
Planning for Software System Recovery by Knowing Design Limitations
of Cloud-native Patterns

Alireza Hakamian1, Floriment Klinaku1, Sebastian Frank1, André van Hoorn2 and Steffen Becker1

1Software Quality and Architecture, University of Stuttgart, Germany
2Software Engineering and Construction Methods, University of Hamburg, Germany

Keywords: Cloud-native Patterns, Formal Method, TLA+.

Abstract: Context. Application designers use cloud-native architectural patterns such as Circuit Breaker that come with
third-party implementations to improve overall system reliability. Problem. Important quality decisions are
hidden in the codebase and are usually not documented by third-party implementations. Runtime changes
may invalidate, e.g., pattern’s decision assumption(s) and cause the reliant service to face unacceptable quality
degradation with no recovery plan. Objective. The primary goal of this study is to derive important quality de-
cisions of patterns independent of a particular implementation. Method. To achieve our objective, we perform
exploratory research on two architectural patterns, (1) Circuit Breaker and (2) Event Sourcing, which come
with different third-party implementations and that application designers often use. We formally specify the
design and the guarantees of each pattern using Temporal Logic of Actions (TLA) and verify the guarantees,
which guide us in deriving important quality decisions. Result. To show the usefulness of our method, we
systematically generate failure scenarios for third-party implementations of Circuit Breaker and Event Sourc-
ing patterns that compromise Hystrix’ and Kafka’s guarantees on preventing further degradation of protected
services and the loss of committed messages, respectively. Conclusion. The result suggests that important
quality decisions derived from formal models of the patterns help application designers prepare for unaccept-
able system quality degradation by knowing when a third-party implementation of the architectural patterns
fails to maintain its guarantees.

1 INTRODUCTION

Continuous change of system configurations, e.g.,
new deployments, is the important characteristic of
cloud-native software systems (Davis, 2019). To cope
with the impact of changing environments, applica-
tion designers use architectural patterns, e.g., Cir-
cuit Breaker, or Event Sourcing implemented by Re-
silience4j (Resilience4j Contributors, 2021) (for Java
programmers) and Kafka (Kafka Team, 2021) respec-
tively. However, important quality decisions and re-
lated assumptions remain hidden in the codebase or
informal description (high-level language) in the re-
spective official third-party documentation, books, or
blogs. Real-world incidents such as (Lianza and
Snook, 2020) have shown a lack of understanding
of pattern’s quality decisions, and related assump-
tions implemented by a third-party component come
with the consequence of unacceptable system quality
degradation.

Therefore, our primary goal is to derive impor-
tant quality decisions in cloud-native architectural
patterns independent of a particular implementation,

which benefits the application designers in planning
to retain the system quality when a third-party imple-
mentation of an architectural pattern fails to maintain
the pattern’s guarantee. Kazman et al. (Kazman, Rick
et al., 2000) described that important quality decisions
are decisions that have been made by architects on
sensitivity points, which are design properties that are
critical to quality achievement. For example, service
availability can be sensitive to the number of work-
ing nodes and the repair rate. Moreover, Kazman et
al. describe the situation when no decision has been
made on sensitivity points as architectural risk.

In our study, we specify and use the formal mod-
els of the architectural patterns to derive sensitiv-
ity points and their related decisions. We perform
exploratory research on two architectural patterns,
(1) Circuit Breaker and (2) Event Sourcing. Our re-
search method consists of (1) selecting cloud-native
patterns that come with a variety of implementations
and often are used by application designers, (2) for-
mally specifying the design and requirements of each
pattern (independent of a particular implementation)
using Temporal Logic of Actions (TLA)+, (3) veri-

Hakamian, A., Klinaku, F., Frank, S., van Hoorn, A. and Becker, S.
Planning for Software System Recovery by Knowing Design Limitations of Cloud-native Patterns.
DOI: 10.5220/0011061500003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 215-222
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

215

fying the requirements against the design specifica-
tion, which guide us in deriving sensitivity points, and
(4) reviewing the design specification of the patterns
for respective decision on each sensitivity point.

Mendonça et al. (Mendonça et al., 2020) use prob-
abilistic models for resilience patterns aiming to pre-
dict the impact of a different configuration of re-
silience patterns on the performance and availability
of the overall system. Our primary difference is in our
pragmatism behind modeling architectural patterns.
In order to derive important quality decisions, we con-
sider all relevant context in the design of the archi-
tectural patterns, e.g., modeling threads in the Circuit
Breaker pattern.

We derive two sensitivity points, namely, (1) the
number of active threads and (2) how up-to-date is
the new node joining a leader-based replication group
in the design of Circuit Breaker and Event Sourcing
patterns, respectively. To validate the usefulness of
our method, we create failure scenarios for the Hys-
trix and Kafka implementations of the Circuit Breaker
and Event Sourcing patterns, respectively. Our insight
from the study is that: Application designers can use
the result from our study to plan for recovery from
system quality failure when a third-party implemen-
tation of an architectural pattern fails to maintain its
guarantees.

We summarize our contributions as follows:

• A method to derive sensitivity point(s) from the
design of cloud-native patterns systematically.

• Formal design specification of the Circuit Breaker
and Event Sourcing patterns.

• Validating the usefulness of our method by con-
structing failure scenarios. We apply failure sce-
narios against Hystrix and Kafka implementations
of the Circuit Breaker and Event Sourcing pat-
terns respectively.

Due to space limitations, the paper only discusses
the application of the method to the Circuit Breaker
pattern and provides a condensed summary of the re-
sults regarding the Event sourcing pattern. The com-
plete discussion on Event Sourcing pattern is avail-
able as an online appendix (Hakamian, A. et al.,
2022).

2 FOUNDATION: TLA+

Lamport introduced TLA mainly for design specifi-
cations of distributed and concurrent systems. The
core idea is to use the language to specify both the de-
sign and the intended properties. The modeler should
think of the system in terms of states and actions to

specify the system’s design (abstracted from the im-
plementation details). The modeler defines the state
of the system by defining one or more variables. The
state of the system is defined by the values of those
variables at each instance of time. An action makes
the system transition from one state to the next by
changing the value of one or more variables. A se-
quence of states is called behavior.

TLA+ (Lamport, 2002) is an extension to
TLA (Lamport, 1994), which makes the language
suitable for writing modular specifications. In order
to specify architectural pattern’s goals in the form
of (1) what the system must always/never do and
(2) what must eventually happen, we choose TLA+ as
our formal language. Moreover, the language comes
with tooling support, called TLA+ Toolbox (Lamport,
2021).

To show the language constructs in specifying ac-
tions and states, we use the simple hour clock exam-
ple provided by Lamport in his book (Lamport, 2002).
We represent the hour by the variable hour, which
takes values [1− 12]. A sequence of states for hour
clock is hour = 1,hour = 2, For specifying the
hour clock system, we specify the initial state of the
system Init , hour∈ (1..12), which means the system
can start at any hour. After initial state, we specify the
action tick, which creates the sequence of intended
behavior as follow: Tick , hour′ = IF hour 6=
12 T HEN hour + 1 ELSE 1. The formula is an ac-
tion because it changes the value of the variable hour.
The change is shown by using the ′ symbol. We spec-
ify the complete hour clock system using the Formula
HClock , Init ∧�Tick, which describes all valid be-
haviors. The symbol � is a temporal formula that
asserts tick is true for every step in the behavior.

3 SENSITIVITY POINTS IN
ARCHITECTURAL PATTERNS

To derive sensitivity points of architectural patterns
systematically, we devise a method consisting of four
steps (as illustrated in Figure 1), (1) pattern selection
and review, (2) pattern specification, (3) verification,
and (4) pattern specification review. We apply the
method to the two patterns Circuit Breaker and Event
Sourcing. Figure 1 shows the four steps that engi-
neers who are experts in formal methods perform for
each pattern. The outcome of the method is (1) a ver-
ifiable model and a (2) description of risk(s) and a
decision on sensitivity point(s), which will be stored
in the repository of formal models of the architectural
patterns. In the rest of the section, we explain each
step for the Circuit Breaker pattern.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

216

Pattern
Specification

Review

Goals and
Requirements

Behavioral
Description

Verifiable
Model

Sensitivity
Points

Risks

Formal Method
Experts

Repository

Pattern
Selection and

Review

Pattern
Specification

Verification

Decisions on
Sensitivity Points

1

2

3

4

Figure 1: An overview of the method.

3.1 Pattern Selection and Review

We chose the two patterns based on the following
three criteria: (1) application designers frequently
use the pattern in the cloud-native domain, (2) the
pattern’s design requirements are not readily evi-
dent from the pattern description, and (3) the pat-
tern should have different implementations to com-
pare their important quality decisions. In the follow-
ing we provide a high-level description of the Cir-
cuit Breaker and Event Sourcing patterns (Richard-
son, 2021).
Circuit Breaker. In a distributed environment, it is
likely that calling a service fails, e.g., due to network
issues. Resources of the caller get wasted for a non-
responding service, which impacts the service’s qual-
ity. The problem is known as cascading failure. The
Circuit Breaker pattern solves this problem by disal-
lowing further calls to the target service if a certain
failure threshold is reached.
Event Sourcing. Data in cloud-native software
systems reside on multiple and possibly different
databases. Consequently, maintaining a consistent
view of the whole system is problematic. Event
Sourcing solves the problem by providing a single
source of truth called event storage. Services emit
events related to changes in entities and store pro-
jected data from the event storage locally.

After selecting the patterns, we review the behav-
ioral description of each pattern and derive their goals
and requirements. We use the Microsoft cloud-native
patterns collection (Microsoft, 2022) and the Release
It! book (Nygard, 2018) to derive high-level goals and
behavioral descriptions of the Circuit Breaker pattern.
The first goal is: The pattern shall protect the client’s
resources from becoming exhausted. The first goal
states that the client resources shall not get wasted on
requests that will most likely fail. The second goal is:
The pattern shall protect the already degraded ser-
vice from further degradation. We derive a list of re-
quirements for the pattern considering the high-level

goals and the behavioral descriptions of the Circuit
Breaker pattern. However, from the list, we discuss
one requirement that is important for this paper’s dis-
cussion. The requirement of the Circuit Breaker is:
In the Half-Open state, the system permits only a few
calls to test if the service is back.

3.2 Pattern Specification

High-level goals, requirements and behavioral de-
scriptions are the inputs to the pattern specification
step. We chose TLA+ because of the tooling support,
and its adoption at industry such as Amazon (New-
combe, 2014) and MongoDB (Schvimer et al., 2020).

Regarding the specification, we present modeled
variables, initial state formula, and requirements.
The complete formal specification for each pattern is
available as an online appendix (Hakamian, A. et al.,
2022).

The following list describes the variables used to
model the behavior of the Circuit Breaker pattern.

calls is a function that maps an OS thread t1 to the
record of the form [reply, permitted, permittedIn-
State]. The reply field is either TRUE, which
means the service returns no error, FALSE, which
means the service returns an error, or NULL,
which means the thread has not sent any request
yet. The permitted field shows whether (or not)
the thread obtained permission to send a request.
Finally, the permittedInState field tracks in which
state the thread t1 obtained a permission.

circuitBreaker takes either the CLOSED, OPEN, or
HALF value to represent the current state of the
Circuit Breaker.

recordedCalls is a sequence of recorded TRUE, or
FALSE when the Circuit Breaker was in either the
OPEN or CLOSED state.

recordedCallsInHalf a same description as record-
edCalls but now for the HALF state.

Planning for Software System Recovery by Knowing Design Limitations of Cloud-native Patterns

217

executed is a sequence of all calls against the service.
Formula 1 is the specification of the initial state of

the Circuit Breaker. In the Init state specification, the
assignment of values does not require the prime (′)
notation over the variables in the left side of the as-
signment. The Circuit Breaker starts in the Init state,
where the variable circuitBreaker has the CLOSED
value.
Init , calls = [t ∈ T hreads 7→ [reply 7→ NULL,

permitted 7→ NULL,
permittedInState 7→ NULL]

∧ circuitBreaker =CLOSED∧ recordedCalls = 〈 〉
∧ count = 0 ∧ recordedCallsInHal f Open = 〈 〉

(1)

3.3 Verification

After the specification step, we instantiate a model in
the TLA+ Toolbox and verify the model against re-
quirement(s). In the following, we present the verifi-
cation result for the Circuit Breaker pattern.

Formula 2 is the specification of the requirement:
In the Half-Open state, the system permits only a
few calls to test if the service is back. The require-
ment belongs to the second high-level goal (the Cir-
cuit Breaker shall protect the already-degraded ser-
vice). The name of the formula is NoFurtherDegra-
dation as the second goal suggests. The output of
the ExecInHalf operator in Formula 2 is a sequence
of all calls when the Circuit Breaker is in the Half-
Open state. The property NoFurtherDegradation
checks the number of calls in the Half-Open state
against the total number of permitted calls during
the Half-Open state. We instantiate a model with
two threads and one permitted call during a Half-
Open state. The time to completion of the model
checker is only a few seconds as the state space of
the model is not large. The model checker shows that
the design specification does not satisfy the property
NoFurtherDegradation.

ExecInHal f , LET Count(c), c = HALF
IN SelectSeq(executed,Count)

NoFurtherDegradation ,
Len(ExecInHal f) ≤ PermittedCallsInHal f Open

(2)

The counterexample shows that thread t1 asks for per-
mission before the Circuit Breaker switches to the
Open state. The Circuit Breaker switches to the Half-
Open state. The Circuit Breaker permits the thread
t2 to gain permission during the Half-Open state and,
together with the already permitted thread t1, call the
protected service. Hence, the total number of execu-
tions during the Half-Open state is now 2, which is

greater than the constant parameter PermittedCallsIn-
HalfOpen.

There are two options at this stage: either chang-
ing the design to satisfy the property or relaxing the
requirement, which means changing the property to
pass the current design. We decided not to change the
design specification as there was no notion of restrict-
ing execution in the general description of the Circuit
Breaker. Formula 3 is the specification of the relaxed
requirement. The Cardinality operator gives the num-
ber of elements in the set Threads, which is a con-
stant. A translation of the property into the English
language is In Half-Open, the number of executions
to the service is at most equal to the number of ac-
tive Threads in the client. Therefore, the edge case in
the design of the Circuit Breaker pattern is that: In a
highly concurrent environment, all the active Threads
gain permission before the Circuit Breaker switches
to the Open state and hence further degrade the ser-
vice.

NoFurtherDegradation , Len(ExecInHal f) ≤
PermittedCallsInHal f Open + Cardinality(T hreads)

(3)

According to the definition of the sensitivity point
and the help from the identified edge case, we de-
rive the sensitivity point in the design of the Circuit
Breaker pattern as:

The number of active threads.

3.4 Pattern Specification Review

We review the behavioral description and the speci-
fication of the patterns to find out about design deci-
sions on sensitivity points. In Circuit Breaker, there is
no decision on the sensitivity point, which is the risk
in the design of the pattern.

4 VALIDATING USEFULNESS

This section presents a systematic generation of a fail-
ure scenario guided by the derived sensitivity point
against the Hystrix implementation of the Circuit
Breaker pattern. The aim is to validate the derived
sensitivity point of the Circuit Breaker pattern. For
the experiment, we cloned an example application
publicly hosted on GitHub (Davis, 2020), which is
provided by the author of the cloud-native patterns
book (Davis, 2019). Moreover, we discuss the result
of our investigation on the documentation of the third-
party implementation of the Circuit Breaker pattern.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

218

The aim is to check if the documentation explains the
sensitivity point and the related decision.

4.1 Experiment on the Hystrix

We designed an experiment to evaluate how a pro-
tected service by the Circuit Breaker behaves in a
highly concurrent environment. We evaluate whether
the protected service by Circuit Breaker further de-
grades during the Open state in high concurrency or
not. To measure further degradation during the time
the Circuit Breaker is Open, we use the number of
processes waiting for CPU time in the protected ser-
vice as the metric. Another metric we use is the av-
erage system load that is measured by the Linux op-
erating system. The only processes running on the
database container are the MySQL process and sar
that collects system activity information and is a tool
from sysstat (System performance tools for the Linux
operating system).

We installed MicroK8s on our Ubuntu machine
hosted in a private cloud. The machine has 16 GB
of RAM, 8 VCPUs, and 12 GB of storage. We de-
ployed two containerized services, (1) a Post service
responsible for creating and retrieving posts and (2) a
MySQL database service responsible for storing and
retrieving database queries. The call to retrieve posted
items from the Post service is protected by a Hys-
trix Circuit Breaker. The configuration for the Circuit
Breaker is:

• SleepTime 10 seconds. SleepTime shows how
long Circuit Breaker remains open until allowing
one test call.

• ThreadTimeout 1.5 seconds. The variable shows
how long a thread waits for a reply from the
database service.

• ThreadSize 30. We allow up to 30 concurrent
threads to be activated.
We created the following scenario, which is the

expected use case of a Circuit Breaker:
Scenario. We degrade the database service by load-

ing the Post service with around 12 requests per
second. The chosen number is to keep the con-
currency low but at the same time degrade the
database to trigger the Circuit Breaker trip be-
tween the Open and Closed states. We measure
the defined metrics, and afterward, we create a
highly concurrent environment by sending more
than 50 requests per second. We measure the de-
fined metrics for a highly concurrent environment.

Our hypothesis from the scenario is that:
Hypothesis. We hypothesize that when many con-

current threads are active, many threads can send

0

5

10

15

09:00 09:45 10:30 11:15 12:00
Time(min:sec)

R
un

ni
ng

 p
ro

c
w

ai
tin

g
C

P
U

 ti
m

e

Figure 2: Queue size in low concurrent environment (con-
stant rate 12 reqs/sec).

requests to the database service and cause further
degradation of the service.

Figure 2 shows the behavior of the Circuit Breaker for
3 minutes in a low concurrent environment. The load
to the post service’s API is at a constant rate of 12
requests per second. The Y-axis represents the num-
ber of processes waiting for CPU time. The number
drops to 0 whenever the Circuit Breaker switches to
Open. From Figure 2 it is visible that the number of
processes awaiting CPU time drops to 0 every time
the Circuit Breaker is open, which means the Circuit
Breaker achieves its goal that is protecting the de-
graded service from further degradation. However, in
high concurrency(Figure 3), the line graph shows that
most of the time when the Circuit Breaker is open, the
number of processes awaiting CPU time is above 0.

0

10

20

06:00 06:45 07:30 08:15 09:00
Time(min:sec)

R
un

ni
ng

 p
ro

c
w

ai
tin

g
C

P
U

 ti
m

e

Figure 3: Queue size in highly concurrent env (> 50 req/s).

Finally, regarding the protected database service,
by comparing the average system load (averaged ev-
ery 1 minute) in the low concurrency and high con-
currency scenarios (shown in Figure 4), we conclude
that our hypothesis is true and the Circuit Breaker is,
in fact, sensitive to the number of active threads de-

Planning for Software System Recovery by Knowing Design Limitations of Cloud-native Patterns

219

1

2

3

4

5

06:00 07:00 08:00 09:00 10:00 11:00
Time(min:sec)

A
ve

ra
ge

 n
um

be
r

of
 p

ro
c

w
ai

tin
g

fo
r

C
P

U
 ti

m
e

Legend

High cuncurrency
Low cuncurrency

Figure 4: System load average (every 1min)).

rived from our formal analysis.
The design of the Circuit Breaker does not make

any assumption on the number of active threads.
Hence, failure in protecting the target service from
further degradation due to the high number of active
threads is possible, and application designers should
have a recovery plan. Depending on the context, lim-
iting the number of active threads may not be possi-
ble. For such a case, it is essential to first detect an
error by looking at indicators such as the number of
trips to Open and Closed states in the Circuit Breaker.
Second, eliminate the error by using a rate limiter at
the protected service during the high load.

4.2 Investigating the Documentation of
Third-party Implementations

For the Circuit Breaker pattern, we looked at the doc-
umentation of Resilience4j, Polly, and Hystrix con-
cerning the Circuit Breaker pattern.

The documentation of Resilience4j refers to a dif-
ferent pattern — bulkhead — to limit the number of
concurrent threads. However, the documentation does
not explain the sensitivity point in the Circuit Breaker
design pattern and the consequences of a high con-
currency level of threads, which overloads an already
degraded service. Hence, Resilience4j has a design
limitation, which is controlling the number of ac-
tive threads. The documentation of Polly on the Cir-
cuit Breaker pattern does not provide any notion on
the number of concurrent threads, its consequence,
and even referring to other patterns such as bulk-
head. On the other hand, the Hystrix design, limits
the number of threads through a configuration param-
eter. However, documentation does not explain the
consequence of a high number of active threads.

5 EVENT SOURCING PATTERN

This section summarizes the application of our pro-
posed method on the Event Sourcing pattern.

We studied the Event Sourcing pattern from
books (Kleppmann, 2016; Davis, 2019). The event
storage (aka event log) design is the heart of the Event
Sourcing pattern. Therefore, our focus in event sourc-
ing is on the design of the event storage. We derive
the goal that: The event storage must guarantee the
integrity of the data. Regarding the behavioral de-
scription of the event storage, we choose the Paci-
ficA protocol proposed by Lin et al. (Lin et al., 2008).
The main reason is that Kafka’s design (Kafka Team,
2021) is based on PacificA. Kafka is one of the few ex-
isting platforms developers use for the Event Sourcing
pattern, mainly because of Kafka’s no loss of commit-
ted data guarantee that aligns with the event storage
goal.

After the specification and verification steps, we
derived the sensitivity point in the design of the event
storage as

How up-to-date is the new node joining the
replicaGroup.

Guided by the sensitivity point, we experimented
on a three-node Kafka cluster by testing what hap-
pens when all nodes fail and the most recent leader
does not have the most recent committed messages.
In reality, it happens that data is wiped out due to
hardware error (Junqueira, 2015), or human operators
error (Shea, 2017). After running the experiment, we
observed that the other two nodes became followers
and removed all their committed data to the index of
the current leader. Hence, data integrity is violated.

6 THREATS TO VALIDITY

Conclusion Validity. Deriving a set of high-level
goals and specifying a design that satisfies them in-
volves human subjective opinion. Therefore, repeat-
ing the method by someone else may result in dif-
ferent abstractions for individual patterns and, hence,
different sensitivity point(s). To counteract this threat,
we did not use our subjective opinion for deriving
high-level goals and the design. Instead, we use the
literature for deriving goals and the design of each
pattern.
Internal Validity. One threat is that the derived goals
and requirements for the two architectural patterns are
not valid. To counteract this threat, we chose the well-
known books Release It! (Nygard, 2018; Kleppmann,

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

220

2016) for Circuit Breaker, and Event Sourcing pat-
terns, respectively.
Construct Validity. The main threat under this cat-
egory is mono-method bias, which means we did not
use other methods e.g., reviewing codebases to derive
sensitivity point(s). We can not entirely rule out this
threat.
External Validity. One aspect of external validity
is to what degree the proposed method is applicable
for other cloud-native architectural patterns. We use
TLA+ for the design specification, and hence we sup-
port reliability and availability kind of quality guaran-
tees in architectural patterns. Although, using other
modeling languages should not be an issue. How-
ever, it requires further investigation. Another aspect
is finding a suitable design abstraction that the model
solver solves in a reasonable time and space.

7 RELATED WORK

We derived sensitivity points of the two architectural
patterns systematically. Research areas that we fit
into are (1) requirements engineering and document-
ing system design for the purpose of quality analysis,
and (2) reliability testing of software systems by fault
injection.

Regarding the first area we mention applying for-
mal methods to reason about software design prop-
erties. Vergara et al. (Vergara et al., 2020) propose
formalizing microservice architectural patterns such
as Circuit Breaker using the Event-B language. They
argue that describing a pattern’s behavior through im-
precise language may lead to ambiguity. Therefore,
they use Event-B to formalize few well-known pat-
terns in a microservice-based application, including
Circuit Breaker. In the paper, the authors only dis-
cussed the Circuit Breaker pattern. However, in their
online appendix, there is also the specification of ser-
vice registry pattern.

Mendonça et al. (Mendonça et al., 2020) pro-
pose a model-based analysis of resilience patterns
such as Retry and Circuit Breaker. The authors ar-
gue that an informal description of resilience pat-
terns causes difficulties for application designers to
know a set of proper configurations for each pat-
tern, which improves the availability and performance
of the microservice-based system. The core idea is
to (1) specify the design of resilience patterns us-
ing Continuous Time Markov Chain (CTMC) in the
PRISM tool (Marta Z. Kwiatkowska et al., 2011),
(2) specify the availability and performance (execu-
tion time and contention time) of an exemplary sys-
tem through reward functions, and finally (3) simulate

the final model with different values of model param-
eters to obtain availability and performance measure-
ments.

Very close to Mendonça et al. is the work by Ja-
gadeesan et al. (Jagadeesan and Mendiratta, 2020).
The authors raise the challenge in trade-off analy-
sis in microservice-based applications where service
meshes such as Istio (Istio Contributors, 2021) are be-
ing used. The paper focuses on the Circuit Breaker
implementation in service mesh and discusses the ne-
cessity in the analysis of different trade-offs concern-
ing the impact of slow or quick detection of a fail-
ure in downstream services and activating the Circuit
Breaker on availability and the number of processed
requests. To this end, the authors propose a model-
ing framework for such analysis based on CTMC in
PRISM.

Compared to the three previous works, our pri-
mary difference is our pragmatism behind modeling
architectural patterns. The modeling goal in the first
work is to make the specification non-ambiguous. In
contrast, the goal in the second paper is to predict
the impact of a different configuration of resilience
patterns on performance and availability. In the last
work, the goal is a trade-off analysis of microservice-
based applications. Our work provides different ab-
straction. The goal of the modeling is to derive im-
portant quality decisions in the design of the architec-
tural patterns. We consider all assumptions that indi-
vidual architectural patterns make regarding the envi-
ronment, e.g., modeling threads in the Circuit Breaker
pattern.

The importance of explicit assumptions in the pro-
cess of documenting requirements and architecture
has been discussed by Lago et al. (Lago and van Vliet,
2005). The authors present an exploratory research to
investigate the importance of documenting assump-
tions explicitly. They suggest three important applica-
tions of having explicit assumptions in the documen-
tation process of the architecture that are Traceability,
Assessment and Knowledge management. The au-
thors propose feature modeling for documenting as-
sumptions explicitly. However, their method to come
to assumptions most likely is brainstorming sessions.

Regarding the second research area, the core
idea is to inject fault(s) into the system implemen-
tation while assuming that the system holds specific
properties after the injection phase. An example is
Jepsen (Jepsen Contributors, 2022), which have been
mainly used by application designers for testing the
correctness of distributed systems. The approach has
successfully found edge cases in production systems
such as etcd, Consul (Kingsbury, 2014) and even the
old version of Kafka.

Planning for Software System Recovery by Knowing Design Limitations of Cloud-native Patterns

221

8 CONCLUSION

We discussed our systematic method in deriving sen-
sitivity points of the Circuit Breaker and Event Sourc-
ing, patterns, independent of a particular implementa-
tion. Through experiments on Hystrix and Kafka, we
demonstrated the usefulness of our method in deriv-
ing important quality decisions of architectural pat-
terns. The repository of the formal models of the
architectural patterns helps the application designers
prepare for unacceptable system quality degradation
when a third-party implementation of the architec-
tural patterns fails to maintain its guarantees.

We extend our method to perform a conformance
check of third-party implementations against their
formal design as ongoing work.

ACKNOWLEDGMENT

This research has received funding from the Baden-
Württemberg Stiftung (Orcas project) and the German
Federal Ministry of Education and Research (Soft-
ware Campus 2.0 — Microproject: DiSpel).

REFERENCES

Davis, C. (2019). Cloud Native Patterns: Designing
Change-tolerant Software. Manning Publications.

Davis, C. (2020). Cloud-native example application. https://
github.com/cdavisafc/cloudnative-abundantsunshine.
Accessed: 2022-January.

Hakamian, A. et al. (2022). Formal models of cloud-native
patterns. https://doi.org/10.5281/zenodo.5905810.

Istio Contributors (2021). istio documentation. https://istio.
io/latest/docs/. Accessed: 2022-January.

Jagadeesan, L. J. and Mendiratta, V. B. (2020). When fail-
ure is (not) an option: Reliability models for microser-
vices architectures. In ISSRE Workshops, pages 19–
24. IEEE.

Jepsen Contributors (2022). Jepsen. https://github.com/
jepsen-io/jepsen. Accessed: 2021-January.

Junqueira, F. (2015). Disk error. https://fpj.systems/2015/
05/28/dude-wheres-my-metadata/. Accessed: 2022-
January.

Kafka Team (2021). Kafka design documentation. https://
kafka.apache.org/documentation/#design. Accessed:
2022-January.

Kazman, Rick et al. (2000). Atam: Method for architecture
evaluation. Technical report, Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst.

Kingsbury, K. (2014). Jepsen: etcd
and consul. https://aphyr.com/posts/
316-call-me-maybe-etcd-and-consul. Accessed:
2021-January.

Kleppmann, M. (2016). Designing Data-Intensive Applica-
tions: The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems. O’Reilly.

Lago, P. and van Vliet, H. (2005). Explicit assumptions en-
rich architectural models. In 27th International Con-
ference on Software Engineering (ICSE 2005), pages
206–214. ACM.

Lamport (2021). The TLA+ toolbox. https://lamport.
azurewebsites.net/tla/toolbox.html. Accessed: 2022-
January.

Lamport, L. (1994). The temporal logic of actions. ACM
Trans. Program. Lang. Syst., 16(3):872–923.

Lamport, L. (2002). Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley.

Lianza, T. and Snook, C. (2020). Cloudflare in-
cident report. https://blog.cloudflare.com/
a-byzantine-failure-in-the-real-world/. Accessed:
2022-January.

Lin, W., Yang, M., Zhang, L., and Zhou, L. (2008). Pacifica:
Replication in log-based distributed storage systems.

Marta Z. Kwiatkowska et al. (2011). PRISM 4.0: Veri-
fication of probabilistic real-time systems. In Com-
puter Aided Verification - 23rd International Confer-
ence, CAV 2011, pages 585–591. Springer.

Mendonça, N. C., Aderaldo, C. M., Cámara, J., and Garlan,
D. (2020). Model-based analysis of microservice re-
siliency patterns. In 2020 IEEE International Confer-
ence on Software Architecture, ICSA 2020, Salvador,
Brazil, March 16-20, 2020, pages 114–124. IEEE.

Microsoft (2022). Microsoft classification of de-
sign patterns in cloud-native application domain.
https://docs.microsoft.com/en-us/azure/architecture/
patterns/index-patterns. Accessed: 2022-January.

Newcombe, C. (2014). Why amazon chose TLA +. In Ab-
stract State Machines, Alloy, B, TLA, VDM, and Z -
4th International Conference, ABZ 2014, pages 25–
39. Springer.

Nygard, M. T. (2018). Release it!: design and deploy
production-ready software. Pragmatic Bookshelf.

Resilience4j Contributors (2021). Resilience4j documen-
tation. https://resilience4j.readme.io/docs. Accessed:
2022-January.

Richardson, C. (2021). Patterns for microservice archi-
tectural style. https://microservices.io/patterns/. Ac-
cessed: 2021-October.

Schvimer, J., Davis, A. J. J., and Hirschhorn, M. (2020).
extreme modelling in practice. Proc. VLDB Endow.,
13(9):1346–1358.

Shea, C. (2017). Gitlab incident report.
https://about.gitlab.com/blog/2017/02/10/
postmortem-of-database-outage-of-january-31/.
Accessed: 2022-January.

Vergara, S., González, L., and Ruggia, R. (2020). Towards
formalizing microservices architectural patterns with
event-b. pages 71–74. IEEE.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

222

