
Teaching BDD in Active Learning Environments: A Multi-study Analysis

Nicolas Nascimento a, Alan Santos b, Afonso Sales c and Rafael Chanin d

Polytechnical School, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Porto Alegre, Brazil

Keywords: Software Engineering Education, Behavior-Driven Development, Agile Development, Active Learning.

Abstract: Software development practices to enhance software quality and help teams better develop collaboratively
have received attention by the academic community. Among these techniques is Behavior-Driven Develop-
ment (BDD), a development approach which proposes software to be developed focusing primarily on its
expected behavior. Teaching-wise, introducing BDD on software engineering classes and/or training courses
for software developers has become important. In this context, this study presents a body of knowledge on the
impacts of teaching BDD in active learning environments (ALE). To achieve this, we have triangulated data
from four data sources: (i) a systematic literature review; (ii) an expert panel with active-learning experts, (iii)
a survey with participants in a software development course which teaches through active learning, and (iv) a
case study on the effects of teaching and using BDD in an ALE. This study results are (i) the-state-of-the-art
literature on this topic, (ii) an assessment of benefits and challenges of BDD in ALEs, and (iii) a set of best
practices when teaching BDD in ALEs. We concluded that BDD has more positive than negative outcomes
and we present a body of knowledge regarding BDD in ALEs.

1 INTRODUCTION

The omnipresence of software is undeniable (Li et al.,
2015) and many modern services and business would
not be able to operate without software solutions.
This trend increases the need for software develop-
ers and development practices which enhance soft-
ware quality and help teams better develop collabo-
ratively. Among modern software development tech-
niques, is Behavior-Driven Development (BDD), a
development method which proposes software to be
develop based on its expected behavior (North et al.,
2006). BDD improves development by both ensuring
software developed is reliable and is aligned with the
needs of the customer (Smart, 2014). Consequently,
the software engineering education scenario is pre-
sented with the challenge to adapt quickly and to bet-
ter prepare students. To address this, active learn-
ing methodologies, such as Challenge-Based Learn-
ing (CBL), are drawing attention due to reports of im-
proved learning (Deslauriers et al., 2019) and student
engagement (Santos et al., 2015; Scharff et al., 2009;
Ahmad and Gestwicki, 2013; Matos and Grasser,

a https://orcid.org/0000-0002-0080-8822
b https://orcid.org/0000-0001-8323-3472
c https://orcid.org/0000-0001-6962-3706
d https://orcid.org/0000-0002-6293-7419

2010).
This paper presents a multi-study of teaching

BDD in active learning environments (ALEs) aim-
ing at understanding the impacts of teaching BDD
in ALEs. To achieve this, we have used triangula-
tion (Creswell and Creswell, 2017), crossing the re-
sults of four previous studies: (i) a Systematic Lit-
erature Review, (ii) an Expert Panel, (iii) a Survey,
and (iv) a Case Study. We concluded that BDD has
more positive than negative outcomes and we present
a body of knowledge regarding BDD in ALEs.

2 BACKGROUND

Behavior-Driven Development is a software develop-
ment practice, proposed by Dan North (North et al.,
2006) and derived from Test-Driven Development
(TDD) (Beck, 2003), which aims at helping software
development teams to build software which follows
the needs of the customer (Smart, 2014). As a de-
velopment methodology, BDD emphasizes test cases
which are written in a common language (Evans,
2004). The specification of these test cases revolves
around “BDD scenarios”. These scenarios are cre-
ated from concrete examples of a system’s user sto-
ries. User stories are a lightweight specification

268
Nascimento, N., Santos, A., Sales, A. and Chanin, R.
Teaching BDD in Active Learning Environments: A Multi-study Analysis.
DOI: 10.5220/0011057300003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 2, pages 268-275
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



method commonly used in agile software develop-
ment. BDD Scenarios are used to further enhance the
descriptive capabilities of these user stories.

3 METHODOLOGY

This paper presents an investigation regarding the ap-
plication of BDD when teaching in active learning en-
vironments. To achieve this main objective, a series
of steps were undertaken.

3.1 Research Question

The main research question addressed by this study
is:

“What are the impacts of using Behavior-Driven
Development when teaching in active learning envi-
ronments?”.

As a way to facilitate answering this broad re-
search question, we have split it in subquestions.
These questions are:

• (RQ1) “What tools, models, methodologies, frame-
works and software are used when teaching BDD?”

• (RQ2) “What are the benefits and challenges of using
BDD in active learning environments?”

• (RQ3) “Are there any best practices when teaching
BDD?”

Each research question focuses on a specific as-
pect of the topic. RQ1 aims at understanding the tools,
models, methodologies and frameworks which are the
state-of-the-art when teaching BDD. After this, RQ2
focuses on active learning environments and the ef-
fects of using BDD in these environments. Finally,
RQ3 aims at listing practices which are shown to pro-
duce good results when teaching BDD.

3.2 Research Protocol

As an initial activity, we have sought to understand
the state-of-the-art research regarding practices, tools,
methods and frameworks which are current being
used both in the industry and in the academia when
teaching BDD. Following this, we have conducted an
expert panel research with active learning experts to
assess potential benefits and challenges of teaching
BDD in these environments. Complementarily, we
have performed a survey research to investigate influ-
encing factors when teaching in active learning en-
vironments. Finally, to actively extract benefits and
challenges of BDD in active learning environments,
we have performed a case study research.

After having collected data and findings from all
these studies, we triangulated the results. According
to Creswell (Creswell and Creswell, 2017), triangula-
tion can be used as method of crossing results from
different data sources, such as qualitative and quanti-
tative. Furthermore, data from one source can be used
to further inform results from another source, mean-
ing that results can be analyzed seeking convergence
and divergences. This triangulation process allowed
us to reason about our research questions.

4 SUB-STUDIES

4.1 State-of-the-Art

In order to have a proper understanding of the state-
of-the-art literature regarding the topic of teaching
BDD, we have chosen to perform a systematic litera-
ture review (SLR). According to standard guidelines
for performing this research method (Keele et al.,
2007), a SLR is suited for acquiring theoretical back-
ground about a certain topic. This, then, enables other
related research activities to be conducted. In addi-
tion, this type of review allows for the identification
of benefits and challenges being reported in other re-
search, which can also further inform decisions re-
garding research activities.

Given that this work focuses on the triangulation
process and due to page limitation, we have decided
to omit the SLR research design and present the pa-
pers found only. The three studies which were se-
lected after conducting the complete SLR processes
were Mathies et al. (Matthies et al., 2017), Hoffman et
al. (Hoffmann et al., 2014) and Simpson et al. (Simp-
son and Storer, 2017).A summary table of these stud-
ies is presented in Table 1 (It is worth mentioning that
the final row in the table is our own work).

Our preliminary results indicate that there is a gap
of research in this topic, as very few academia studies
specifically address the teaching of BDD.

4.2 Expert Panel

This subsection presents a summary of the results ob-
tained from an expert panel study (Nascimento et al.,
2020b) performed with active-learning environments
experts. this summary is brief as the the focus of this
paper is the triangulation of results and due to page
limitations.

Expert panel research enables to researcher to
capture expert judgment (Rosqvist et al., 2003) and
help improving hypothesis generated. Moreover, the
opinion of experts is a valuable research artefact

Teaching BDD in Active Learning Environments: A Multi-study Analysis

269



in the Software Engineering (SE) research commu-
nity (Dyba, 2000).

These experts were from four different countries
and had proven experience teaching in active learning
environments. The study aimed at obtaining insights
regarding potential benefits and challenges of using
BDD in active learning environments. In total, 28 ex-
perts participated in the study.

Drawing on the results obtained from this study,
we were able to extract the following categories of
potential benefits and challenges reported the experts:

1. Benefits
(a) Requirements - i.e., elicitation, specification

and validation;
(b) User Comprehension - i.e., the understanding

of the needs of user of the application;
(c) Project - i.e., project management;
(d) Implementation - i.e., coding and documenting

the application;
(e) Communication - i.e., communication among

team members;
(f) Others - i.e., other subjects.

2. Challenges
(a) BDD - i.e., processes of BDD;
(b) Culture - i.e., test-driven development mindset;
(c) Requirements - i.e., elicitation, specification

and validation;
(d) Team Engagement - i.e., the team’s willingness

to embrace BDD;
(e) Time - i.e., project duration and time con-

straints;
(f) Others - i.e., other subjects.

These results seem to indicate the main categories
of benefits and challenges that teaching BDD should
present. Following this study, we have conducted a
survey with students in an active learning environ-
ment.

4.3 Survey

This subsection presents a summary of an investiga-
tion of influencing factors when teaching MAD in an
active learning environment (ALE) using Challenge
based learning (CBL) (Nascimento et al., 2019). We
conducted this study to better understand influencing
factors in ALEs. The investigation was performed
through survey on a two-year course that teaches
MAD to undergraduate students. Survey is appropri-
ate when the focus of interest is on what is happen-
ing or how and why something is happening and also
applies when it is not possible to control dependent

and independent variables (Babbie, 2005). The fac-
tors investigated were previous working experience,
team size and project time duration and their influ-
ence on student’s perception about their projects. Af-
ter discussing and exploring the results, we were able
to draw relevant insights.

Focusing on the results obtained from the study
due to page limitations, our preliminary results
demonstrated indicatives that there is an assessment
difference among students and instructors’ percep-
tions. We have found at least 1 point evaluation differ-
ence (in a scale of 5 points). Students self-assessment
tends to result in lower rating. Also, it was shown
that project’s duration, teams’ composition (regarding
previous work experience) and teams size play impor-
tant roles in the students’ individual perceptions. Fol-
lowing this study, we have decided to conduct a case
study in an ALE.

4.4 Case Study

This subsection presents a summary of the results
of a case study we have conducted in a mobile
application development course (Nascimento et al.,
2020a). The course teaches students using an ac-
tive learning framework, Challenge Based Learning
(CBL) (Nichols et al., 2016). Our goal was to inves-
tigate how BDD impacts agile software development
teams in active learning environments.

As a research method, case studies can be used
for software engineering research, as they allow the
understanding of a certain phenomenon in its natu-
ral occurring context (Runeson and Höst, 2009) and
are suited to evaluate a method and tool (Kitchenham
et al., 1995).

Focusing on the main results obtained, we present
the positive aspects reported in Table 2 and the nega-
tive aspects in Table 3.

Overall, the results indicate that BDD can provide
more benefits than harms to the development lifecy-
cle. However, further studies need to be performed
to address whether more experienced developers can
further improve their software development lifecycle
by using BDD.

5 DISCUSSION

In this section, we will further reason about the re-
search questions of this study and consolidate the con-
tributions of the work. This will be performed based
on each one of our research questions and using the
results obtained in our studies and additional litera-
ture. To address these research questions, we applied

CSEDU 2022 - 14th International Conference on Computer Supported Education

270



Table 1: Summary of results from the studies (including case study).

Study Tools(s) Learning framework Agile framework Dev. practice
Matthies (2017) (Matthies et al., 2017) Prof. CI. - Custom TDD
Hoffman (2014) (Hoffmann et al., 2014) Robot, Selenium and Coverage Problem-based learning Scrum ATDD
Simpson (2017) (Simpson and Storer, 2017) - Flipped-classroom Scrum TDD
Author (2020) (Nascimento et al., 2020a) Quick & Nimble and Xcode Challenge-based learning Scrum BDD

triangulation, as proposed by Creswell (Creswell and
Creswell, 2017).

In this sense, we have collected data from four
sources types: our SLR (4.1), Expert Panel (4.2), Sur-
vey (4.3), and Case Study (4.4). It is important to no-
tice that the participants in each study were different
in order to mitigate the research bias.

5.1 (RQ1) What Tools, Models,
Methodologies, Frameworks and
Software Are Used When Teaching
BDD?

In terms of tooling used to teach BDD, we are able
to extract knowledge based on our findings from our
SLR and later added our own set of tools, which were
applied in the case study.

In order to enhance our analysis, we have classi-
fied our case study following the same summary table
presented in our SLR. The updated table is presented
in Table 1.

Initially, we have found that there is a lack of
studies which address the specific topic of teaching
BDD in active learning environments. Using the qual-
ity guidelines, we specified during the SLR, we have
only found 3 (three) studies which intersected with
proposed research questions. Even though none of
the studies directly address the usage of BDD in ac-
tive learning environments, they provide some good
indicatives.

In terms of tools, Prof CI., reported by Mathies et
al. (Matthies et al., 2017), and the Robot framework
(which was used alongside other tools, reported by
Hoffman et al. (Hoffmann et al., 2014)), were the only
tools found in our SLR.

Prof CI. is a continuous integration tool that aids
the teaching and development process. It is reported
as a successful tool to teach TDD to undergraduate
students. As TDD practices can be incorporated in the
BDD development lifecycle, during the implementa-
tion of low-level specifications (Smart, 2014), the tool
is something which can be adapted and used for teach-
ing some aspects of BDD, specially during the imple-
mentation phase.

The Robot framework is another tool which is re-
ported by the literature. It helped in the develop-
ment of a real-time system and it was used along-

side Problem Based Learning (PBL), an active learn-
ing framework, and Acceptance-Test Driven Devel-
opment (ATDD), a similar development methodology
which is similar to BDD. This study is particularly in-
teresting as it provides a framework to be used when
teaching a methodology very similar to BDD.

As the only tools which had reports of being
used in active learning environments, both Robot and
Prof. CI focus primarily in the implementation phase.
This result is aligned findings from Solis (Solis and
Wang, 2011) et al., who found that most BDD tools
had the implementation phase as their main objective.

Specifically during our case study planning, we
used a set of tools (i.e., Quick & Nimble and Xcode)
which also were meant to be used during the im-
plementation phase. Our reasoning revolved around
adapting a set of tools which would be easy to mas-
ter and that had sufficient material to be studied by
our study participants. In addition, these tools were
also chosen due to natural fit in the learning environ-
ment of the case study, i.e., development for Apple
platforms. The tools were successfully applied in our
case study and thus expand the scientific reports about
what can be used to teach BDD.

As a summary for tools, although there are others
that can be used to develop software using BDD, such
as Jbehave1, it seems that there is a lack in reports for
these tools in the education scenario.

Regarding methodologies, two of the studies we
analysed, i.e., (Simpson and Storer, 2017; Hoffmann
et al., 2014), applied BDD in an agile development
context. Furthermore, the case study we performed
had agile development during execution. This indi-
cates that teaching of BDD is suited to be performed
in an agile context. This can be linked to both the
increase in agile software development relevance, as
it improves the success chance of a project (Murphy
et al., 2013; Serrador and Pinto, 2015), and BDD’s
natural fit in agile development contexts (North et al.,
2006; Smart, 2014).

5.2 (RQ2) What Are the Benefits and
Challenges of using BDD in Active
Learning Environments?

To answer the second research question, we have de-

1https://jbehave.org/

Teaching BDD in Active Learning Environments: A Multi-study Analysis

271



cided to use the results from our case study primarily.
This is due to the low number (3) of papers found in
our SLR.

To enhance our analysis, we have crossed results
from the case study with our expert panel results re-
garding expectations and some insightful data from
the papers we found in our SLR. As the proposed re-
search question has a natural duality associated to it,
we decided to reason about each one its foci sepa-
rately.

5.2.1 Benefits

As an initial step, we tagged the benefits reported by
the participants in our case study using the categories
reported by the experts during the expert panel study.
As a reminder, these categories were generated using
Card Sorting, a method used in the expert panel 4.2,
and were requirements, user comprehension, project,
implementation, communication and others. The top
five results are presented in Table 2.

Table 2: Pos. aspects of BDD (with categories).

Aspect Occ. Category
Better comprehension of
feature under development

4 Requirements

Team alignment 3 Requirements; Communication
Eased task division 3 Project
Correct (functional) devel-
opment

3 Implementation

Right (client expectations)
development

3 User comprehension

After adding the categories, we notice that most
reports from participants are aligned with the expec-
tations from the experts, which indicates that these
expectations were reasonable. Following this, we de-
cided group the aspects in the categories and sum the
number of occurrences of each category. Data from
this table should allow us to better infer the benefits
of BDD.

After doing this, we have noticed that BDD can be
beneficial when learning to develop software in active
learning environments in many aspects. To enhance
clarity and reason about each category of benefits, we
present as follows a short statement of a BDD benefit
followed by a short explained about why this appears
to be the case.

1. BDD Benefits Project Management - There are
many risks involved in software development.
Proccacino et al. (Procaccino et al., 2002) state
that poor requirements, lack of management sup-
port and customers who are unavailable can have
negative impacts in a project. Moreover, when
training software developers, this can get even
worse due to the lack of experience from students.

In this context, the processes promoted by BDD,
such as the creation of scenarios and the definition
of a ubiquitous language, are probably linked to
the results we found in our case study of improved
project management practices, specially regarding
requirements, which play an important role in a
software project (Procaccino et al., 2002).

2. BDD Benefits Communication - Communica-
tion is a success factor in software projects and the
impacts of modern development practices, such
as Scrum and XP, in it have been to positive out-
comes (Pikkarainen et al., 2008).
BDD enhances communication by more than one
mean. The ubiquitous language, which lowers the
barrier among project stakeholders, an active par-
ticipation of the client, which improves communi-
cation between client and the development team,
and the creation of scenarios, which can drive the
implementation are all reported as beneficial by
Smart (Smart, 2014) et al. and may explain why
communication has been a key benefit in our case
study results.

3. BDD Benefits Requirements - A key indica-
tive of a software project’s success is the level
to which it satisfies the stakeholders’ expecta-
tions (Nuseibeh and Easterbrook, 2000). This in-
dicative is tightly associated with an effective re-
quirements engineering phase.
Through our studies, we were able to see that
BDD promoted better management of require-
ments both as an expectation from the experts,
which was reported in our expert panel, and actual
results, which were reported by the participants in
our case study.
This may be a result from the relatively easiness in
the usage of scenarios, which are plain-text real-
world examples of a user story. This may be a
reason as one the main problems regarding re-
quirements engineering is the difficulty in using
the available tools (Memon et al., 2010).

4. BDD Benefits Implementation - A poorly imple-
mented software is a problem where the devel-
oped code is faulty, unreliable, difficult to main-
tain, difficult to modify, among other flaws. Soft-
ware with this characteristics has been reported to
cause numerous problems, ranging from financial
fees to human deaths (Planning, 2002; Krasner,
2018). In the education scenario, these problems
also happen but tend to have mild consequences
and learning is a process where mistakes are ex-
pected and even encouraged (Lundquist, 1999;
Fischer et al., 2006).
In the context of our case study, it appears that

CSEDU 2022 - 14th International Conference on Computer Supported Education

272



BDD provides enough tooling for students so that
they are able to implement code properly (i.e.,
functional), faster and even maintaining a test pol-
icy. This indicates that a positive outcome in im-
plementation is a possibility when using BDD in
the education scenario.

5. BDD Benefits User Comprehension - Among
its principles, BDD promotes high levels of
interaction between stakeholders in a software
project (Smart, 2014), which includes the end-
user. Moreover, interactions with the end-user are
not exclusive to BDD and can even be used to de-
velop real-world applications (Buller et al., 2013;
Nilsson, 2010).
Results from our case study suggest that there is
an increase in user-comprehension, where the ex-
pectations of the end-users were met by the final
software product. This result is an indicative as
many of the products developed by participants in
our case study had no external end-users.

5.2.2 Challenges

Applying the same principle as the benefits, we
tagged the challenges reported by the participants
in our case study using the categories reported by
the experts during the expert panel study. As a re-
minder, these categories were generated using Card
Sorting, a method explained in the expert panel (4.2),
and were BDD, Culture, Requirements, Team Engage-
ment, Time and Others. The top five results are pre-
sented in Table 3.

Table 3: Neg. aspects aspects of BDD (with categories).

Aspect Occ. Category

Tests writing 8 BDD; Culture

Test-driven development 8 BDD; Culture

Scenario creation 4 BDD

Initial process 3 Culture; Requirements

Reduction in development time 3 Time

Following this, we proceeded to group the aspects
in the categories reported by the experts and sum the
number of occurrences of each category. Data from
this table should allow us to better infer the challenges
of BDD.

This indicated that BDD can be challenging when
learning to develop software in active learning envi-
ronments in numerous aspects.

Continuing to follow the methodology applied for
the benefits, to enhance clarity and reason about each
category of benefits, we present as follows a short
statement of a BDD challenge followed by a short ex-
planation about why this appears to be the case.

1. BDD Processes May Be Challenging - As BDD
promotes the usage of processes throughout the
software development lifecycle (Smart, 2014), it
can be challenging for the development team.
In the education scenario, this challenge is prob-
ably higher given that most students do not pos-
sess industry experience. In addition to this,
even though it is expected that student fail dur-
ing the learning process (Lundquist, 1999; Fis-
cher et al., 2006), students tend to report being
frustrated when learning something new through
active learning

2. BDD Culture May Be Difficult to Implement -
When Dan North introduced BDD (North et al.,
2006), it was based in TDD (Beck, 2003). As a
consequence, BDD inherits the concept of using
tests to drive development and its associated chal-
lenges, such as an unwillingness of the students to
apply the development paradigm of TDD and the
need of secondary skills, such as testing, design-
ing and refactoring (Mugridge, 2003).

3. BDD May Not Work in Time-restricted En-
vironments - In education, most activities have
a timeframe, either a day, a week or an entire
course. This timeframe ensures the objectives of
a class are achieved in a reasonable time and al-
low the teacher/mentor to manage the schedule of
activities.
In this scenario, BDD is challenging to be taught
and/or used due to its many time-demanding ac-
tivities. Customer collaboration, defining the
ubiquitous language and automating acceptance
tests are activities which have to be performed
when using BDD (Smart, 2014) and increase the
amount of time a development activity requires.

4. BDD May Hinder Requirements - According to
Smart (Smart, 2014), BDD revolves around not
only building a functional software, but one that
addresses the needs of the customer. Among the
main mechanisms provided by BDD, the augmen-
tation of user stories using scenarios, a process
which appears simple, but requires deep knowl-
edge about business goals or customer expecta-
tions.
Creating good scenarios is a topic yet to be more
deeply explored in the academia. Oliveira et
al. (Oliveira et al., 2019; Oliveira and Marczak,
2018; Oliveira and Marczak, 2017) has performed
a few studies on this topic with relevant contribu-
tion, such as a question-based checklist to evalu-
ate the quality of the generated scenario. How-
ever, further work is required to establish charac-
teristics of a “good” scenario.

Teaching BDD in Active Learning Environments: A Multi-study Analysis

273



5.3 (RQ3) Are There Any Best Practices
When Teaching BDD?

Our case study was conducted in a mobile develop-
ment course which combined active learning and ag-
ile software development. Participants had the chance
to work with and without BDD. Detailed results were
reported in subsection 4.4 and seem to indicate that
BDD can have positive and negative impacts. After
crossing our study setting and outcomes with some
of the reported influencing factors presented in sub-
section 4.3, we have created the following set of best
practices.

1. Introduce a Test-driven Development Mindset
Prior to Introducing BDD - The two main prob-
lems reported by students during our case study
were related to test-driven development mindset,
where one starts development by creating a test
case.

2. Deliver BDD Processes through Short Activi-
ties - During our study on influencing factors, we
were able to find indicatives that students had a
better engagement with short activities (e.g., CBL
Nano-Challenge). Uniting this with some of the
reported issues from our case study, such as a dif-
ficulty to write tests, a possible mitigation strat-
egy would be introduced BDD processes and/or
requirements individually prior to using the entire
set of practices.

3. Introduce BDD after Agile Has Been In-
troduced - BDD foster collaboration and co-
operation. As a consequence, according to
Smart (Smart, 2014), it thrives in agile contexts.
This indicates that BDD should fit more naturally
if students have already experience agile software
development.
Due to the high dependence of BDD on this con-
cept, it is recommendable that students are given
a chance to experience the mindset of test-driven
development prior to using BDD.

6 CONCLUSION

This paper presented a multi-study of teaching BDD
in ALEs. By combing the results of four complemen-
tary studies, we have been able to understand the im-
plications of teaching BDD in ALEs.

Gathering knowledge obtained from these stud-
ies and following the triangulation method proposed
by Creswell (Creswell and Creswell, 2017), we have
been able to cross data from these studies and solidify
benefits and challenges BDD should have in ALEs.

Furthermore, this same principle allowed us to estab-
lish a set of best practices to be used when teaching
BDD in ALEs. These findings, helped to fill a gap
of studies addressing BDD. It seem novel and should
help teachers, schools, universities and active learning
environments, which teaches software development,
to have a set of guidelines to add BDD to their cur-
riculum.

In terms of limitations, given that this study has
made use of interviews, recordings and transcriptions,
there is a limitation towards transcription of inter-
views and interpretation of responses by researchers.
This is mitigated by the scientific procedures adopted.
However cannot be fully eliminated.

REFERENCES

Ahmad, K. and Gestwicki, P. (2013). Studio-based learn-
ing and app inventor for android in an introductory
cs course for non-majors. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’13, pages 287–292, New York, NY,
USA. ACM.

Babbie, E. (2005). Survey research methods. UFMG.
Beck, K. (2003). Test-driven development: by example.

Addison-Wesley Professional.
Buller, D. B., Berwick, M., Shane, J., Kane, I., Lantz, K.,

and Buller, M. K. (2013). User-centered development
of a smart phone mobile application delivering per-
sonalized real-time advice on sun protection. Transla-
tional behavioral medicine, 3(3):326–334.

Creswell, J. W. and Creswell, J. D. (2017). Research de-
sign: Qualitative, quantitative, and mixed methods
approaches. Sage publications.

Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K.,
and Kestin, G. (2019). Measuring actual learning ver-
sus feeling of learning in response to being actively
engaged in the classroom. Proceedings of the National
Academy of Sciences, 116(39):19251–19257.

Dyba, T. (2000). An instrument for measuring the key fac-
tors of success in software process improvement. Em-
pirical software engineering, 5(4):357–390.

Evans, E. (2004). Domain-driven design: tackling complex-
ity in the heart of software. Addison-Wesley Profes-
sional.

Fischer, M. A., Mazor, K. M., Baril, J., Alper, E., DeMarco,
D., and Pugnaire, M. (2006). Learning from mistakes.
Journal of general internal medicine, 21(5):419–423.

Hoffmann, L. F. S., de Vasconcelos, L. E. G., Lamas, E.,
da Cunha, A. M., and Dias, L. A. V. (2014). Apply-
ing acceptance test driven development to a problem
based learning academic real-time system. In 2014
11th International Conference on Information Tech-
nology: New Generations, pages 3–8. IEEE.

Keele, S. et al. (2007). Guidelines for performing system-
atic literature reviews in software engineering. Tech-
nical report, Technical report, Ver. 2.3 EBSE Techni-
cal Report. EBSE.

CSEDU 2022 - 14th International Conference on Computer Supported Education

274



Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995).
Case studies for method and tool evaluation. IEEE
software, 12(4):52–62.

Krasner, H. (2018). The cost of poor quality software in
the us: A 2018 report. Consortium for IT Software
Quality, Tech. Rep.

Li, P. L., Ko, A. J., and Zhu, J. (2015). What makes a great
software engineer? In Proceedings of the 37th Inter-
national Conference on Software Engineering-Volume
1, pages 700–710. IEEE Press.

Lundquist, R. (1999). Critical thinking and the art of mak-
ing good mistakes. Teaching in Higher Education,
4(4):523–530.

Matos, V. and Grasser, R. (2010). Building Applications
for the Android OS Mobile Platform: A Primer and
Course Materials. Journal of Computing Sciences in
Colleges, 26(1):23–29.

Matthies, C., Treffer, A., and Uflacker, M. (2017). Prof. ci:
Employing continuous integration services and github
workflows to teach test-driven development. In 2017
IEEE Frontiers in Education Conference (FIE), pages
1–8. IEEE.

Memon, R. N., Ahmad, R., and Salim, S. S. (2010). Prob-
lems in requirements engineering education: a survey.
In Proceedings of the 8th International Conference on
Frontiers of Information Technology, pages 1–6.

Mugridge, R. (2003). Challenges in teaching test driven de-
velopment. In International Conference on Extreme
Programming and Agile Processes in Software Engi-
neering, pages 410–413. Springer.

Murphy, B., Bird, C., Zimmermann, T., Williams, L., Na-
gappan, N., and Begel, A. (2013). Have agile tech-
niques been the silver bullet for software development
at microsoft? In 2013 ACM/IEEE international sym-
posium on empirical software engineering and mea-
surement, pages 75–84. IEEE.

Nascimento, N., Santos, A. R., Sales, A., and Chanin, R.
(2019). An investigation of influencing factors when
teaching on active learning environments. In Proceed-
ings of the XXXIII Brazilian Symposium on Software
Engineering, pages 517–522.

Nascimento, N., Santos, A. R., Sales, A., and Chanin, R.
(2020a). Behavior-driven development: A case study
on its impacts on agile development teams. In Pro-
ceedings of the IEEE/ACM 42nd International Con-
ference on Software Engineering Workshops, pages
109–116.

Nascimento, N., Santos, A. R., Sales, A., and Chanin, R.
(2020b). Behavior-driven development: An expert
panel to evaluate benefits and challenges. In Proceed-
ings of the XXXIV Brazilian Symposium on Software
Engineering. Proceedings have not been published
yet.

Nichols, M., Cator, K., and Torres, M. (2016). Challenge
Based Learning Guide. Digital Promise, Redwood
City, CA, USA.

Nilsson, S. (2010). Augmentation in the wild: user cen-
tered development and evaluation of augmented re-
ality applications. PhD thesis, Linköping University
Electronic Press.

North, D. et al. (2006). Introducing bdd. Better Software,
12.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements
engineering: a roadmap. In Proceedings of the Con-
ference on the Future of Software Engineering, pages
35–46.

Oliveira, G. and Marczak, S. (2017). On the empirical eval-
uation of bdd scenarios quality: preliminary findings
of an empirical study. In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Work-
shops (REW), pages 299–302. IEEE.

Oliveira, G. and Marczak, S. (2018). On the understand-
ing of bdd scenarios’ quality: Preliminary practition-
ers’ opinions. In International Working Conference on
Requirements Engineering: Foundation for Software
Quality, pages 290–296. Springer.

Oliveira, G., Marczak, S., and Moralles, C. (2019). How
to evaluate bdd scenarios’ quality? In Proceedings
of the XXXIII Brazilian Symposium on Software Engi-
neering, pages 481–490.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P.,
and Still, J. (2008). The impact of agile practices on
communication in software development. Empirical
Software Engineering, 13(3):303–337.

Planning, S. (2002). The economic impacts of inadequate
infrastructure for software testing. National Institute
of Standards and Technology.

Procaccino, J. D., Verner, J. M., Overmyer, S. P., and Darter,
M. E. (2002). Case study: factors for early prediction
of software development success. Information and
software technology, 44(1):53–62.

Rosqvist, T., Koskela, M., and Harju, H. (2003). Software
quality evaluation based on expert judgement. Soft-
ware Quality Journal, 11(1):39–55.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131.

Santos, A., Sales, A., Fernandes, P., and Nichols, M.
(2015). Combining Challenge-Based Learning and
Scrum Framework for Mobile Application Develop-
ment. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Ed-
ucation (ITiCSE’15), pages 189–194, Vilnius, Lithua-
nia.

Scharff, C., Wasilewska, A., Wong, J., Bousso, M., Ndiaye,
I., and Sarr, C. (2009). A model for teaching mobile
application development for social changes: Imple-
mentation and lessons learned in senegal. In Int. Mul-
ticonf. on Computer Science and Information Tech-
nology, 2009. IMCSIT ’09., pages 383–389, Wisla,
Poland.

Serrador, P. and Pinto, J. K. (2015). Does agile work?—a
quantitative analysis of agile project success. Interna-
tional Journal of Project Management, 33(5):1040–
1051.

Simpson, R. and Storer, T. (2017). Experimenting with
realism in software engineering team projects: An
experience report. In 2017 IEEE 30th Conference
on Software Engineering Education and Training
(CSEE&T), pages 87–96. IEEE.

Smart, J. F. (2014). BDD in Action. Manning Publications.
Solis, C. and Wang, X. (2011). A study of the characteristics

of behaviour driven development. In 2011 37th EU-
ROMICRO Conference on Software Engineering and
Advanced Applications, pages 383–387. IEEE.

Teaching BDD in Active Learning Environments: A Multi-study Analysis

275


