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Abstract: Nowadays, there is a growing need to collect and analyze data from different databases. Our work is part of 
a medical application that must allow health professionals to analyze complex data for decision making. We 
propose mechanisms to extract data from a data lake and store them in a NoSQL data warehouse. This will 
allow us to perform, in a second time, decisional analysis facilitated by the features offered by NoSQL systems 
(richness of data structures, query language, access performances). In this paper, we present a process to ingest 
data from a Data Lake into a warehouse. The ingestion consists in (1) transferring NoSQL DBs extracted from 
the Data Lake into a single NoSQL DB (the warehouse), (2) merging so-called "similar" classes, and (3) 
converting the links into references between objects. An experiment has been performed for a medical 
application.

1 INTRODUCTION 

The last few years have seen an explosion of data 
generated and stored by a large number of computing 
devices. The resulting databases are referred to as 
"Big Data", which refers to the so-called "3V" rule: 
volume, variety, and velocity. This rule characterizes 
data lakes (Couto et al., 2019) that can bring together 
several databases of different types and formats such 
as relational databases, NoSQL databases (Not only 
SQL), CSV files, text files and spreadsheets. This 
massive and complex data represents an essential 
reservoir of knowledge for decision-makers; 
however, the volume of data as well as the diversity 
of structures and formats constitute a major obstacle 
to decision processing. In order to facilitate the 
decision analysis of a data lake, we propose to 
integrate the data in a NoSQL (Not only SQL) data 
warehouse. It should be noted that the problem 
statement presented in this article has been 
voluntarily restricted to the ingestion of the only 
document-oriented NoSQL DBs contained in the 
Data Lake; neither is the selection of the data in the 
Data Lake treated, i.e., the totality of each DB is 
transferred into the Data Warehouse. Our work is part 
of a medical application for health insurance 
companies. 

The remainder of the paper is structured as 
follows: Section 2 presents the medical application 
that justifies the interest of our work. Section 3 
reviews the state of the art. Section 4 presents our 
contribution which consists in ingesting the DBs of a 
Data Lake into a NoSQL Data Warehouse. Section 5  
details the development of our prototype and 
describes the experimentation of our process.  Finally, 
Section 6 concludes the paper and announces future 
work. 

2 CASE STUDY AND PROBLEM 
STATEMENT 

Our work is motivated by a project developed in the 
health field for a group of mutual health insurance 
companies. These insurance companies, stemming 
from the social and solidarity economy, propose to 
their customers a coverage of the medical expenses 
which comes in complement of those refunded by a 
public institution: the health insurance fund. To 
ensure the management of their clients, these mutual 
health insurance companies are faced with a 
significant increase in the volume of data processed. 
This is all the more true since some of these 
companies act as social security centers, i.e., clients 
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transmit the entire reimbursement file to a mutual 
insurance company, which performs all the data 
processing related to the file. In order to monitor these 
files, numerous exchanges are necessary between the 
health insurance fund, the mutual insurance 
companies and the health professionals. Under the 
impetus of the State, the health insurance fund has 
developed a Digital Health Space1 (ENS). The ENS 
stores the medical data of each insured person. This 
data is confidential in nature, but the holder may 
authorize a health professional or institution to 
consult or add to his ENS. All access and actions 
carried out on the ENS by non-holders are traced. 
Mutual health insurance companies therefore have 
limited access to the ENS from which they can extract 
data in order to process the files of their policyholders 
and, more generally, to carry out analyses of any kind 
(in compliance with confidentiality rules). For each 
insured person, the ENS contains administrative data, 
medical records (measurements, medical imaging 
archives, reports, therapeutic follow-up, etc.), 
reimbursement history and questionnaires. When the 
ENS is fully deployed at the national level, its volume 
will be considerable since it concerns 67 million 
insured persons. 

In the context of this project, the ENS constitutes 
a real Data Lake because of (1) the diversity of data 
types, media, and formats (2) the volumes stored 
which can reach several terabytes and (3) the raw 
nature of the data. The objective of the project is to 
study the mechanisms for extracting data from the 
ENS and organizing it to facilitate analysis (Big Data 
Analytics). Our work aims to develop a system that 
allows insurance companies to build a data warehouse 
from an existing data lake. In this paper, we limit the 
scope of our study as follows: 

• The ENS Data the source of our process and 
contains massive structured and unstructured 
data. In this article, we limit ourselves to 
document-oriented NoSQL databases managed 
by the MongoDB system. Indeed, this category 

of datasets represents an important part of the 
ENS data. The Data Lake contains various 
datasets concerning in particular the files of the 
insured, the activity of the doctors, the medical 
follow-ups.  

• The Data Warehouse generated by our process 
is a document-oriented NoSQL DB; at this stage 
of our study, the Data Warehouse is not 
organized according to a multidimensional 
model. Moreover, although MongoDB is the 
most widely used NoSQL system in the industry 
today (DB- Engines Ranking, s. d.) we chose 
OrientDB 2  to manage the Data Warehouse. 
Indeed, this NoSQL system offers advanced 
functionalities, notably the possibility of 
expressing several types of semantic links. It will 
thus be easier to restructure the data of the Data 
Warehouse to facilitate decisional treatments 
(the works on decisional treatments are not 
discussed in this article). 

3 RELATED WORKS 

Our study consists in extracting data from a Data 
Lake containing several MongoDB databases and 
then integrating them into a NoSQL Data Warehouse. 
In this section, we review existing works that address 
this problem. 

The papers (Kuszera et al., 2019; Liyanaarachchi       
et al., 2016; Mahmood, 2018), have proposed 
techniques to transfer a relational database into a 
document-oriented NoSQL DB. In particular, the 
proposed algorithms transform foreign keys into 
nested data. In (Mallek et al., 2018), the authors 
propose to transfer data from a NoSQL DB into a 
multidimensional warehouse using MapReduce to 
accelerate the data transformation. Furthermore, the 
work (Maity et al., 2018) specify a generic process to 
transfer data from a NoSQL DB (especially  
 

 
Figure 1: Overall architecture of the DLToDW data lake extraction process. 

 
1  https://gnius.esante.gouv.fr/reglementation/fiches-

reglementation/mon-espace-sante  
2 https://orientdb.org/ 
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document-oriented or graph-oriented) to a relational 
DB. This type of transfer allows benefiting from the 
functionalities of relational data management. 
Conversely, the authors in (Yangui et al., 2017) used 
Talend software to implement rules for transforming 
a multidimensional data model into a document-
oriented NoSQL DB. This takes advantage of the Big 
Data context and in particular of the MapReduce 
operation. Facts are stored in a table and dimensional 
links are translated by nesting dimensions into facts. 
Finally, the authors in (Dabbèchi et al., 2021) 
proposed a process to integrate social media data in a 
NoSQL Data Warehouse. The data is extracted from 
a data lake containing column-oriented and 
document-oriented NoSQL databases. The paper 
defines matching rules to transfer this data into the 
NoSQL warehouse. 

The works, which we have just presented, have 
proposed mechanisms allowing the transfer of data 
between datasets of different types. Thus, the articles 
(Kuszera et al., 2019; Liyanaarachchi et al., 2016; 
Mahmood, 2018) integrate a relational DB into a 
NoSQL DB. Other works (Mallek et al., 2018; Maity 
et al., 2018; Yangui et al., 2017) ensure the transfer 
from a NoSQL DB to a multidimensional warehouse 
or vice versa. Finally, the process presented in 
(Dabbèchi et al., 2021) allows the integration of 
NoSQL DBs into a NoSQL data warehouse. Overall, 
this state of the art shows the difficulty of exploiting 
complex and massive data and the need to reorganize 
these data in a form adapted to decision analysis. The 
proposed processes mainly concern the integration of 
data in NoSQL systems which offer interesting object 
functionalities for decision support. However, these 
solutions only partially solve our problem as our 
medical case study includes specificities that are not 
resolved in the proposed processes. Thus, in our 
application, "similar" data belonging to different 
datasets must be merged. Moreover, the numerous 
semantic links between objects cannot only be 
translated into nested data structures. 

In this paper, we propose a new automatic 
approach to ingesting document-oriented NoSQL 
DBs into a NoSQL data warehouse by supporting 
"similar" data merging and link conversion. 

4 THE DLToDW INGESTION 
PROCESS 

Our objective is to automate the ingestion of several 
NoSQL databases present in a Data Lake; the 

 
3  https://www.omg.org/spec/UML/2.5.1/About-UML/ 

extracted data are transferred to a NoSQL Data 
Warehouse. We have developed the DLToDW 
process that successively transfers the data from the 
Data Lake to the target DB (the Data Warehouse), 
converts the semantic links in the target and merges 
the so-called "equivalent" objects. Figure 1 shows the 
three modules of our process. 

The I/O of our process, i.e., the NoSQL DBs 
contained in the Data Lake and the NoSQL Data 
Warehouse, follow the same document-oriented 
model. The metamodel describing these databases is 
presented in Figure 2 and is formalized with the 
UML3  class model. The rectangles describe object 
classes, and the arcs represent association, 
composition, and inheritance links. 

 
Figure 2: Meta model of a document-oriented NoSQL 
database. 

This metamodel shows that any class groups 
objects (also called Document or Record). Each 
object has an identifier and contains a set of properties 
in the form of couples (Name, Value). A value can be 
atomic, multivalued, or structured. 

In the following sections, we describe the 
DLToDW process by presenting the three modules 
that comprise it. 

4.1 The Transfer Module 

This process transfers the DBs from the data lake to a 
single data warehouse. The Data Lake, the source of 
the transfer, normally contains data of different 
formats such as relational DBs, NoSQL DBs or CSV 
files; however, in this article we have restricted the 

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

228



source to document-oriented NoSQL DBs. The target 
of the transfer is also a document-oriented NoSQL 
DB. 

In our case study presented in Section 2, the 
(restricted) Data Lake consists of MongoDB NoSQL 
DBs and the Data Warehouse is an OrientDB NoSQL 
DB. MongoDB and OrientDB share the same 
document-oriented model using different 
vocabularies; however, the underlying concepts in 
terms of data representation are identical and 
consistent with the metamodel in Figure 2. Note that 
OrientDB offers a richer description capability, 
especially in terms of link expression. For the sake of 
clarity of presentation, we will use the MongoDB 
vocabulary for the source and the OrientDB 
vocabulary for the target (Table 1). 

Table 1: Correspondence of the source and target 
vocabularies. 

MongoDB (source) OrientDB (target) 

Collection Class 

Document Record 

Fields Property 

DBRef link Reference 

Oid (Object identifier) Rid (Record identifier) 

The Transfer module therefore consists of 
"copying/pasting" data from several databases 
(source) into a single database (target). This data 
transfer must however follow certain rules to allow 
the treatments that we will carry out later. 

Rule 1: the names of the transferred classes are 
prefixed by the name of the source database from 
which they originate; this avoids the synonymity of 
class names in the data warehouse. 

Rule 2: when transferring documents, the original 
identifiers are kept as they are; thus, the identifier of 
a document is stored in a property of the target record, 
in the form (Oid, value of the identifier). This 
identifier will be used in the Convert module and then 
deleted in the record. 

Rule 3: the links contained in the documents 
(DBRef links) are stored as they are in the target 
records; they  will be transformed into references in the 
Convert module. The transferred links will be 
prefixed by the   key word "DBRef". 

According to rule 2 above, any record r that is 
stored in the Data Warehouse has a property 
containing the MongoDB identifier of the original 

document. If we consider the set of OrientDB 
identifiers (E_Rid) assigned to the records and the set 
of MongoDB identifiers (E_Oid) present in the 
source, then there exists a bijection of E_Oid into 
E_Rid that we will note as follows: Rb: E_Oid → 
E_Rid. This property is important because it allows 
MongoDB links to convert into OrientDB links. 

4.2 The Merging Module 

The Data Lake is generally made up of a set of 
separate databases managed independently. The data 
warehouse resulting from the Transfer module may 
contain "similar" data sets. For example, in our 
medical application, descriptions of insured persons 
or lists of doctors appear in several databases in the 
Data Lake. These data may concern the same entities 
in the real world but do not necessarily have the same 
structures (different properties). 

The Data Warehouse can therefore include 
subsets containing classes linked by the equivalence 
relation; they "describe the same entities"; each 
subset is called an equivalence group. For example, 
in the ENS Data Warehouse of our application, the 
classes B1.Doctors, B2.Therapists and 
B3.Practitioner constitute an equivalence group (the 
prefixes B1, B2 and B3 correspond to the names of 
the original databases in the Data Lake). 

For each equivalence group in the data warehouse, 
the module will cause all classes in the group to be 
deleted and replaced by the resulting class 𝑋. The 
transformation from 𝐺 to 𝑋 is based on the use of a 
domain ontology created with the help of business 
experts; the ontology automatically builds the 𝑋 class. 
The experts (administrators, managers, decision- 
makers, etc.) have in-depth knowledge of one or more 
databases contained in the Data Lake. 

They are asked to specify the possible semantic 
correspondences between the data of the different 
databases. For example, in the ENS Data Lake, three 
databases contain data describing individuals insured 
by mutual insurance companies. The ontology will 
indicate an equivalence relation between these data. 
The similarity relations between data are stored in a 
domain ontology, called "Onto”, in the form of a 
graph; they are obtained from the specifications 
provided by the business experts. 

The business experts must define a primary key 
(in the sense of the relational model) among the 
attributes of the classes of the same group. This key, 
made up of a minimal set of properties, makes it 
possible to distinguish records and to establish inter- 
class correspondences within a group. For example, 
the classes of a group containing descriptions of 
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doctors have the national professional identification 
number of doctors as a key. This key allows records 
about the same real-world entity to be grouped. In 
addition, the experts examine the other properties 
present in the classes and indicate whether it is 
appropriate to keep them in the data warehouse 
(Properties class). These properties are transferred by 
the Merging module to the resulting 𝑋 class. 

To transform the classes of a group into a single 
class 𝑋, a transfer of values from the group to 𝑋 must 
be specified. Thus, for each property to be transferred, 
the experts indicate in the ontology the class of the 
group that is the source of the transfer and that is 
likely to ensure optimal data quality; this is the class 
of the group that is considered by the experts as the 
most reliable. This source may vary for different 
properties of 𝑋. 

The Merging module of our process aims at 
substituting each group of equivalence classes by a 
unique class. We have the “Onto” ontology and the 
Data Warehouse (DW) at our disposal. The ontology 
describes the composition of each group and the 
characteristics of the resulting class 𝑋. The Data 
Warehouse contains the classes that will be merged 
by the Merging module. This module produces a new 
version of the NoSQL Data Warehouse on which the 
Convert processing is applied, responsible for 
transforming DBRef type links (specific to 
MongoDB) into links in the form of references 
between objects (present in OrientDB). 

4.3 The Convert Module 

The MongoDB system offers the possibility of 
establishing links between documents in collections; 
the links are expressed by means of structured data 
marked with the DBRef reserved word. This form of 
linkage is compatible with all document-oriented 
NoSQL systems insofar as these systems accept 
structured properties and referential integrity is not 
assured. A DBRef link is monovalent or multivalent; 
it can be located at the first level of the properties of 
a collection or nested in a structured property. For the 
needs of our case study, which requires good data 
quality, we have chosen to transform these links in the 
data warehouse. We use references between objects 
with referential integrity control according to the 
principles of the object standard defined by the 
ODMG4. This reference mechanism is available in the 
OrientDB system. 

 
4  http://www.odbms.org/odmg-standard/ 

In a DB, a link is a relationship that maps an object 
(record or document) to one or more other objects. 
During the transfer of documents, each MongoDB 
link was stored as is (without transformation) in the 
form of a property in a record in the data warehouse, 
in accordance with rule 3 applied by the Transfer 
module (see section 4.1). At this stage, the links 
cannot be used in the data warehouse. The Convert 
module is therefore responsible for substituting each 
MongoDB link with an OrientDB link.  

Before the execution of the Convert module: 
among the properties of any record, one or more 
MongoDB links can be found. Such a link-property is 
characterized by a structured value containing the 
DBRef keyword and a name giving the link 
semantics.  

The Convert module will transform each 
MongoDB link into an OrientDB link thanks to the 
bijective application Rb between E_Oid and E_Rid. 
The value of the MongoDB link 𝑂𝑖𝑑 ∈ 𝐸_𝑂𝑖𝑑 Oid will 
be substituted by the 𝑅𝑖𝑑 ∈ 𝐸_𝑅𝑖𝑑 of the Data 
Warehouse record in which the MongoDB identifier 
is located. 

5 PROTOTYPE DEVELOPMENT 
AND EXPERIMENTATION 

To implement the DLToDW process, we have 
developed a prototype allowing the ingestion of 
several NoSQL databases according to the principles 
outlined above. Our process includes the three 
modules Transfer, Merging and Convert which are 
implemented successively. We have chosen the 
OMG5 Model Driven Architecture (MDA) to develop 
the Transfer module. The two modules Convert, and 
Merging are based on algorithmic processing coded 
in Java. We implemented our prototype with the data 
from the medical application presented in Section 2. 

5.1 Data Transfer 

We used the MDA to develop the Transfer module 
because this component is part of the production of a 
larger software system not described in this article. 
Indeed, our case study is based on a Data Lake 
containing, in addition to the NoSQL DBs presented 
here, relational DBs, Json files, and spreadsheets. In 
this application framework, MDA offers on the one 
hand a great flexibility for the development: modeling 
of inputs and outputs and expression of model 

5  The Object Management Group (OMG) 
https://www.omg.org 
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transformation rules. On the other hand, it facilitates 
the development and maintenance of the software by 
ensuring the generalization of the processes 
developed: the same principles are applied to each 
data set. According to the MDA approach, software 
development consists of describing separately the 
functional specifications and the implementation on a 
platform. It is based on three models representing the 
levels of abstraction of the application: (1) the 
requirements model (CIM for Computation 
Independent Model) in which no IT considerations 
appear, (2) the analysis and design model (PIM for 
Platform Independent Model) independent of the 
technical details of the execution platforms and (3) 
the code model (PSM for Platform Specific Model) 
specific to a particular platform. Our work is located 
at the PSM level where the physical schemas are 
described. In our application, the principles of MDA 
consist in modeling the input and output of a process 
and in providing a set of transformation rules applied 
to the models to go from input to output. In order to 
preserve a certain generality of the treatments, the 
input and output models are represented by 
metamodels.    

The Transfer module has been translated into two 
metamodels (one input and one output) and a set of 
model transformation rules expressed in the 
declarative language QVT6 (Query/View/Transform) 
specified by the OMG. We used the EMF7 (Eclipse 
Modeling Framework) development environment 
with the Ecore metamodeling language. The input 
(MongoDB) and output (OrientDB) metamodels 
expressed in Ecore are consistent with the UML 
diagram in Figure 2. Ecore relies on XMI to 
instantiate the models.  

This module therefore transfers the NoSQL 
databases from the Data Lake into a warehouse which 
is a single NoSQL database. At the end of the 
processing, the warehouse contains a set of classes 
with the following  properties: 

• The number of classes in the warehouse is equal 
to the sum of the number of collections 
contained in the Data Lake (all databases 
combined) 

• Each class takes the name of the original 
collection prefixed by the name of the DB in the 
Data Lake

 
Figure 3: Data flow and processing in the Merging module. 

 

6 https://www.omg.org/spec/QVT/1.2/PDF 
7 https://www.eclipse.org/modeling/emf/ 
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• Each record of a class has an identifier (Rid) 
assigned by the system managing the warehouse 
(OrientDB) 

• The links contained in the warehouse records 
have been stored in their original format 
(MongoDB DBRef links).  

5.2 Merging of Similar Classes 

In a second step, the Merging module is applied to the 
warehouse and its objective is to merge the classes 
considered as "similar". To perform the merging, this 
module uses a domain ontology8 provided by experts 
of our case study. This ontology has been stored in a 
PostgreSQL9 relational database.  For example, the 
ontology indicates that the classes 
"ServiceProvision_Insured"and "Analysis_Patients" 
belong to the same equivalence group. These two 
classes come from two distinct DBs 
("ServiceProvision" and "Analysis") in the Data 
Lake. The ontology provides all the properties of the 
unique class X elaborated by the Merging module and 
specifies the class from which these properties will be 
extracted. In the case where "similar" properties (for 
example the Name of the insured) are found in several 
classes, the ontology indicates the class that will be 
chosen to extract the values and save them in X. The 
class X is the result of the merging of several classes; 

its name, which appears in the ontology, was assigned 
by the experts. Figure 3 shows the merging of 2 
records in the data warehouse. 

5.3 Link Conversion 

The Transfer module has stored all the links in the 
warehouse in their original format (MongoDB DBRef 
link). The Convert module will transform each of 
these links into Rid references between records; these 
links in the form of references conform to the object 
principles set out by the ODMG. This conversion of 
links requires a complete scan of the warehouse. In 
fact, we did not think it wise to perform this treatment 
when the warehouse is fed (Transfer module) 
because: 

1. the dispersion of referenced records (which 
requires that all classes be created at the 
beginning of the process) 

2. the number of links per record; in our 
application, every record contains at least one 
link. For example, in Figure 4, the 
"DBRef_Physicians" field of the 
"Analysis_Patients" Class corresponds to a 
multivalued value of DBRef, so each DBRef 
structure will be replaced by the Rid of the 
referenced record of the "Doctors" collection 
from the "StaffDB". 

 
Figure 4: Data flow and processing in the Convert module. 

 
8  The principles of exploitation of the ontology are not 

detailed in this article 
9  https://www.postgresql.org/ 
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6 CONCLUSION 

We have proposed a process for ingesting data from 
a Data Lake to a Data Warehouse; the latter consists 
of a single NoSQL DB while the Data Lake contains 
several DBs. Thus, the article by (Yangui et al., 2017) 
deals with the transformation of a multidimensional 
DB into a NoSQL document data warehouse and does 
not consider specific links to MongoDB (DBRef). On 
the other hand, the work (Dabbèchi et al., 2021) 
proposes a process to transfer data stored in NoSQL 
databases (the Data Lake) and feed a NoSQL Data 
Warehouse. The links between objects are not 
materialized in the target as references. In order to 
focus this paper on a limited problem, we have limited 
the content of the Data Lake to document-oriented 
NoSQL DBs. Three modules were implemented 
successively to ensure the ingestion of data. The 
Transfer module transforms the Data Lake databases 
into a NoSQL database; its development is based on 
the MDA. The Merging module merges classes 
considered semantically equivalent and belonging to 
different Data Lake databases; this merger is based on 
an ontology provided by business experts. Finally, the 
Convert module translates the links in MongoDB into 
references according to the principles of object 
databases supported by the OrientDB system. Our 
process has been implemented in an application for 
health professionals. Currently, we are extending the 
DLToDW process both upstream (the Data Lake) and 
downstream (the Data Warehouse). In particular, we 
are defining a generic model and approach to 
integrate the other types of datasets that make up the 
Data Lake. 
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