
Data Ingestion from a Data Lake: The Case of Document-oriented
NoSQL Databases

Fatma Abdelhedi1, Rym Jemmali1,2 and Gilles Zurfluh2
1CBI², Trimane, Paris, France

2IRIT CNRS (UMR 5505), Toulouse University, Toulouse, France

Keywords: Data Lake, Data Warehouse, NoSQL Databases, Big Data.

Abstract: Nowadays, there is a growing need to collect and analyze data from different databases. Our work is part of
a medical application that must allow health professionals to analyze complex data for decision making. We
propose mechanisms to extract data from a data lake and store them in a NoSQL data warehouse. This will
allow us to perform, in a second time, decisional analysis facilitated by the features offered by NoSQL systems
(richness of data structures, query language, access performances). In this paper, we present a process to ingest
data from a Data Lake into a warehouse. The ingestion consists in (1) transferring NoSQL DBs extracted from
the Data Lake into a single NoSQL DB (the warehouse), (2) merging so-called "similar" classes, and (3)
converting the links into references between objects. An experiment has been performed for a medical
application.

1 INTRODUCTION

The last few years have seen an explosion of data
generated and stored by a large number of computing
devices. The resulting databases are referred to as
"Big Data", which refers to the so-called "3V" rule:
volume, variety, and velocity. This rule characterizes
data lakes (Couto et al., 2019) that can bring together
several databases of different types and formats such
as relational databases, NoSQL databases (Not only
SQL), CSV files, text files and spreadsheets. This
massive and complex data represents an essential
reservoir of knowledge for decision-makers;
however, the volume of data as well as the diversity
of structures and formats constitute a major obstacle
to decision processing. In order to facilitate the
decision analysis of a data lake, we propose to
integrate the data in a NoSQL (Not only SQL) data
warehouse. It should be noted that the problem
statement presented in this article has been
voluntarily restricted to the ingestion of the only
document-oriented NoSQL DBs contained in the
Data Lake; neither is the selection of the data in the
Data Lake treated, i.e., the totality of each DB is
transferred into the Data Warehouse. Our work is part
of a medical application for health insurance
companies.

The remainder of the paper is structured as
follows: Section 2 presents the medical application
that justifies the interest of our work. Section 3
reviews the state of the art. Section 4 presents our
contribution which consists in ingesting the DBs of a
Data Lake into a NoSQL Data Warehouse. Section 5
details the development of our prototype and
describes the experimentation of our process. Finally,
Section 6 concludes the paper and announces future
work.

2 CASE STUDY AND PROBLEM
STATEMENT

Our work is motivated by a project developed in the
health field for a group of mutual health insurance
companies. These insurance companies, stemming
from the social and solidarity economy, propose to
their customers a coverage of the medical expenses
which comes in complement of those refunded by a
public institution: the health insurance fund. To
ensure the management of their clients, these mutual
health insurance companies are faced with a
significant increase in the volume of data processed.
This is all the more true since some of these
companies act as social security centers, i.e., clients

226
Abdelhedi, F., Jemmali, R. and Zurfluh, G.
Data Ingestion from a Data Lake: The Case of Document-oriented NoSQL Databases.
DOI: 10.5220/0011068300003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 1, pages 226-233
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

transmit the entire reimbursement file to a mutual
insurance company, which performs all the data
processing related to the file. In order to monitor these
files, numerous exchanges are necessary between the
health insurance fund, the mutual insurance
companies and the health professionals. Under the
impetus of the State, the health insurance fund has
developed a Digital Health Space1 (ENS). The ENS
stores the medical data of each insured person. This
data is confidential in nature, but the holder may
authorize a health professional or institution to
consult or add to his ENS. All access and actions
carried out on the ENS by non-holders are traced.
Mutual health insurance companies therefore have
limited access to the ENS from which they can extract
data in order to process the files of their policyholders
and, more generally, to carry out analyses of any kind
(in compliance with confidentiality rules). For each
insured person, the ENS contains administrative data,
medical records (measurements, medical imaging
archives, reports, therapeutic follow-up, etc.),
reimbursement history and questionnaires. When the
ENS is fully deployed at the national level, its volume
will be considerable since it concerns 67 million
insured persons.

In the context of this project, the ENS constitutes
a real Data Lake because of (1) the diversity of data
types, media, and formats (2) the volumes stored
which can reach several terabytes and (3) the raw
nature of the data. The objective of the project is to
study the mechanisms for extracting data from the
ENS and organizing it to facilitate analysis (Big Data
Analytics). Our work aims to develop a system that
allows insurance companies to build a data warehouse
from an existing data lake. In this paper, we limit the
scope of our study as follows:

• The ENS Data the source of our process and
contains massive structured and unstructured
data. In this article, we limit ourselves to
document-oriented NoSQL databases managed
by the MongoDB system. Indeed, this category

of datasets represents an important part of the
ENS data. The Data Lake contains various
datasets concerning in particular the files of the
insured, the activity of the doctors, the medical
follow-ups.

• The Data Warehouse generated by our process
is a document-oriented NoSQL DB; at this stage
of our study, the Data Warehouse is not
organized according to a multidimensional
model. Moreover, although MongoDB is the
most widely used NoSQL system in the industry
today (DB- Engines Ranking, s. d.) we chose
OrientDB 2 to manage the Data Warehouse.
Indeed, this NoSQL system offers advanced
functionalities, notably the possibility of
expressing several types of semantic links. It will
thus be easier to restructure the data of the Data
Warehouse to facilitate decisional treatments
(the works on decisional treatments are not
discussed in this article).

3 RELATED WORKS

Our study consists in extracting data from a Data
Lake containing several MongoDB databases and
then integrating them into a NoSQL Data Warehouse.
In this section, we review existing works that address
this problem.

The papers (Kuszera et al., 2019; Liyanaarachchi
et al., 2016; Mahmood, 2018), have proposed
techniques to transfer a relational database into a
document-oriented NoSQL DB. In particular, the
proposed algorithms transform foreign keys into
nested data. In (Mallek et al., 2018), the authors
propose to transfer data from a NoSQL DB into a
multidimensional warehouse using MapReduce to
accelerate the data transformation. Furthermore, the
work (Maity et al., 2018) specify a generic process to
transfer data from a NoSQL DB (especially

Figure 1: Overall architecture of the DLToDW data lake extraction process.

1 https://gnius.esante.gouv.fr/reglementation/fiches-

reglementation/mon-espace-sante
2 https://orientdb.org/

Data Ingestion from a Data Lake: The Case of Document-oriented NoSQL Databases

227

document-oriented or graph-oriented) to a relational
DB. This type of transfer allows benefiting from the
functionalities of relational data management.
Conversely, the authors in (Yangui et al., 2017) used
Talend software to implement rules for transforming
a multidimensional data model into a document-
oriented NoSQL DB. This takes advantage of the Big
Data context and in particular of the MapReduce
operation. Facts are stored in a table and dimensional
links are translated by nesting dimensions into facts.
Finally, the authors in (Dabbèchi et al., 2021)
proposed a process to integrate social media data in a
NoSQL Data Warehouse. The data is extracted from
a data lake containing column-oriented and
document-oriented NoSQL databases. The paper
defines matching rules to transfer this data into the
NoSQL warehouse.

The works, which we have just presented, have
proposed mechanisms allowing the transfer of data
between datasets of different types. Thus, the articles
(Kuszera et al., 2019; Liyanaarachchi et al., 2016;
Mahmood, 2018) integrate a relational DB into a
NoSQL DB. Other works (Mallek et al., 2018; Maity
et al., 2018; Yangui et al., 2017) ensure the transfer
from a NoSQL DB to a multidimensional warehouse
or vice versa. Finally, the process presented in
(Dabbèchi et al., 2021) allows the integration of
NoSQL DBs into a NoSQL data warehouse. Overall,
this state of the art shows the difficulty of exploiting
complex and massive data and the need to reorganize
these data in a form adapted to decision analysis. The
proposed processes mainly concern the integration of
data in NoSQL systems which offer interesting object
functionalities for decision support. However, these
solutions only partially solve our problem as our
medical case study includes specificities that are not
resolved in the proposed processes. Thus, in our
application, "similar" data belonging to different
datasets must be merged. Moreover, the numerous
semantic links between objects cannot only be
translated into nested data structures.

In this paper, we propose a new automatic
approach to ingesting document-oriented NoSQL
DBs into a NoSQL data warehouse by supporting
"similar" data merging and link conversion.

4 THE DLToDW INGESTION
PROCESS

Our objective is to automate the ingestion of several
NoSQL databases present in a Data Lake; the

3 https://www.omg.org/spec/UML/2.5.1/About-UML/

extracted data are transferred to a NoSQL Data
Warehouse. We have developed the DLToDW
process that successively transfers the data from the
Data Lake to the target DB (the Data Warehouse),
converts the semantic links in the target and merges
the so-called "equivalent" objects. Figure 1 shows the
three modules of our process.

The I/O of our process, i.e., the NoSQL DBs
contained in the Data Lake and the NoSQL Data
Warehouse, follow the same document-oriented
model. The metamodel describing these databases is
presented in Figure 2 and is formalized with the
UML3 class model. The rectangles describe object
classes, and the arcs represent association,
composition, and inheritance links.

Figure 2: Meta model of a document-oriented NoSQL
database.

This metamodel shows that any class groups
objects (also called Document or Record). Each
object has an identifier and contains a set of properties
in the form of couples (Name, Value). A value can be
atomic, multivalued, or structured.

In the following sections, we describe the
DLToDW process by presenting the three modules
that comprise it.

4.1 The Transfer Module

This process transfers the DBs from the data lake to a
single data warehouse. The Data Lake, the source of
the transfer, normally contains data of different
formats such as relational DBs, NoSQL DBs or CSV
files; however, in this article we have restricted the

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

228

source to document-oriented NoSQL DBs. The target
of the transfer is also a document-oriented NoSQL
DB.

In our case study presented in Section 2, the
(restricted) Data Lake consists of MongoDB NoSQL
DBs and the Data Warehouse is an OrientDB NoSQL
DB. MongoDB and OrientDB share the same
document-oriented model using different
vocabularies; however, the underlying concepts in
terms of data representation are identical and
consistent with the metamodel in Figure 2. Note that
OrientDB offers a richer description capability,
especially in terms of link expression. For the sake of
clarity of presentation, we will use the MongoDB
vocabulary for the source and the OrientDB
vocabulary for the target (Table 1).

Table 1: Correspondence of the source and target
vocabularies.

MongoDB (source) OrientDB (target)

Collection Class

Document Record

Fields Property

DBRef link Reference

Oid (Object identifier) Rid (Record identifier)

The Transfer module therefore consists of
"copying/pasting" data from several databases
(source) into a single database (target). This data
transfer must however follow certain rules to allow
the treatments that we will carry out later.

Rule 1: the names of the transferred classes are
prefixed by the name of the source database from
which they originate; this avoids the synonymity of
class names in the data warehouse.

Rule 2: when transferring documents, the original
identifiers are kept as they are; thus, the identifier of
a document is stored in a property of the target record,
in the form (Oid, value of the identifier). This
identifier will be used in the Convert module and then
deleted in the record.

Rule 3: the links contained in the documents
(DBRef links) are stored as they are in the target
records; they will be transformed into references in the
Convert module. The transferred links will be
prefixed by the key word "DBRef".

According to rule 2 above, any record r that is
stored in the Data Warehouse has a property
containing the MongoDB identifier of the original

document. If we consider the set of OrientDB
identifiers (E_Rid) assigned to the records and the set
of MongoDB identifiers (E_Oid) present in the
source, then there exists a bijection of E_Oid into
E_Rid that we will note as follows: Rb: E_Oid →
E_Rid. This property is important because it allows
MongoDB links to convert into OrientDB links.

4.2 The Merging Module

The Data Lake is generally made up of a set of
separate databases managed independently. The data
warehouse resulting from the Transfer module may
contain "similar" data sets. For example, in our
medical application, descriptions of insured persons
or lists of doctors appear in several databases in the
Data Lake. These data may concern the same entities
in the real world but do not necessarily have the same
structures (different properties).

The Data Warehouse can therefore include
subsets containing classes linked by the equivalence
relation; they "describe the same entities"; each
subset is called an equivalence group. For example,
in the ENS Data Warehouse of our application, the
classes B1.Doctors, B2.Therapists and
B3.Practitioner constitute an equivalence group (the
prefixes B1, B2 and B3 correspond to the names of
the original databases in the Data Lake).

For each equivalence group in the data warehouse,
the module will cause all classes in the group to be
deleted and replaced by the resulting class 𝑋. The
transformation from 𝐺 to 𝑋 is based on the use of a
domain ontology created with the help of business
experts; the ontology automatically builds the 𝑋 class.
The experts (administrators, managers, decision-
makers, etc.) have in-depth knowledge of one or more
databases contained in the Data Lake.

They are asked to specify the possible semantic
correspondences between the data of the different
databases. For example, in the ENS Data Lake, three
databases contain data describing individuals insured
by mutual insurance companies. The ontology will
indicate an equivalence relation between these data.
The similarity relations between data are stored in a
domain ontology, called "Onto”, in the form of a
graph; they are obtained from the specifications
provided by the business experts.

The business experts must define a primary key
(in the sense of the relational model) among the
attributes of the classes of the same group. This key,
made up of a minimal set of properties, makes it
possible to distinguish records and to establish inter-
class correspondences within a group. For example,
the classes of a group containing descriptions of

Data Ingestion from a Data Lake: The Case of Document-oriented NoSQL Databases

229

doctors have the national professional identification
number of doctors as a key. This key allows records
about the same real-world entity to be grouped. In
addition, the experts examine the other properties
present in the classes and indicate whether it is
appropriate to keep them in the data warehouse
(Properties class). These properties are transferred by
the Merging module to the resulting 𝑋 class.

To transform the classes of a group into a single
class 𝑋, a transfer of values from the group to 𝑋 must
be specified. Thus, for each property to be transferred,
the experts indicate in the ontology the class of the
group that is the source of the transfer and that is
likely to ensure optimal data quality; this is the class
of the group that is considered by the experts as the
most reliable. This source may vary for different
properties of 𝑋.

The Merging module of our process aims at
substituting each group of equivalence classes by a
unique class. We have the “Onto” ontology and the
Data Warehouse (DW) at our disposal. The ontology
describes the composition of each group and the
characteristics of the resulting class 𝑋. The Data
Warehouse contains the classes that will be merged
by the Merging module. This module produces a new
version of the NoSQL Data Warehouse on which the
Convert processing is applied, responsible for
transforming DBRef type links (specific to
MongoDB) into links in the form of references
between objects (present in OrientDB).

4.3 The Convert Module

The MongoDB system offers the possibility of
establishing links between documents in collections;
the links are expressed by means of structured data
marked with the DBRef reserved word. This form of
linkage is compatible with all document-oriented
NoSQL systems insofar as these systems accept
structured properties and referential integrity is not
assured. A DBRef link is monovalent or multivalent;
it can be located at the first level of the properties of
a collection or nested in a structured property. For the
needs of our case study, which requires good data
quality, we have chosen to transform these links in the
data warehouse. We use references between objects
with referential integrity control according to the
principles of the object standard defined by the
ODMG4. This reference mechanism is available in the
OrientDB system.

4 http://www.odbms.org/odmg-standard/

In a DB, a link is a relationship that maps an object
(record or document) to one or more other objects.
During the transfer of documents, each MongoDB
link was stored as is (without transformation) in the
form of a property in a record in the data warehouse,
in accordance with rule 3 applied by the Transfer
module (see section 4.1). At this stage, the links
cannot be used in the data warehouse. The Convert
module is therefore responsible for substituting each
MongoDB link with an OrientDB link.

Before the execution of the Convert module:
among the properties of any record, one or more
MongoDB links can be found. Such a link-property is
characterized by a structured value containing the
DBRef keyword and a name giving the link
semantics.

The Convert module will transform each
MongoDB link into an OrientDB link thanks to the
bijective application Rb between E_Oid and E_Rid.
The value of the MongoDB link 𝑂𝑖𝑑 ∈ 𝐸_𝑂𝑖𝑑 Oid will
be substituted by the 𝑅𝑖𝑑 ∈ 𝐸_𝑅𝑖𝑑 of the Data
Warehouse record in which the MongoDB identifier
is located.

5 PROTOTYPE DEVELOPMENT
AND EXPERIMENTATION

To implement the DLToDW process, we have
developed a prototype allowing the ingestion of
several NoSQL databases according to the principles
outlined above. Our process includes the three
modules Transfer, Merging and Convert which are
implemented successively. We have chosen the
OMG5 Model Driven Architecture (MDA) to develop
the Transfer module. The two modules Convert, and
Merging are based on algorithmic processing coded
in Java. We implemented our prototype with the data
from the medical application presented in Section 2.

5.1 Data Transfer

We used the MDA to develop the Transfer module
because this component is part of the production of a
larger software system not described in this article.
Indeed, our case study is based on a Data Lake
containing, in addition to the NoSQL DBs presented
here, relational DBs, Json files, and spreadsheets. In
this application framework, MDA offers on the one
hand a great flexibility for the development: modeling
of inputs and outputs and expression of model

5 The Object Management Group (OMG)
https://www.omg.org

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

230

transformation rules. On the other hand, it facilitates
the development and maintenance of the software by
ensuring the generalization of the processes
developed: the same principles are applied to each
data set. According to the MDA approach, software
development consists of describing separately the
functional specifications and the implementation on a
platform. It is based on three models representing the
levels of abstraction of the application: (1) the
requirements model (CIM for Computation
Independent Model) in which no IT considerations
appear, (2) the analysis and design model (PIM for
Platform Independent Model) independent of the
technical details of the execution platforms and (3)
the code model (PSM for Platform Specific Model)
specific to a particular platform. Our work is located
at the PSM level where the physical schemas are
described. In our application, the principles of MDA
consist in modeling the input and output of a process
and in providing a set of transformation rules applied
to the models to go from input to output. In order to
preserve a certain generality of the treatments, the
input and output models are represented by
metamodels.

The Transfer module has been translated into two
metamodels (one input and one output) and a set of
model transformation rules expressed in the
declarative language QVT6 (Query/View/Transform)
specified by the OMG. We used the EMF7 (Eclipse
Modeling Framework) development environment
with the Ecore metamodeling language. The input
(MongoDB) and output (OrientDB) metamodels
expressed in Ecore are consistent with the UML
diagram in Figure 2. Ecore relies on XMI to
instantiate the models.

This module therefore transfers the NoSQL
databases from the Data Lake into a warehouse which
is a single NoSQL database. At the end of the
processing, the warehouse contains a set of classes
with the following properties:

• The number of classes in the warehouse is equal
to the sum of the number of collections
contained in the Data Lake (all databases
combined)

• Each class takes the name of the original
collection prefixed by the name of the DB in the
Data Lake

Figure 3: Data flow and processing in the Merging module.

6 https://www.omg.org/spec/QVT/1.2/PDF
7 https://www.eclipse.org/modeling/emf/

Data Ingestion from a Data Lake: The Case of Document-oriented NoSQL Databases

231

• Each record of a class has an identifier (Rid)
assigned by the system managing the warehouse
(OrientDB)

• The links contained in the warehouse records
have been stored in their original format
(MongoDB DBRef links).

5.2 Merging of Similar Classes

In a second step, the Merging module is applied to the
warehouse and its objective is to merge the classes
considered as "similar". To perform the merging, this
module uses a domain ontology8 provided by experts
of our case study. This ontology has been stored in a
PostgreSQL9 relational database. For example, the
ontology indicates that the classes
"ServiceProvision_Insured"and "Analysis_Patients"
belong to the same equivalence group. These two
classes come from two distinct DBs
("ServiceProvision" and "Analysis") in the Data
Lake. The ontology provides all the properties of the
unique class X elaborated by the Merging module and
specifies the class from which these properties will be
extracted. In the case where "similar" properties (for
example the Name of the insured) are found in several
classes, the ontology indicates the class that will be
chosen to extract the values and save them in X. The
class X is the result of the merging of several classes;

its name, which appears in the ontology, was assigned
by the experts. Figure 3 shows the merging of 2
records in the data warehouse.

5.3 Link Conversion

The Transfer module has stored all the links in the
warehouse in their original format (MongoDB DBRef
link). The Convert module will transform each of
these links into Rid references between records; these
links in the form of references conform to the object
principles set out by the ODMG. This conversion of
links requires a complete scan of the warehouse. In
fact, we did not think it wise to perform this treatment
when the warehouse is fed (Transfer module)
because:

1. the dispersion of referenced records (which
requires that all classes be created at the
beginning of the process)

2. the number of links per record; in our
application, every record contains at least one
link. For example, in Figure 4, the
"DBRef_Physicians" field of the
"Analysis_Patients" Class corresponds to a
multivalued value of DBRef, so each DBRef
structure will be replaced by the Rid of the
referenced record of the "Doctors" collection
from the "StaffDB".

Figure 4: Data flow and processing in the Convert module.

8 The principles of exploitation of the ontology are not

detailed in this article
9 https://www.postgresql.org/

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

232

6 CONCLUSION

We have proposed a process for ingesting data from
a Data Lake to a Data Warehouse; the latter consists
of a single NoSQL DB while the Data Lake contains
several DBs. Thus, the article by (Yangui et al., 2017)
deals with the transformation of a multidimensional
DB into a NoSQL document data warehouse and does
not consider specific links to MongoDB (DBRef). On
the other hand, the work (Dabbèchi et al., 2021)
proposes a process to transfer data stored in NoSQL
databases (the Data Lake) and feed a NoSQL Data
Warehouse. The links between objects are not
materialized in the target as references. In order to
focus this paper on a limited problem, we have limited
the content of the Data Lake to document-oriented
NoSQL DBs. Three modules were implemented
successively to ensure the ingestion of data. The
Transfer module transforms the Data Lake databases
into a NoSQL database; its development is based on
the MDA. The Merging module merges classes
considered semantically equivalent and belonging to
different Data Lake databases; this merger is based on
an ontology provided by business experts. Finally, the
Convert module translates the links in MongoDB into
references according to the principles of object
databases supported by the OrientDB system. Our
process has been implemented in an application for
health professionals. Currently, we are extending the
DLToDW process both upstream (the Data Lake) and
downstream (the Data Warehouse). In particular, we
are defining a generic model and approach to
integrate the other types of datasets that make up the
Data Lake.

REFERENCES

Couto, J., Borges, O., Ruiz, D. D., Marczak, S., &
Prikladnicki, R. (2019). A Mapping Study about Data
Lakes : An Improved Definition and Possible
Architectures. 453‑458.

Dabbèchi, H., Haddar, N., Elghazel, H., & Haddar, K.
(2021). Social Media Data Integration : From Data
Lake to NoSQL Data Warehouse 701-710.

DB-Engines Ranking. (s. d.). DB-Engines. https://db-
engines.com/en/ranking/document+store

Kuszera, E. M., Peres, L. M., & Fabro, M. D. D. (2019).
Toward RDB to NoSQL : Transforming data with
metamorfoseframework. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
456‑463.

Liyanaarachchi, G., Kasun, L., Nimesha, M., Lahiru, K., &
Karunasena, A. (2016). MigDB - relational to NoSQL
mapper. 2016 IEEE International Conference on

Information and Automation for Sustainability
(ICIAfS), 1‑6.

Mahmood, A. A. (2018). Automated Algorithm for Data
Migration from Relational to NoSQL Databases.
Al-Nahrain Journal for Engineering Sciences, 21, 60‑65.

Maity, B., Acharya, A., Goto, T., & Sen, S. (2018).
A Framework to Convert NoSQ L to Relational Model.
ACIT 2018: Proceedings of the 6th ACM/ACIS
International Conference on Applied Computing and
Information Technology, 1‑6.

Mallek, H., Ghozzi, F., Teste, O., & Gargouri, F. (2018).
BigDimETL with NoSQL Database. Procedia
Computer Science, 126, 798‑807.

Yangui, R., Nabli, A., & Gargouri, F. (2017). ETL Based
Framework for NoSQL Warehousing. In M.
Themistocleous & V. Morabito (Éds.), Information
Systems (p. 40‑53). Springer International Publishing.

Data Ingestion from a Data Lake: The Case of Document-oriented NoSQL Databases

233

