Dust accumulation on the 
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surface causes shading, and hence performance 
degradation. A sequence of rain and sandstorms 
affects the adhesion of dust on the surface. We need 
to be able to understand the complex environmental 
conditions which affect the solar energy harvested. 
Recently, much work has been done on power 
forecasting and analyses of PVs. Different models 
have been used for predictive analyses. Statistical and 
machine learning (ML) models may give an insight 
into the features of data dependencies and illustrate 
the importance of individual characteristics 
(Bergonzini, 2009). 

This research aims to investigate the feasibility of 
using ML and environmental data for solar energy 
prediction, to increase system performance. It will 
focus on predicting the amount of energy available in 
the future, based on historical data and future public 
weather forecasts. This paper gives a brief background 
to IoT devices and energy harvesting, focussing on the 
environmental impact on solar energy harvesting and 
discuses some prediction algorithms (section 2). Next, 
model design (section 3) gives an overview of the 
proposed solar energy prediction model components 
and workflow, including a description of the data 
acquisition needed for the model. Lastly, section 4 
provides details of future work.  

2 RESEARCH BACKGROUND  

2.1 Wireless IoT Devices 

Wireless smart sensors are becoming more critical in 
the development of the Internet of Things. These 
smart devices are aimed to measure and monitor 
natural conditions like temperature, dampness, sound, 
pressure, air quality (Newell, 2019). A major 
complication for such smart IoT devices being 
genuinely ubiquitous is their requirement for a long-
term, dependable power supply. Batteries are the most 
common option to power wireless devices. Still, they 
must be replaced regularly to guarantee continued 
functioning. Such a requirement is unattractive since it 
implies significant maintenance expenses, particularly 
in distant locations. Energy harvesting from solar, 
wind, thermal, and RF sources has been suggested to 
solve these issues (Khan, 2015).  

2.2 Solar Energy for Wireless IoT 
Devices 

Photovoltaic (PV) cells convert light energy to 
electricity. Solar is one of the most promising and 

prevalent forms of renewable energy that utilizes 
either natural or artificial light to generate electricity 
(Piñuela, 2013). Solar energy harvesting enables the 
operation of IoT nodes sustainably and can simplify 
their deployment. PV energy harvesting, unlike other 
harvesting sources such as temperature difference, 
vibration or airflow, is widely available in sufficient 
quantities to make the powering of low-power IoT 
devices practical.   

As solar energy harvesting varies significantly 
over time, the energy collected must sometimes be 
stored to be utilized when the energy source dictates. 
As a result, the Harvest-Store-Use method is well 
suited to dealing with unstable energy sources 
(Choudhary, 2020). 

2.3 Environmental Impact on Solar 
Energy Harvesting for Wireless IoT 
Devices  

Solar energy fluctuations are determined by seasonal 
climatic and weather variables such as temperature, 
hourly solar angle, solar irradiance, the orientation of 
the solar panel and tilt angle and shadows (Yadav, 
2014). The following sub-sections will explore the 
literature on the impact of various environmental 
factors on PV module performance. 

2.3.1 Effect of Temperature on PV Module 
Performance 

Around 17-20% of solar energy is converted into 
electricity by a PV module. However, some of the 
wasted solar energy appears as heat. The increase in 
temperature of the PV module has negative impact on 
its efficiency. The electrical yield is reduced with an 
increase in the temperature of the module (Rahman, 
2017). According to D. Du, the efficiency of 
crystalline silicon PV cell drops around 0.45%/°C 
(Du, 2013). In an area with an irradiation level of 
1000 W/m2, the PV temperature increased to around 
56 °C, causing the module output power dropped to 
from 49.89 W to 29.42 W and the electrical efficiency 
decrease 3.13% (Rahman, 2015), furthermore at 
around 25 °C ambient temperature is the maximum 
PV efficiency can be achieved. The temperature of a 
PV module can be calculated by this equation: 

Tc=Tamb+(NOCT−20) G/800            (1) 
Where, 
Tc: Cell temperature 
Tamb: ambient temperature 
(NOCT): The normal operating cell temperature 
G: Irradiance 
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2.3.2 Effect of Dust Accumulation and Tilt 
Angle on PV Module Performance 

The capability of the cover glass on the surface of the 
solar cell module to transmit the solar light has a 
significant impact on the solar panel's performance. 
Over time, the transmittance may decrease due to dust 
accumulation on the glass, which depends on the 
collection of dust on the panel surface (Sarver, 2013). 
After six months of deployment in the Kingdom of 
Saudi Arabia (KSA) environment, PV module 
harvested power decrease by 50% (Adinoyi, 2013); 
furthermore, the power outputs decreased by 20% 
after one sandstorm. The dust accumulation on the 
surface of the solar PV panel causes the short circuit 
current to drop off at a faster rate, mainly when the 
density of dust is higher. There is a 1.7 % loss in PV 
power per g/m2 when dust accumulates on the surface 
of the PV. Both outdoor and indoor circumstances 
were validated for this correlation (Dhaundiyal, 
2020).  

In dusty environments, the tilt angle also has an 
impact on dust accumulation. The deposition of dust 
particles on the PV surface with tilt angle was studied 
by Sayigh et al. (Sayigh, 1985), who experimented in 
Kuwait City. Exposing the panels outside for 38 days, 
Sayigh and his team observed that 17% to 64% of 
plate transmittance is reduced when the tilt angle is 
changed from 60° to 0°, respectively. Another study 
shows that, after exposing the PV panels outside for 
14 days, results reported the efficiency dropped by 
37.63%, 14.11%, and 10.95% for the 0°, 25°, and 45° 
tilt angle, respectively (Hachicha, 2019). 

2.3.3 Effect of Wind Speed and Direction on 
PV Module Performance 

The dissipation of convective heat transmission of the 
solar module is enhanced by air flow, hence lowering 
the temperature of the panel and helps to sustain the 
conversion performance (Mazón, 2011). In Dhahran, 
KSA, for example, the module's temperature is 
reduced by around 10 °C by the increase in velocity 
of wind from 2.8 to 5.3 m/s (Said, 2015). Several 
experiments were held, artificially varying the wind 
direction and velocity to examine the performance of 
solar PV. Dust particles are blown away from the 
surface of solar PV by the wind, diminishing dust 
deposition. In Egypt, it is seen that after two weeks of 
wind, the rate of dust deposition on a PV panel 
surface decreased significantly (Hegazy, 2001). 
However, the impact of wind direction is not 
appropriately addressed. Wind coming from the 
desert should be warmer than from the sea or 

lakeside. Hence the direction wind also plays a 
significant role in the temperature of the PV module. 

2.3.4 Effect of Humidity on PV Module 
Performance 

It is observed that the solar PV efficiency is increased 
when humidity is relatively low. The impact on the 
performance of solar modules due to relative 
humidity has been verified. The performance yield of 
solar cells is enhanced from 9.7% to 12.04% at 60% 
to 48% humidity, respectively (Katkar, 2011). As far 
as power is concerned, it is noted that with the 
increase in relative humidity by 20% in result 
approximately 12.4% of power is decreased 
(Rahman, 2015). Concerning dust adhesion and 
humidity, it is noticed that dust particles stick on the 
panel surface due to humidity. In order to restore the 
module to its initial power efficiency, cleaning the PV 
module's surface is required. In respect of quantitative 
analysis, it is seen that adhesion is increased by 
approximately 80% when relative humidity is 
increased from 40% to 80% (Said, 2014). 

2.3.5 Effect of Rainfall on PV Module 
Performance 

Rainfall has an impact on solar PV, as rain removes 
dense dust from the panels. However, some particles 
of dust stick on the panel surface due to cementation 
and might not be detached. Michel and Muller 
(Micheli, 2017) have shown the correlation between 
surface cleaning and a rain event. However, a 
minimum of precipitated water is required for 
effective cleaning. Different reports provide the 
minimum rain threshold required for cleaning the 
panel, such as minimal of 5mm daily rainfall (García, 
2011) and 6.9mm (Toth, 2020). The intricacy of the 
surface cleaning can be attributable to the multiplicity 
of threshold conditions because they are further 
subject to different factors such as dust type, 
wettability, speed of droplet, dust adhesion, and 
surface inclination state (Ilse, 2018). In dry and semi-
dry regions, where the soiling rate is high and there is 
less rainfall, rainfall is not considered sufficient for 
dust removal. In such areas, a proper cleaning 
mechanism is required for better performance. 

2.3.6 Effect of Air Quality on PV Module 
Performance 

Air quality  is an important parameter, since the 
accumulation of ambient Particulate Matter (PM) on 
the surface is the main reason for PV soiling. 
Furthermore, soiling on the PV surface has an impact 

Using Environmental Data for IoT Device Energy Harvesting Prediction

199



on the Direct Normal Irradiance (DNI); hence the PV 
model performance will be decreased. PM with an 
aerodynamic diameter of <10μm (PM10) or <2.5 μm 
(PM2.5 or PMfine) is the measurement of the air 
quality. Micheli et al. found that ambient PM10 
concentrations yielded better correlation in long dry 
period than PM2.5 concentration (Micheli, 2019). In 
studies (Micheli, 2019) and (Coello, 2019), it has 
been shown that PM concentrations variability are 
important factors in modelling PV soiling. Moreover, 
air quality has an impact on the horizontal visibility, 
hence the Global Horizontal Irradiance (GHI) 
reaching the PV surface is reduced by as much as 40% 
to 50%, with a much more substantial reduction in the 
Direct Normal Irradiance (DNI) at noon when the 
Aerosol Optical Depth (AOD) is 3.0 (Kosmopoulos, 
2017).  Therefore, air quality is one of the parameters 
that will be explored and used in developing a 
predictive PV soiling model based on time-series. 

2.4 Prediction Algorithms for Solar 
Energy Harvesting 

In the last couple of years, several prediction 
techniques have been used to achieve the solar energy 
prediction. These techniques can be distinguished 
between Past Predicts the Future (PPF) and Weather 
Forecast-Based Techniques (Sharma, 2010). PPF 
techniques consider previously available data on how 
much energy was harvested and apply that to the 
future. These techniques divide the day into a number 
of equal-sized time slots, and the prediction is done 
either for the next slot based on the previous one or 
for the same time slot of the next day. These are 
simple techniques and easy to use but fail to give 
valuable predictions when the weather changes.  

Exponentially Weighted Moving Average 
(EWMA) is an algorithm that was proposed by Kansall 
et al; the algorithm has shown good predictions 
accuracy results (Kansal, 2007). However, the EWMA 
prediction accuracy is high only when weather 
conditions are consistent. The reason for this is because 
of the way the EWMA works. The EWMA algorithm 
divides the day into a number of fixed time slots. 
Moreover, it predicts the energy harvesting rate based 
on the weighted average for that period in previous 
days. When the weather changes frequently, and there 
is a mix of sunny and cloudy periods, the EWMA 
algorithm gives low accuracy predictions.  

Piorno et al. proposed the Weather-Conditions 
Moving Average (WCMA) algorithm to solve these 
shortcomings of the EWMA (Piorno, 2009). It 
includes a GAP factor, which is supposed to take into 
account the average harvesting of previous days and 

compare it to actual harvesting, thus determining the 
weather direction change and considering it in the 
prediction. While this does make better predictions 
compared to EWMA, once again, when weather 
changes are more frequent, and the fluctuations are 
significantly larger, so are the predicting errors. These 
predictions techniques are based on historical data, 
i.e. how much energy was harvested in the past. 
Nevertheless, this historical approach is unreliable 
when weather changes occur between days and even 
during a single day. To be able to make better energy 
harvesting predictions and to overcome the 
limitations of the PPF techniques, such as their short-
term focus, weather forecasts need to be included.  
Weather forecasting has been used with historical 
data to provide better predictions of future energy 
harvesting. A study by (Sharma, 2010) revealed that 
weather forecast-based predictions give better results 
compared to PPF.  

The Artificial Neural Network (ANN) and Support 
Vector Machine (SVM) is widely used forecasting 
techniques for forecasting the nonlinear time series 
data. SVM used for the prediction of daily and monthly 
global solar radiation in (Belaid, 2016) proved to 
requires few simple parameters to get good accuracy. 
The energy predictions can be enhanced through 
techniques that allow several profiles to be combined. 
The machine learning approach will be applied on 
automatic learning and improve the prediction. 

3 SOLAR ENERGY PREDICTION 
MODEL BASED ON WEATHER 
DATA FOR SOLAR ENERGY 
HARVESTING WIRELESS IOT 
NODES 

A solar energy prediction model will allow IoT nodes 
to schedule their duty cycles and tasks based on 
predicted energy. The goal of the proposed model 
(data-driven approach) is to explore the machine 
learning algorithms and the associated feature 
extraction for better solar energy predictions. 
Knowing the solar energy budget ahead of time and 
planning the sensor node tasks accordingly, will aid 
the sustainable operation of the sensor node. 

3.1 Overview of the Solar Energy 
Prediction Model 

The proposed model has multiple data inputs and 
prediction models (See Figure 1).  
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Data Acquisition is the key to accurate power 
predication. This subsection discusses and describes 
the required data for machine learning which will 
serve the proposed model in this research.  

Historical Weather Data 
The data collected is of two different types. The first 
data is from King Abdullah City for Atomic and 
Renewable Energy (K.A. CARE) for Jeddah City, 
hourly data from June 2017 - June 2020. This data 
consists of various variables such as air temperature, 
global horizontal irradiance, wind direction, 
moisture, and zenith angle, etc (See Table 1). The 
second data set is from openweathermap.org for the 
same period as the first data set. This data consists of 
various variables such as visibility, clouds, dewpoint, 
rain, time of sunrise, and sunset (See Table 2). The 
two data sets will be combined and used to train and 
test the prediction model. Dust Accumulation, Air 
Quality, and Horizontal visibility are some of the 
focuses of this research. Hence, they will be 
investigated further, and the results added to the 
model to enhance the prediction. 

 
Figure 1: The Proposed Solar Energy Prediction Model. 

Weather Forecast Data 
The weather forecast data will be gathered from 
openweathermap.org via their accessible API 
(Openweathermap.org, 2022). This forecast data is 
hourly. As part of the data preparation, the coldness 
levels need to be changed to numerical values. 

Photovoltaic Data  
This data includes PV size, efficiency, peak power 
point current and voltage, tilt angle, and orientation.  

Energy Data from Sensor Node 
- Battery Level: The battery level (state-of-charge, 
SoC) can be estimated based on the battery voltage 
measurement.  The battery level will be presented as 

a percentage from (0 - 100 %) based on the battery 
voltage measurement and the energy storage 
properties. This data will be gathered for each time 
slot from the sensor node. 

- Solar Energy Harvested: The amount of energy 
harvested will be calculated based on the 
measurement of the current from the solar panel, 
considering the charging state. Knowing the charging 
state is essential for the machine learning algorithms. 

Sun Position and Tilt Angle 
The sun position will be calculated hourly based on 
the location of the sensor, time of the day, azimuth, 
and zenith. The PV tilt angle and the orientation are 
important for calculating the incidence angle based on 
the sun's position. The amount of solar irradiance 
reaching the surface of the PV can be determined by 
the incidence angle and the size of the PV. 

Prediction Models 
In this work, widely used machine learning models 
will be used for predictions, including k-nearest 
neighbour (k-NN), support vector machines (SVM), 
artificial neural networks (ANN). Different tests will 
be conducted for fine tuning of each algorithm.  

The accuracy of the models is dependent upon 
different factors, which are as the following: 

• The accurate measurement of weather forecast 
comparing to the actual weather data.  

• The missing data is either due to transmission 
problems or the failure of nodes at any point in 
time. 

The following will explain each prediction in the 
proposed model: 

The Dust Accumulation Prediction: will 
estimate the dust accumulation on the PV surface 
over time based on the weather forecast data such as 
horizontal visibility, air quality, wind speed, wind 
directions, and rainfall considering the installation 
date. This prediction will have direct influence on the 
solar energy harvesting. 

The Solar Energy Harvesting Prediction: This 
prediction will be based on the historical weather 
data, weather forecast data, PV data, the sun position 
and tilt angle, and the energy from the sensor node 
with respect of dust accumulation prediction. 
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Table 1: list of the data Parameters and Description from (K.A. CARE). 

Parameters Description 
Air Temperature The degree of hotness or coldness of the environment (measured by C°) 
Wind Direction at 3m Average wind direction at 3 meters height (measured by degree from North) 
Wind Direction at 3m (std dev) Standard deviation of the average wind direction data at 3 meters height 
Wind speed at 3m Average wind speed at 3 meters height (measured by m/s) 
Wind speed at 3m (std dev) Standard deviation of the average wind speed data at 3 meters height 
Azimuth Angle Defines the direction of the sun, Azimuth Angle is the angle between a line due south 

and the shadow cast by a vertical rod on Earth (measured by degree) 
Diffuse Horizontal Irradiance 
(DHI) 

Diffuse Horizontal Irradiance is the amount of radiation received per unit area by a 
surface that does not arrive on a direct path from the sun, but has been scattered by 
molecules and particles in the atmosphere (measured by W/m2) 

Direct Normal Irradiance (DNI) Direct Normal Irradiance is the amount of solar radiation received per unit area by a 
surface that is always held perpendicular to the rays that come in a straight line from 
the direction of the sun (measured by W/m2) 

Global Horizontal Irradiance 
(GHI) 

Global Horizontal Irradiance is the total amount of shortwave radiation received 
from above by a surface horizontal to the ground. This value includes both Direct 
Normal Irradiance and Diffuse Horizontal Irradiance (measured by W/m2) 

Horizontal Visibility The greatest distance toward the horizon that prominent objects can be identified 
visually with the naked eye (measured by km) 

Peak Wind Direction at 3m Greatest value of wind direction at 3 meters height (measured by degree from North) 
Peak Wind Speed at 3m Greatest value of wind speed at 3 meters height (measured by m/s) 
Relative Humidity Relative humidity is the ratio of the partial pressure of water vapor to the equilibrium 

vapor pressure of water at the same temperature (measured by %) 
Barometric Pressure Atmospheric pressure or barometric pressure, is the pressure exerted by the weight 

of air in the atmosphere of Earth (measured by mBar) 
Zenith Angle The solar zenith angle is the angle between the zenith and the center of the sun 

(measured by degree) 

Table 2: Lists of The Data Required for Modelling. 

DATA LIST 
Historical Weather Data Air Temperature, Diffuse Horizontal Irradiance (DHI), Direct Normal 

Irradiance (DNI), Global Horizontal Irradiance (GHI), Azimuth Angle, Zenith 
Angle, Horizontal Visibility, Peak Wind Direction at 3m, Peak Wind Speed at 
3m, Wind Direction at 3m, Wind Direction at 3m (std dev), Wind speed at 3m, 
Wind speed at 3m (std dev), Relative Humidity, Barometric Pressure, Time and 
Date. 

Weather Forecast and Alerts Wind Speed and Direction, Temperature, Pressure, Humidity, Air Quality, 
Visibility, Clouds, Dewpoint, Rain, Time and Date. 

Photovoltaic Data PV Size, Efficiency, Voltage at Peak Power, Current at Peak Power. 
Sun Position and PV Tilt Angle Zenith, Azimuth. 

Location, time of sunrise and sunset. PV Tilt Angle and Orientation. 
Energy Data from Node Battery level, Solar energy harvested. 

 

Battery Gain Prediction: Based on the 
prediction of The Solar Energy Harvesting and the 
battery level measurement at night when there is no 
solar energy, taking into account the energy storage 
discharging cycle. The battery level data and the 
actual energy harvested data will indicate the energy 
consumption for the sensor tasks operation. Hence, 

this information will be used for more machine 
learning to improve the predictions. 

Battery Level Prediction: Based on the 
prediction of the battery gain and the energy 
consumption for the given tasks. The energy 
consumption will be determined by how many tasks 
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will be scheduled for that day. The model will use the 
data from the previous days to improve the prediction 
accuracy over time. 

Tasks Scheduling: When scheduling tasks for 
IoT node, two factors need to be considered: the 
amount of energy will be consumed in that time 
period and the maximum utilization from the assigned 
energy. Different Tasks Schedules will be tested to  

 
Figure 2: Block diagram for the proposed Wireless IoT 
Node Architecture. 

4 CONCLUSIONS AND FUTURE 
WORK 

Wireless IoT sensors are widely used nowadays. 
Sensors can be employed in remote locations and 
harsh environments. Their operation lifetime depends 
on their energy supply. Powering such devices via 
solar energy harvesting systems enables the 
continuous work. For optimal use of the available 
energy, the IoT device can schedule its operation 
according to the available energy. In order to achieve 
this, the prediction of the future energy which can be 
harvested is required. Therefore, understanding the 
effects of the environment on the solar energy 
harvesting needed. 

This research will be defining the most relevant 
weather parameters and scenarios based on the 
literature.  Identify the possible scenarios help in 
assessing the model in several operating conditions.  
The developed scenarios will be simulated to 
understand the effect of these scenarios on energy 
harvesting. For example, if it rains after a dusty day, 
what is the impact on solar energy harvesting. 
Furthermore, the effective input features for the 
prediction will be studied and identified and will be 
tested in the simulation phase. The widely used 
machine learning algorithms Support Vector 
Machines (SVM) is most known as state-of-the-arts 
forecasting models based on machine learning. These 

models are data-driven, and they are suitable for 
short-term as intra-hours and long-term as next-day 
forecasts. These forecasting models will be tested in 
terms of prediction accuracy and energy efficiency. 
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