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Abstract: The deep architecture of today’s behemoth “foundation” Artificial Neural Network (ANN) models came to be
not only because we can do that utilizing computational capabilities of the underlying hardware. The direction
of the ANN architecture development was also set at the early stages of ANN research by using algorithms and
models that proved to be effective, however limiting. The use of the small set of simple nonlinearity functions
moved ANN architectures in the direction of accumulating many layers to achieve reasonable approximation
in the emulation of the complex processes. Narrow efficient input domain of the activation functions also
led to computational complexities of adding normalization, regularization and back, de-regularization, de-
normalization layers. Such layers do not add any value to the process emulation and break the topology and
memory integrity of the data. We propose to look back at forgotten shallow and wide ANN architecture to
learn what we can use from then at the current state of technology. In particular, we would like to point at the
Kolmogorov-Arnold theorem that has such implications for ANN architectures that, given a wide choice of
volatile activation functions, even 2-layer ANN of O(n) parameters complexity and Ω(n2) relations complexity
(where n is an input dimensionality), may approximate arbitrary non-linear transformation. We investigate the
behaviour of the emulation of such volatile activation function using gated architecture inspired by the LSTM
and GRU type cells, applied to the feed-forward fully connected ANN, on the financial time series prediction.

1 INTRODUCTION

Current explosive development in Deep Learning
(DL) resulted in the emergence of the huge “founda-
tion” models with tens (Rosset, 2020), or hundreds
of (Brown et al., 2020), and now trillions of billions
of learnable parameters in view (Fedus et al., 2021),
which could be trained in a reasonable time only with
the use of enormous computational resources of the
leading AI-involved companies. Training of the mod-
els came with the millions of dollars price-tag of the
used energy and generated carbon footprint (Strubell
et al., 2019; Lottick et al., 2019), and stochastic
parroting all kinds of the worst human biases com-
ing from the trash Internet content without creating
any world model. The waste of resources is multi-
plied by the race to produce better, often marginally
better results. The closed private control over such
models raise questions of researchers’ inequality and
stiffing and starving alternative directions of the re-
search (Bender et al., 2021; Bommasani et al., 2021).
Despite all the resource waste, these models have
questionable performance in general settings (Schick

and Schütze, 2020), and can be not only not benefi-
cial enough, but also harmful (Blodgett and Madaio,
2021).

These very large DL models, a positive re-
branding of which to the “foundation” models boils
to (Field, 2021), are still based on the few handful
basic Artificial Neural Network (ANN) algorithms
and architectures proposed in the 60s-80s. The sim-
plest and easiest to integrate with algorithms, married
with the accessibility of the computational resources
and data availability, have gotten the most traction.
However, when these brute-force models meet the
next inevitable technical, scale-ability, or cost ceiling,
that event may incentivize both Machine Learning
(ML) researchers and practitioners to revisit the more
complex or complicated to implement algorithms to
overcome limitations and inefficiencies of the current
mainstream models.

Widely used in DL, the foundation algorithms in-
clude perceptron implementation as a linear transfor-
mation of the input data via matrix multiplication and
externally added nonlinearity via simple “activation
function” (Rosenblatt, 1958), back-propagation of the
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objective function derivative to the learnable parame-
ters of the model (Rumelhart et al., 1986), and gradi-
ent descent-based objective function optimization al-
gorithms. Element-wise matrix manipulation layers
sprung to existence the powerful non-sequential ANN
architectures such as Convolutional Neural Networks
(CNN) (LeCun et al., 1998), and Recurrent Neural
Networks (RNN) (Rumelhart et al., 1986). These ar-
chitectures reduced the high computational demands
of the generic ANN in exchange for specialization
limitations. The algorithms mentioned above also put
limitations and specific demands on the ANN archi-
tectures and preparation of the input data. In more
detail, we discuss these limitations and demands in
Section 2.

To overcome limitations and problems associated
with the current ANN architectures, alternative ob-
jective or activation functions (Ramachandran et al.,
2017b; Misra, 2020; Naveen, 2021; Ramachandran
et al., 2017a) were introduced, as well as popular reg-
ularization and generalization layers as Batch Nor-
malization (Ioffe and Szegedy, 2015) and Dropout
(Hinton et al., 2012). However, the stochastic nature
of the latter and their inherent conflict calls for a ques-
tion of whether we are able to come to more intelli-
gible ways to address these problems. Of course, the
scope of the paper is limited, and in the Section 3 we
discuss only a few aspects of the proposed nonlinear-
ity injection on required ANN architecture depth and
data normalization requirements.

In Section 4 we describe the financial time series
data set that was used in computational experiments
of the market index prediction, its partition, normal-
ization schemes, and accuracy metrics. The reason
for choosing a financial time series data set for in-
put to illustrate the proposed nonlinearity algorithm
is that dimensionality of the input and output data in
such problems as market index predictions is low, and
it is easy to visualize how the algorithm works.

In the following Section 5, the set up of the com-
putational experiments are described, and in Section 6
results of the experiments performed on existing and
proposed architectures are compared. Section 7 dis-
cusses results, makes conclusions and proposes future
direction of the research.

2 BASIC MACHINE LEARNING
ALGORITHMS AND RELATED
PROBLEMS

In a general definition, ML task could be viewed as
a finding of the transformation from an inconvenient

to deal with input space, usually of the higher ba-
sis set cardinality, to a more convenient target space,
such that for each element i represented in the input
space the resulting transformation prediction would
be in the neighbourhood of the element’s represen-
tation in the target space: f : X 7→ Y , where for
∀xi ∈ X ,∀yi ∈ Y : f (xi) ∈Nyi .

A widely used mathematical space abstraction is
a linear vector space. In such a case, an ML trans-
formation of the input vector x ∈ X ⊂ Rm from a m-
dimensional linear space into n-dimensional space Y
can be represented as: f : X ⊂Rm 7→ Y ⊂Rn, m > n.
While the target space neighbourhoods and objective
functions are defined via open balls of a radius in
some metric defined over distance function, for ex-
ample Euclidean sum of square errors l = ( f (x)−
y)T ( f (x)−y).

In ANN implementation, such a transformation
can be represented as a composite linear transforma-
tion, which can be expressed via multiplication of the
input vector xi by a matrix Wi, and non-linear trans-
formation by an activation function ai.

z = f (x) = ai ◦ fi . . .a1 ◦ f1(x), ∀x ∈ X ⊂ Rm (1)

where ŷi = fi(xi) = Wixi, and ai, for example
ReLU: zi j = ai(ŷi j) = ŷ+i j .

Out of multiple proposed over the years optimiza-
tion algorithms for finding parameters of the activa-
tion function ai and linear transformation matrices Wi,
variations gradient descent together with back prop-
agation of the objection function derivative base on
the chain rule ∂l

∂xi
= ∑ j

∂l
∂y j

∂y j
∂xi

became predominately
popular.

The above algorithms greatly simplified compu-
tation and efficiently used available hardware. How-
ever, imposed limitations of the structure of the data
and ANN with which they work efficiently. As we can
see above, activation and objective functions must be
differentiable, desirably easy-differentiable, smooth,
monotone, and agree to each other to create low ex-
treme and stable optimization search space (for exam-
ple, that is why cross-entropy is used with softmax or
logistic activation). As a result, the nomenclature of
the practical, general-purpose activation and objective
functions is quite scarce. Separation of the linear and
simple non-linear transformations into distinct layers
also impoverish the simulation ability of the ANN and
naturally pushes architectures into the DL direction to
achieve model complexity via high numbers of layers.

The domain of the input data to the sigmoid ac-
tivation functions, which ensures efficient, or at all
functioning of the learning algorithms, is quite nar-
row. Otherwise, we face either their saturation and
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problem of “vanishing gradients”, or, especially for
RNN - problem of “gradient explosion” (Kanai et al.,
2017). The former problem must be addressed by
the data normalization, and the latter - by regulariza-
tion. Those computational problems and their compu-
tational solutions may lead to higher-level structural
problems of breaking the topology of the data and in-
troducing unneeded data relations. And then, to battle
artificially introduced artefacts by normalization and
regularization layers or parameters, we have to add
more layers like Dropout that de-regularizes data di-
mensions and find “principal” dimensions that better
“explain” data which allows us to get the desired low-
dimensional problem representation.

3 PROPOSED SOLUTION

Instead of battling the self-inflicted wounds described
above, can we try to not introducing them in the first
place? To do that, we may want to step back an
look at the general ML problem formulation, which
is quite close to Hilbert’s 13th mathematical problem
of the coming centuries (Hilbert, 1902), which could
be formulated in a loose general way as: for each al-
gebraic (or continuous in a later formulation) func-
tion f : X ⊂ Rm 7→ R there exists superposition of
the finite number k of functions φi : Yi ⊂ Rni 7→ R
such that f (x) = ∑

k
i=1 φi(yi), where Yi is a subspace

of X : ∀Yi ⊂ X , m≥ ni ≥ 3 (Akashi, 2001).
A. Kolmogorov solved the problem for n≥ 3, and

then his student V. Arnold extended the solution to
n≥ 2 in the following form:

f (x) = f (x1, . . . ,xm) =
2m

∑
q=0

Φq(
m

∑
p=1

φqp(xp)) (2)

where Φq and φqp are continuous R 7→R functions
(Kolmogorov, 1961).

In application to ANN, Kolmogorov-Arnold su-
perposition theorem could be viewed as a represen-
tation of 2-layer ANN (where inputs to inner func-
tions φqp could be viewed as local perception fields
of various scale) with dimension specific nonlineari-
ties built-in into perceptrons (or put before them on
the input channels). The practicality of such ANN,
as a Universal Approximator, was disputed in (Girosi
and Poggio, 1989), in particular, because of the non-
smoothness, hence non-practicality, of the inner φqp
functions. However, these objections were rebutted
in (Kůrková, 1991). In (Pinkus, 1999) φqp activation
functions are even called ”pathological”.

Adopting and utilizing in practice the
Kolmogorov-Arnold view model of ANN may

require bringing back many of the old ML algorithms
that lost their popularity to the mainstream ones.
However, this discussion would be far above the
scope of this paper. Here, we only touch on the topic
of simulating volatile non-smooth, “pathological”
activation functions, which are not prone to non-
normalization saturation, using gated architecture
inspired by the LSTM (Hochreiter and Schmidhuber,
1997) or GRU (Cho et al., 2014) cells. The use
of gated mechanisms in other ANN architectures
was investigated in (van den Oord et al., 2016)
for image processing CNNs, and in (Kalchbrenner
et al., 2016) for one-dimensional CNN applied to
machine translation. As an autonomous activation
function, such gated cells were proposed to be used
in (Dauphin and Grangier, 2016) for introducing
stochastic nonlinearity into Belief Networks by other
specialized “expert” ANNs and dubbed as Gated
Linear Units (GLU) in (Dauphin et al., 2016).

The proposed solution can be seen as a part of
the Gated Linear Unit (GLU) family of activations.
Using Directed Acyclic Graph (DAG) ANN, one can
implement a cell (let us call it Kolmogorov’s Gate or
KGate for short) of perceptrons with logistic sigmoid
activations that would work as allow or do not allow
gates at saturation domain, or multiplicative scaling of
the main trunk of ANN, in the non-saturation domain
of input values. Perceptrons with hyperbolic tangent
activation would work as update/forget, or the mean
shift gates on the main ANN trunk, working together
with the linear input transformation through the mul-
tiplication gate, Formula 3.

zi = (Wixi +(τ◦Wtix0)� (Waix0))�σ◦Wsix0,

∀x0 ∈ X0 ⊂ Rm, ∀xi ∈ Xi ⊂ Rmi

(3)

where x0 is an ANN input, xi is an input of the
ith layer, Wixi is the linear transformation of the main
trunk, Wtix0, Waix0, Wsix0 are linear transformations
inside the KGate cell, and τ, σ are hyperbolic tan-
gent and logistic sigmoid activation functions, respec-
tively.

In a way, KGate functioning can be seen similar
to a multi-layer ANN with ReLU activations. A sin-
gle layer perceptron without nonlinearity activation
functions (or, as a matter of fact, multi-layer ANN
with no activations, which collapses into a single-
layer perceptron just with other coefficients in the lin-
ear transformation matrix) has a static transformation
matrix. Addition of the ReLU activation can be seen
not only as an addition of another composite function:
z = a◦Wx. It also can be seen as family of the linear
transformation matrices, some of them having zero
rows: z = {Wi}x. The choice of which matrix of the
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family to use for the transformation is made in a table
function manner depending on the input. It could be
easily shown that multi-layer ANN with ReLU acti-
vations can also be represented as a single perceptron
with the family of transformation matrices, each of
which differs from others in at least one coefficient.
A particular transformation matrix from the family is
chosen at the moment of the test “computation”.

In a way, one can envision ReLU ANN nonlin-
earity as a “pseudo-quantum” data point cloud func-
tion, non-rigorously speaking, of course. Such a func-
tion would be still computationally deterministic, lo-
cally piece-wise continuous, smooth and monotone
(because of its local linearity), but globally not con-
tinuous and not-predictable on the intuition level until
a particular input data point is chosen to compute.

Similarly, while DAG ANN with KGate on the
side of the main ANN trunk is continuous and dif-
ferentiable on each layer, and thus, back-propagation
and gradient descent algorithms still work, the non-
linearities introduced by the gates into the main ANN
trunk may manifest themselves as highly volatile
cloud functions, Figure 3.

Another aspect of the building Kolmogorov style
ANN is selecting (or evolving) those “principal” neu-
rons that would best benefit the process approxima-
tion by pruning secondary noise neurons. The follow-
ing explicit approach is not part of the KGate solution,
which prunes connection implicitly, but is a perspec-
tive direction of the method hybridization.

Following Ivakhnenko (Ivakhnenko, 1971), the
multi-layer neural-network models could be grown by
the Group Method of Data Handling (GMDH) using
a neuron activation function defined by a short-term
polynomial. The GMDH is capable of generating
new layers capable of predicting new data most ac-
curately. The GMDH generates new neurons to be
fitted to the training data in each layer. A given num-
ber of the best-fitted neurons are selected to the next
layer. The number of layers increases whilst the spe-
cial, so-called exterior criteria have a tendency to de-
crease. The use of such selection criteria enables the
GMDH to efficiently avoid the network over-fitting,
as described in (Farlow, 1981; Sashegyi and Madala,
1994). In particular, ML methods have been effi-
ciently used to solve problems such as detection of
abnormal patterns (Nyah et al., 2016b; Nyah et al.,
2016a) and evaluation of brain development (Jakaite
et al., 2011; Schetinin et al., 2011). The reliable re-
sults have been achieved in prediction of trauma sur-
vival (Jakaite et al., 2010; Schetinin et al., 2018b;
Schetinin et al., 2018a), air-traffic collision avoid-
ance (Schetinin et al., 2018c), as well as in detec-
tion of bone pathology (Jakaite et al., 2021; Akter and

Jakaite, 2019).
Yet another Universal Approximation ANN ar-

chitecture was proposed at the end of the 80s - Ra-
dial Basis Functions (RBF) ANN (Broomhead and
Lowe, 1988). It could be viewed as a “soft gate”
which activates the transformation matrix coefficients
in Gaussian proportion to the proximity of the test
signal to the training signals this transformation ma-
trix coefficients were trained at (Park and Sandberg,
1991). An apparent drawback of the architecture
is its “fluffiness” due to the non-reuse of the neu-
rons for the “missed” test-time data input, making the
RBF ANNs less dense or compact compared to Deep
ReLU ANNs. Still, RBF is a viable architecture and
is used in niche applications (Kurkin et al., 2018; Be-
heim et al., 2004).

4 DATA SET

For a first pass of testing a new ANN cell, a sim-
ple transformation was used - financial series 1-day
forecast based on a short period (2-weeks) prior data.
Such a low dimensional transformation from the 10-
dimensional input space into 1-dimensional output
space and relatively small and easy to peer in ANN
would allow us to see what kind of nonlinearity the
KGate cell creates.

In particular, data from the Warsaw Stock Ex-
change during the crisis during 2007− 2009 were
chosen due to their volatility, hence, topological in-
tegrity violation upon normalization. The data rep-
resent the daily rate of return on the main index
WIG. Data between January 18th 2007 and August
30th 2009 were used, which counts for 655 obser-
vations of the daily returns downloaded from https:
//tradingeconomics.com/poland/stock-market. De-
tailed statistical analysis of the data set is out of the
scope of the paper; however, general intuition about
this strongly non-stationary time series can be ob-
tained from Figure 2. The data set has clear upward
trends at the beginning (circa 140 observations), at the
end (approximately 120 observations), and a precipi-
tous downward trend in the middle, with a minimum
value 21274, maximum of 67569, mean at 44441, and
standard deviation 13632.

The data were divided into 13 subsets, each con-
sisting of 50 observations used for the training of the
models. Each ”observation” was comprised of 10
days values, and the output ”label” value was the 11th

day. Each following observation starts with a 1 day
shift. The number of the training sessions is first 11,
and the number of observations in the session (40). It
was defined in such a way that none of the training
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data (including the label day) would touch the follow-
ing test session data. The number of the test sessions
is last 12. Each session’s 50 observations were used
as test data. Models’ parameters were reset for each
session, and training was done anew.

As an accuracy metrics, we use the Mean Ab-
solute Percentage Error (MAPE) defined as follows:
MAPE = 1

n ∑
n
t=1 |

At−Ft
At
|, and Root Mean Square Er-

ror (RMSE): RMSE = ( 1
n ∑

n
t=1 (At −Ft)

2)
1
2 , where At

and Ft are the actual and predicted indexes at a given
day t, respectively, and n is the number of test obser-
vations.

5 EXPERIMENTS

The experiments were run on the Linux (Ubuntu
20.04.3 LTS) operating system with two dual Tesla
K80 GPUs (with 2× 12GB GDDR5 memory each)
and one QuadroPro K6000 (with 12GB GDDR5
memory, as well), X299 chipset motherboard, 256 GB
DDR4 RAM, and i9-10900X CPU. Experiments were
run using MATLAB 2021b.

Experiments were done on MATLAB with Deep
Learning Toolbox. ANN models were trained using
the “adam” learning algorithm with 0.1 initial learn-
ing coefficient, mini-batch size 32, and 1000 epochs.

In comparison to the KGate ANN model, Fig-
ure 1, eight other ANN architectures were tested, and
results presented here: auto-regression (AR) ANNs
with no activation function, with ReLU activations,
and with hyperbolic tangent (Tanh) activations, Long-
Short Term Memory (LSTM) trained on the single,
whole 40 data points sequence, and Sequence-to-
sequence LSTM and Gated Recurrent Unit (GRU),
trained in a manner similar to other fully-connected
ANNs - on 40 sequences consisted of 10 data points.
The author’s GMDH (Ciemny Marcin, 2022), and
BRF ANN implementations were also compared.

Figure 1: KGate ANN schema.

All feed-forward fully-connected ANNs have 2
Kolmogorov ANN style hidden layers with n+1 neu-
rons in the first and 2n + 1 neurons in the second
layer. LSTM networks also have 2 LSTM layers
with the same number of hidden state neurons. All
ANNs have 1-dimensional regression output with the
sum of quadratic errors cost function. KGate cells,
in their linear transformation layers, have also n+ 1,
and 2n + 1 neurons in the first and second cell, re-
spectively. The code for all models and training
and test data are available for download at GitHub:
https://github.com/Selitskiy/ICEIS2022.

6 RESULTS

Two sets of computational experiments were con-
ducted on all 9 models: with min-max normalization
and without any normalization.

Table 1: Error of the WSE prediction for 2-layers AR ANN,
ReLU and Tanh ANN models on normalized data.

Error AR ANN ANN ReLU ANN Tanh
MAPE 0.01790 0.02505 0.02380
RMSE 1056.57 1436.16 1383.89

Table 2: Error of the WSE prediction for Sequential LSTM,
Sequential GRU and LSTM ANN models on normalized
data.

Error LSTM Seq. GRU Seq, LSTM
MAPE 0.02339 0.02502 0.08641
RMSE 1241.91 1387.42 4633.01

Table 3: Error of the WSE prediction for RBF, GMDH and
KGate ANN models on normalized data.

Error RBF GMDH KGate
MAPE 0.02538 0.01729 0.02649
RMSE 1559.84 953.44 1518.50

The accuracy results for all 9 models for the min-
max normalized input data are presented in Table 1,
Table 2 and Table 3. The accuracy for not normalized
input data are shown in Table 4, Table 5 and Table 6.
For experiments with normalized data, the majority
of the models demonstrated similar accuracy-wise re-
sults, with AR ANN and GMDH leading, especially
the latter one, and sequence-to-value LSTM notice-
ably lagging behind the sequence-to-sequence LSTM
or GRU. As expected, for non-normalized data ex-
periments, ANNs with saturable activations such as
Tanh, Sigmoid and containing them LSTM and GRU
failed to train. RBF ANN failed to produce numeric
results, and GMDH had convergence issues with huge
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Table 4: Error of the WSE prediction for 2-layers AR ANN,
ReLU and Tanh ANN models on non-normalized data.

Error AR ANN ANN ReLU ANN Tanh
MAPE 0.01950 0.02360 0.99425
RMSE 1047.23 1411.43 46239.9

Table 5: Error of the WSE prediction for 2-layers AR ANN,
ReLU and Tanh ANN models on non-normalized data.

Error LSTM Seq. GRU Seq, LSTM
MAPE 0.99495 0.99414 0.99420
RMSE 46232.6 46235.43 46653.96

error spikes, apparently because of its polynomial na-
ture, see Figure 2. AR ANN still performed the best
but noticeably dropped its accuracy compared to nor-
malized data. Only ReLU ANN and KGate improved
their performance on non-normalized data, the latter
beating the firmer.

Figure 2: Error classes of the WSE prediction of the models
on non-normalized data. Left: AR, ReLU, KGate; Center:
Tanh, Sigmoid, LSTM, GRU; Right: GMDH.

For KGate ANN experiments, sessions 8 and 11
demonstrated the highest and smallest accumulated
errors, respectively. For session 11, activations on the
main trunk of ANN generated by the 1st KGate, per
channels 1−9 are shown in Figure 3.

Channels 2,4,8,10, forming a Null-space (being
mapped to 0), are effectively pruned out of the ANN.
Figure 4 demonstrates which input channels were im-
plicitly pruned out from the test data processing at the
first and second KGate, depending on the training data
of the session.

7 DISCUSSION, CONCLUSIONS,
AND FURTHER RESEARCH

The novelty of the KGate activation function cell is
in the original schema of the combination of the sig-
moid, hyperbolic tangent and linear transformations,
targeting the use in the non-data-normalizing ANNs,
as well as the use in the Kolmogorov style ANN de-
manding volatile “pathological” activation functions,
and in the self-pruning evolving ANNs.

We can see that KGate ANN performed well in
terms of the MAPE and RMSE accuracy metrics for
WSE prediction in the chosen time interval, espe-
cially for non-normalized input data. The aim of cor-
rectly handling non-normalized data is achieved, es-

Table 6: Error of the WSE prediction for Sequential LSTM,
LSTM and KGate ANN models on normalized data.

Error RBF GMDH KGate
MAPE - 0.37000 0.02272
RMSE - 38296.9 1304.12

Figure 3: Activations generated by the 1st KGate by chan-
nels 1− 9 for non-normalized input WSE data for session
11, all observations.

pecially on the backdrop of the failure of the RNN and
ANN with saturable activation functions. However,
even in financial crisis conditions, the task of 1-day
financial series prediction is not complex enough to
make far-reaching conclusions. The basic AR ANN
performed quite similarly still better; therefore, the
more complex tasks in the time-series domain will
be the perspective research. Also, not only regres-
sion prediction but other tasks as classification and in
other ML application domains should widen the cur-
rent limitations of this study. Those tasks on which
shallow regression ANNs and deep ReLU ANN fail
will be good perspective benchmarks for the KGate
architecture evaluation.

On a more fundamental level, it could be seen that
KGate is capable of providing highly volatile cloud
activation functionality and quasi-linear or binary al-
low/not allow functionality, depending on the data.
The former quality has valuable potential for use in
the Kolmogorov style ANNs that could be an alterna-
tive to the current huge “foundation” DL models and
is a direction for further research. The latter, implicit
pruning capability of the ANN connection is useful
for the advice of the explicit pruning in the evolu-
tionary ANN architectures, which also help to reduce
the size of the ANN models, and experimenting with
KGate us in such architectures as a prospective theme
for the further research as well.
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Figure 4: Non-zero channels generated by the KGates per
session. Top - by the 1st , bottom - by the 2nd KGate.
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