
Family Matters: Abusing Family Refresh Tokens to Gain
Unauthorised Access to Microsoft Cloud Services

Exploratory Study of Azure Active Directory Family of Client IDs

Ryan Cobb1 a, Anthony Larcher-Gore1 b and Nestori Syynimaa1,2 c
1Secureworks, Counter Threat Unit, U.S.A.

2Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

Keywords: Azure Active Directory, Azure AD, OAuth, OIDC, Authentication, Authorisation, Security, FRT, Privilege
Escalation.

Abstract: Azure Active Directory (Azure AD) is an identity and access management service used by Microsoft 365 and
Azure services and thousands of third-party service providers. Azure AD uses OIDC and OAuth protocols for
authentication and authorisation, respectively. OAuth authorisation involves four parties: client, resource
owner, resource server, and authorisation server. The resource owner can access the resource server using the
specific client after the authorisation server has authorised the access. The authorisation is presented using a
cryptographically signed Access Token, which includes the identity of the resource owner, client, and
resource. During the authorisation, Azure AD assigns Access and Id Tokens that are valid for one hour and a
Refresh Token that is valid for 90 days. Refresh Tokens are used for requesting new Access and Id token after
their expiration. By OAuth 2.0 standard, Refresh Tokens should only be able to be used to request Access
Tokens for the same resource owner, client, and resource. In this paper, we will present findings of a study
related to undocumented feature used by Azure AD, the Family of Client ID (FOCI). After studying 600 first-
party clients, we found 16 FOCI clients which supports a special type of Refresh Tokens, called Family
Refresh Tokens (FRTs). These FRTs can be used to obtain Access Tokens for any FOCI client. This non-
standard behaviour makes FRTs primary targets for a token theft and privilege escalation attacks.

1 INTRODUCTION

1.1 Azure Active Directory

Azure Active Directory (Azure AD) is an identity and
access management service (IAM) provided by
Microsoft (Microsoft, 2021f). It is used as IAM by
Microsoft’s own services, such as Microsoft 365 and
Azure, and thousands of third-party service providers
(Microsoft, 2022a). At least 88 per cent of fortune 500
companies and 95 per cent of top 2000 universities
are using Azure AD (Syynimaa, 2022). This makes
Azure AD one of the most critical IAM services
globally.

a https://orcid.org/0000-0003-3762-9593
b https://orcid.org/0000-0002-7188-4160
c https://orcid.org/0000-0002-6848-094X

1.2 OAuth 2.0 and OIDC

Azure AD uses OpenID Connect (OIDC) and OAuth
protocols for authentication and authorisation,
respectively. OAuth 2.0 authorisation framework
allows third-party applications to access HTTP based
services either directly or on-behalf-of users (IETF,
2012). OIDC is an identity layer on top of OAuth 2.0
protocol (OpenID Foundation, 2022). Both protocols
have four parties: OAuth Client (OC), Resource
Owner (RO), Resource Server (RS), and
Authorisation Server (AS). Moreover, both protocols
use bearer tokens to grant access to a bearer, which
typically refers to the RO. A simple authorisation
flow, where RO uses OC to request access from AS
to RS is illustrated in Figure 1.

62
Cobb, R., Larcher-Gore, A. and Syynimaa, N.
Family Matters: Abusing Family Refresh Tokens to Gain Unauthorised Access to Microsoft Cloud Services Exploratory Study of Azure Active Directory Family of Client IDs.
DOI: 10.5220/0011061200003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 62-69
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: OAuth 2.0 authorisation flow.

Before authorisation can be requested, the used
OC needs to have a consent. This process and the
granularity of the consent depends on the used AS and
RS. Microsoft OAs are generally referred as first-
party clients. Some of these, such as Exchange
Online, are pre-authorised in all Azure AD
environments.

1.3 Tokens

A standard representation of a bearer token is JSON
Web Token, or JWT (IETF, 2015). There are two
flavours of JWT: JSON Web Signature (JWS) and
JSON Web Encrypt (JWE). The former is used to
represent bearer tokens and is also generally used as
a synonym for JWT. JWS consists of three Base64
URL encoded parts: Javascript Object Signing and
Encrypt (JOSE) header, JWS payload, and JWS
signature. The JOSE header contains the information
about the key used to sign the JWS, the payload
contains a set of JWS claims, and the signature
contains the cryptographic signature of the header and
the payload.

Azure AD uses three types of tokens: access
tokens, Id tokens, and refresh tokens (Microsoft,
2021c). Different token types and their properties are
listed in Table 1.

Table 1: Azure AD token types.

Type Standard Lifetime
Id Token OIDC 1 hour
Access Token OAuth2 1 hour
Refresh Token OAuth2 90 days

The Id token contains the user's (i.e., the bearers)
identity information. A sample id token can be seen
in Figure 2. As we can see, it contains different
information about the user, like unique_name on line
18. It also includes information about the issuer (i.e.,
Authorisation Server) on line 2.

Figure 2: A sample id token.

The access token contains the same information
as the identity token, but also information about the
resource the user has been authorised to access. A
sample access token can be seen in Figure 3. As we
can see, the audience (i.e., Resource Server) is
included on line 2. Moreover, the scope is included
on line 19. The scope is used in Azure AD to further
limit access to the resource server by listing different
Application Programming Interface (API) scopes.
The user_impersonation and .default scopes mean
that the user can access all APIs on the RS but can
perform only actions they have permissions on the RS
in question.

Figure 3: A sample access token.

Refresh token is used to obtain a new set of tokens
when access or Id tokens expires (IETF, 2012). In
Azure AD, refresh token is an opaque binary large
object (blob) encrypted with a key known only by
Microsoft (Microsoft, 2021a), delivered as JWE. As
such, its actual content is unknown. A sample refresh
token can be seen in Figure 4.

Resource
Owner

Access resource
with token

Authorise & return
bearer token

1
Use client

Authenticate &
request access

3

Resource
Server

Authorisation
Server

OAuth
Client

2

4

Family Matters: Abusing Family Refresh Tokens to Gain Unauthorised Access to Microsoft Cloud Services Exploratory Study of Azure
Active Directory Family of Client IDs

63

Figure 4: A sample refresh token.

1.4 OAuth 2.0 Authentication Flows

OAuth 2.0 standard (IETF, 2012) defines several
different flows for acquiring authorisation:
Authorization Code Grant, Implicit Grant, Resource
Owner Password Credentials Grant, and Client
Credentials Grant.

The Authorization Code Grant is commonly used
to obtain the initial set of tokens (id token, access
token, and refresh token). The Authorization Code
Grant allows the RO to use more secure
authentication mechanisms, such as multi-factor
authentication (MFA), and without the need to share
their credentials with the OC. In contrast, the
Resource Owner Password Credential (ROPC) flow
allows the OC to authenticate using the RO’s
credentials. A sample ROPC request made to Azure
AD’s /token endpoint can be seen in Figure 5 (line
breaks added for readability).

Figure 5: Sample ROPC authorisation request.

After the access and id tokens have expired, a new
set of access tokens can be obtained using the refresh
token. A sample request using refresh token can be
seen in Figure 6 (line breaks added for readability).

Figure 6: Sample refresh token authorisation request.

The OAuth 2.0 standard (IETF, 2012, section 6)
and OAuth 2.0 Threat Model and Security

Considerations (IETF, 2013, section 5.2.2.2.)
specifies that refresh tokens should be bound to the
client id it was issued. Moreover, OAuth 2.0 standard
specifies that refresh tokens can be used to obtain
access tokens “..with identical or narrower scope..”
(IETF, 2012, section 1.5.).

The OAuth implementation in Azure AD deviates
from the standard regarding refresh tokens. Azure AD
does not enforce the requirement that newly issued
access tokens must have the same or narrower scope
as the original authorisation. Microsoft (2021a)
documentation states that:

“Refresh tokens are bound to a combination of
user and client, but aren't tied to a resource or tenant.
As such, a client can use a refresh token to acquire
access tokens across any combination of resource
and tenant where it has permission to do so.”

A recent research article (Syynimaa, 2020)
revealed, however, that the refresh tokens issued to
certain Microsoft first-party clients (later to be known
as FOCI clients) are redeemable for new access
tokens authorised to a different client. This behaviour,
or feature, was unexpected given the Microsoft
documentation and OAuth specifications.

1.5 Research Questions

Our research sought to answer the following research
questions:

1. Which first-party clients are supported by this
feature?

2. What is the purpose of granting access tokens
for other first-party clients using refresh
tokens?

1.6 Structure of the Paper

The rest of the paper is structured as follows. In
Section 2, we describe the research methodology used
in the study. In Section 3, the results of the study are
presented. Finally, in Section 4, implications of the
findings and a conclusion are presented.

2 METHODOLOGY

The research had two distinct research lines, one for
each research question.

To answer the first research question, a list of 450
first-party clients (Seb8iaan, 2020) was acquired and
supplemented with the client ids (~150) harvested
from Azure AD sign-in logs. After that, the initial set
of tokens for each first-party client using various

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

64

scopes was obtained, and a new set of tokens was
tried to be received with the refresh token. The details
of the experiment are as follows:

1. A new Azure AD tenant with two users (one
admin, one regular user) was provisioned.
Both users were assigned Microsoft E5
license.

2. The initial set of tokens were obtained for each
client using a Jupyter Notebook and the
Microsoft Authentication Library (MSAL) for
Python.

3. ROPC flow was used to authorise each client
for .default, openid, profile, and offline_access
scopes on 40 different resources including:
Microsoft Graph, Microsoft 365 APIs
(Exchange Online, Sharepoint, and Teams),
Azure Resource Manager APIs (Azure
Storage, Vault, Database), and the client
itself. The offline_access scope instructs AS to
issue a refresh token in addition to Id and
access tokens.

4. The results of each authorisation attempt was
logged, including the issued tokens in JSON
format.

5. The refresh tokens obtained in previous steps
were used to request new authorisation via
refresh grant flow for the same combination
of clients, scopes, and resources.

6. The issued access tokens were compared to the
initial set of tokens for each successful refresh
attempt.

To answer the second research question, the
public Microsoft documentation and Github were
studied, and the various Google searches were
conducted. Microsoft was also contacted during the
research, including the findings and comments
regarding the first research question.

3 RESULTS

A subset of the research is available at Github (see
Cobb & Gore, 2022) with interactive demo in form of
a Jupyter Notebook. This allows other researchers to
reproduce and expand upon findings described in the
following sections.

3.1 Family of Client IDs (FOCI) and
Family Refresh Tokens (FRTs)

After running an experiment with ~600 first-party
clients, only 13 clients were found to be supported by
the feature. Later, three additional clients were found

by scraping client ids from various Github sites. All
16 clients are listed in Table 2.

Table 2: List of Azure AD FOCI clients.

Client Client Id
Office 365 Management
(mobile app)

00b41c95-dab0-4487-
9791-b9d2c32c80f2

Azure CLI 04b07795-8ddb-461a-
bbee-02f9e1bf7b46

AZ PowerShell Module 1950a258-227b-4e31-
a9cf-717495945fc2

Teams 1fec8e78-bce4-4aaf-
ab1b-5451cc387264

Windows Search 26a7ee05-5602-4d76-
a7ba-eae8b7b67941

MS MAM Service API 27922004-5251-
4030-b22d-
91ecd9a37ea4

Microsoft Bing Search
for Microsoft Edge

2d7f3606-b07d-41d1-
b9d2-0d0c9296a6e8

Authenticator App 4813382a-8fa7-425e-
ab75-3b753aab3abb

Microsoft Stream
Mobile Native

844cca35-0656-46ce-
b636-13f48b0eecbd

Microsoft Teams –
Device Admin Agent

87749df4-7ccf-48f8-
aa87-704bad0e0e16

OneDrive ab9b8c07-8f02-4f72-
87fa-80105867a763

Microsoft Bing Search cf36b471-5b44-428c-
9ce7-313bf84528de

Office Desktop client d3590ed6-52b3-4102-
aeff-aad2292ab01c

Visual Studio 872cd9fa-d31f-45e0-
9eab-6e460a02d1f1

OneDrive iOS App af124e86-4e96-495a-
b70a-90f90ab96707

Edge ecd6b820-32c2-49b6-
98a6-444530e5a77a

When obtaining the initial set of tokens for the
aforementioned clients, the received JSON responses
had a foci attribute with a value set to “1” (see line 11
in Figure 7). These clients are later referred as FOCI
clients. The foci attribute did not exist for other
clients. The list of known FOCI clients is maintained
in the Github repository associated with this research
(see Cobb & Gore, 2022).

All FOCI clients were so-called public clients
(Microsoft, 2021d) which can only access APIs on
behalf of the user. FOCI clients could exchange their
refresh token for new tokens for any other FOCI
client. The scopes in the newly issued access tokens
were based on the new client and its .default scopes,

Family Matters: Abusing Family Refresh Tokens to Gain Unauthorised Access to Microsoft Cloud Services Exploratory Study of Azure
Active Directory Family of Client IDs

65

i.e., the client and scopes from the original
authorisation did not matter.

Figure 7: Authorisation response for FOCI client.

Searching for “foci” from internet with Google
resulted to only one hit from Microsoft
documentation (Microsoft, 2021e), which revealed
that FOCI refers to Family of Client IDs. No further
explanation was given what is or what is the purpose
of FOCI. However, some error messages returned
during our experiment led to an Github issue from
2016, which explained the purpose (Pangrle, 2016):

“Future server work will allow client IDs to be
grouped on the server side in a way where a RT for
one client ID can be redeemed for a AT and RT for a
different client ID as long as they're in the same
group. This will move us closer to being able to
provide SSO-like functionality between apps without
requiring the broker (or workplace join).”

Microsoft calls refresh tokens of FOCI clients
Family Refresh Tokens (FRTs), which “…can be
used for all clients part of the family” (Thompson,
2020, line 2281). Currently, only one FOCI client
family, “1”, is used (Microsoft, 2021b, line 1171).
This statement is supported by our empirical findings.

3.2 Communication with Microsoft

The findings and recommendations were shared with
Microsoft Security Response Center (MSRC) on
November 23rd 2021 (Cobb, 2021).

In their response on December 14th 2021, MSRC
(2021) confirms that FOCI is a feature of Azure AD
service. Microsoft “..built this feature to match the
existing practice with mobile platforms of sharing
authentication artifacts, like refresh tokens, along the
publisher (rather than application) boundary”. This
implies that FOCI feature is meant for mobile
devices, but as we have observed, it works on all
platforms. Interestingly, Azure AD allready provides
single sign-on (SSO) functionality for Azure AD
joined and registered (a.k.a. workplace joined)
devices with Primary Refresh Token (PRT)
(Microsoft, 2022b). For these devices, FOCI seems to
be a redundant feature.

Moreover, Microsoft did not consider FRTs being
capable for privilege escalation, as the “Family
refresh tokens can only provide the level of access
that the user has”.

4 DISCUSSION

4.1 Implications

4.1.1 Privilege Escalation

The key finding of the study is that Family Refresh
Tokens (FRTs) can be used to acquire tokens for any
FOCI client. The acquired access tokens will have a
defined resource and scope (see lines 2 and 19 in
Figure 3, respectively), depending on the used client.
The scopes of access tokens of each FOCI client were
documented in a scope lookup table (see Figure 8).
All returned scopes, resources, and FOCI clients used
were included. This helps choosing which FOCI
client to use to obtain tokens. For example, if one
needs to get Calendars.ReadWrite scope, one could
use any client listed in Table 3.

Table 3: FOCI clients with Calendars.ReadWrite scope.

Client Client Id
Teams 1fec8e78-bce4-4aaf-

ab1b-5451cc387264
Office desktop client d3590ed6-52b3-4102-

aeff-aad2292ab01c
MAM Service API 27922004-5251-4030-

b22d-91ecd9a37ea4

NIST (2016) defines privilege escalation as the
“..exploitation of a bug or flaw that allows for a higher
privilege level than what would normally be
permitted” which includes the access the application
(client) has. In the context of an OAuth client, the
level of access affored by FRTs exceeds the
authorisation given to any given client. Furthermore,
the OAuth 2.0 Security Best Current Practice
explicitly states (IETF, 2021, p. 39):

“If refresh tokens are issued, those refresh tokens
MUST be bound to the scope and resource servers as
consented by the resource owner. This is to prevent
privilege escalation by the legitimate client and
reduce the impact of refresh token leakage.”

From the client and attacker perspectives, the
level of access provided by FRTs greatly surpasses
what the RO authorised. Therefore, we consider
abusing FRTs as a form of privilege escalation attack.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

66

4.1.2 Token Theft

Refresh tokens can be considered long-term
credentials and, thus, are subject to theft (IETF,
2013). The level of access afforded to an attacker
from a stolen refresh token is determined by the
resources and scopes authorised to the access tokens
obtained using the stolen refresh token. FRTs can be
used to acquire access tokens for any FOCI client,
resource, and scope, and thus, are much more
powerful than ordinary refresh tokens.

Some commonly used attack paths the malicious
actors can use to obtain refresh tokens are (IETF,
2013):

• Steal a previously and legitimately issued
refresh token.

• Obtain refresh token through malicious
authorisation.

These attack paths also apply to FRTs. It is
possible to steal FRTs that were previously issued to
FOCI client. For example, if the attacker
compromises the cache where the tokens are stored
(such as the Windows Web Account Manager),
eavesdrops on network traffic during a grant flow, or
finds them serialised on disk in files (like
~/.Azure/accessTokens.json). We focused our

attention, however, on how an attacker could obtain
FRTs by maliciously authorising a FOCI client.

Device Code Phishing is an attack method where
a malicious actor can lure the victim to authorise
access to a resource using device authorisation grant
flow (see IETF, 2013). If the attacker is using a FOCI
client, the user consent is not required, and the
attacker can use whatever FOCI client is most likely
to socially engineer the victim. After successful
authorisation, the attacker can redeem the returned
FRT for a new access token for a different FOCI
client for the desired scopes.

4.1.3 Single Sign-on

Another likely attack path to family refresh tokens is
to abuse SSO on Azure AD joined devices. The
OAuth 2.0 threat model describes a scenario where an
attacker might obtain a refresh token through
exploiting some mechanism that automatically
authorises client applications without knowledge or
intent from the resource owner (IETF, 2013, section
4.4.1.10.). This is trivially possible on Azure AD
joined devices. Processes that execute in the context
of a logged-in Azure AD user on an Azure AD-joined
Windows device can request a pre-signed cookie
from a COM service (Christensen, 2020). This cookie

Figure 8: Excerpt from Scope Lookup Table.

Family Matters: Abusing Family Refresh Tokens to Gain Unauthorised Access to Microsoft Cloud Services Exploratory Study of Azure
Active Directory Family of Client IDs

67

can then be used to complete an authorisation grant
flow for arbitrary client applications, including FOCI
clients.

Typically, the disadvantage of abusing SSO is that
each time the attacker wants access to some scope that
was not authorised for some stolen access token, the
attacker needs to request a new signed cookie or
otherwise complete an authorisation grant flow again
to obtain a new access token with the desired scopes.
In the case of FRTs, even if the attacker only had the
opportunity to generate a single pre-signed cookie,
the attacker can silently exchange the FRT multiple
times for new access tokens for other FOCI clients
and benefit from their authorised scopes.

4.1.4 Zero Trust

FOCI predates the adoption of the Zero Trust security
model at Microsoft. The guiding principals of Zero
Trust require that client authentication and
authorization are based on all available information,
client access is limited to least privilege for the
shortest duration, and that the client is assumed to be
breached, so the blast radius must be minimized
(Microsoft, 2022c). The current implementation of
FOCI is incompatible with the Zero Trust model.
FRTs allow long-term persistent access and privilege
escalation relative to the client application. As there
is only one “family” of Microsoft first-party client
applications means that the level of access afforded
by FRTs is not segmented according to the needs of
legitimate software that require FOCI to function.

4.1.5 Conditional Access Policies

Conditional access policies still apply to FOCI clients
and FRTs. Conditional access policies that require
multi-factor authentication, however, do not impede
attackers from abusing the legitimately issued FRTs
since refresh token grants are always non-interactive,
and usually inherit the authentication method claims
from the original authorisation grant. Furthermore,
conditional access policies based on trusting the
device are ineffective when a FOCI client is
maliciously authorised by abusing SSO because the
request “originates” from the trusted device.

Any conditional access policies (or other controls)
based purely on the FOCI client identifiers are trivial
to bypass if another FOCI client has consent for the
desired scopes.

Refresh token grants are logged in Azure AD non-
interactive user sign-ins log. Currently, the non-
interactive sign-in log events do not contain details
about the client application to which the refresh token

was originally issued. This prevents detecting
exploitation of FRTs.

4.1.6 Anticompetitive Practices

According to United States Federal Trade
Commission (FTC), antitrust laws “prohibit conduct
by a single firm that unreasonably restrains
competition by creating or maintaining monopoly
position” (FTC, 2022). FTC uses a previous
Microsoft case as an example for monopolisation
(FTC, 2022):

Microsoft was able to use its dominant position in
the operating systems market to exclude other
software developers and prevent computer makers
from installing non-Microsoft browser software to
run with Microsoft's operating system software.

 FOCI establishes a “family” of first-party
Microsoft client applications that are given special
treatment compared to third-party client applications
in Azure AD. Microsoft does not allow third-party
developers to benefit from the FOCI functionality,
i.e., designate their own “family” of client. As such,
it may have provided Microsoft software with a
competitive advantage over third-party software even
if the third-party used Azure AD as the identity
provider.

4.2 Conclusion

In this paper, we reported our findings related to the
non-standard behaviour of certain Azure AD’s first-
party clients’ refresh tokens.

We found answers to both research questions.
First, we found 16 first-party clients supporting these
special type of refresh tokens, called Family Refresh
Tokens (FRTs). Second, we found out that the clients
supporting FRTs were called Family of Client ID
(FOCI) clients, and that the purpose of FRTs is to
provide singe-sign-on experience without a separate
authentication broker for mobile platforms.

Based on our findings, we recommend Microsoft
to publish the list of FOCI clients, so that Azure AD
customers can protect their environments
accordingly. Further, as FOCI is created for mobile
platforms, its usage should be limited to those
platforms.

4.3 Limitations

The used data set of ~600 first-party applications is
not exhaustive, so the study may not have revealed all
FOCI clients. Also, Microsoft is creating new and
removing old FOCI applications (MSRC, 2021).

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

68

When building the scope lookup table, only a
limited number of scopes were used when obtaining
tokens. As such, only the scopes that Azure AD
automatically adds were returned. Therefore, the list
of scopes may not be exhaustive.

4.4 Directions for Future Research

As new the FOCI clients are introduced, the list of
known FOCI clients needs to be updated.

The security implications of FOCI clients and
FRTs requires more research, especially in the mobile
platforms. For instance, studying how FRTs are
stored and accessible in mobile devices would be an
interesting research target.

REFERENCES

Christensen, Lee. (2020). RequestAADRefreshToken.
Retrieved from https://github.com/leechristensen/
RequestAADRefreshToken

Cobb, Ryan (2021). [Nov 23rd 2021. Vulnerability report
to MSRC. VULN-057712, Case Number 68674.].

Cobb, Ryan, & Gore, Tony. (2022). Abusing Family
Refresh Tokens for Unauthorized Access and
Persistence in Azure Active Directory. Retrieved from
https://github.com/secureworks/family-of-client-ids-
research

FTC. (2022). Federal Trade Commission. Monopolization
Defined. Retrieved from https://www.ftc.gov/advice-
guidance/competition-guidance/guide-antitrust-
laws/single-firm-conduct/monopolization-defined

IETF. (2012). The OAuth 2.0 Authorization Framework.
Retrieved from https://datatracker.ietf.org/doc/html/
rfc6749

IETF. (2013). OAuth 2.0 Threat Model and Security
Considerations. Retrieved from https://datatracker.
ietf.org/doc/html/rfc6819

IETF. (2015). JSON Web Token (JWT). Retrieved from
https://datatracker.ietf.org/doc/html/rfc7519

IETF. (2021). OAuth 2.0 Security Best Current Practice.
draft-ietf-oauth-security-topics-19. Retrieved from
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
security-topics

Microsoft. (2021a). Microsoft identity platform refresh
tokens. Retrieved from https://docs.microsoft.com/en-
us/azure/active-directory/develop/refresh-tokens

Microsoft. (2021b). MSAL application.py on Github.
Retrieved from https://github.com/AzureAD/micro
soft-authentication-library-for-python/blob/306277094
8f1961a13767ee85dd7ba664440feb3/msal/application.
py

Microsoft. (2021c). OAuth 2.0 and OpenID Connect
protocols on the Microsoft identity platform. Retrieved
from https://docs.microsoft.com/en-us/azure/active-
directory/develop/active-directory-v2-protocols

Microsoft. (2021d). Public client and confidential client
applications. Retrieved from https://docs.microsoft.
com/en-us/azure/active-directory/develop/msal-client-
applications

Microsoft. (2021e). Sign-in logs in Azure Active Directory
- preview. Retrieved from https://docs.microsoft.com/
en-us/azure/active-directory/reports-monitoring/conce
pt-all-sign-ins

Microsoft. (2021f). What is Azure Active Directory?
Retrieved from https://docs.microsoft.com/en-
us/azure/active-directory/fundamentals/active-
directory-whatis

Microsoft. (2022a). Azure Active Directory Marketplace.
Retrieved from https://azuremarketplace.microsoft.
com/en-GB/marketplace/apps/category/azure-active-
directory-apps

Microsoft. (2022b). What is a Primary Refresh Token?
Retrieved from https://docs.microsoft.com/en-us/
azure/active-directory/devices/concept-primary-
refresh-token

Microsoft. (2022c). Zero Trust Guidance Center. Retrieved
from https://docs.microsoft.com/en-us/security/zero-
trust/

MSRC (2021). [Email response on Dec 14th 2021 to
VULN-057712 Case Number 68674].

NIST. (2016). Computer Security Resource Center.
Glossary: Privilege Escalation. Retrieved from
https://csrc.nist.gov/glossary/term/privilege_escalation

OpenID Foundation. (2022). Welcome to OpenID Connect.
Retrieved from https://openid.net/connect/

Pangrle, Ryan. (2016). Family of Client IDs Support #453.
Retrieved from https://github.com/AzureAD/azure-
activedirectory-library-for-objc/issues/453

Seb8iaan. (2020). Microsoft Owned Enterprise
Applications Overview. Retrieved from https://github.
com/Seb8iaan/Microsoft-Owned-Enterprise-Applicati
ons/blob/main/Microsoft%20Owned%20Enterprise%2
0Applications%20Overview.md

Syynimaa, Nestori. (2020). Introducing a new phishing
technique for compromising Office 365 accounts.
Retrieved from https://o365blog.com/post/phishing/

Syynimaa, Nestori. (2022). Exploring Azure Active
Directory Attack Surface - Enumerating Authentication
Methods with Open-Source Intelligence Tools. Paper
presented at the ICEIS - 24th International Conference
on Enterprise Information Systems.

Thompson, Jason. (2020). MSAL.PS 4.7.1.1. Retrieved
from https://www.powershellgallery.com/packages/
MSAL.PS/4.7.1.1/Content/Microsoft.Identity.Client.4.
7.1%5Cnetcoreapp2.1%5CMicrosoft.Identity.Client.x
ml

Family Matters: Abusing Family Refresh Tokens to Gain Unauthorised Access to Microsoft Cloud Services Exploratory Study of Azure
Active Directory Family of Client IDs

69

