
SNAP: Scalable Networkable ABM Platform for the Social Sciences

Christopher M. Conway a
IÉSEG, School of Management, 3 Rue de la Digue, Lille, France

Keywords: Agent-Based Modeling, Distributed Systems, Computing for Social Sciences.

Abstract: Agent-Based models (ABMs), although increasingly useful and widespread, are underused in social science.
I show that extant “user-friendly” platforms are not well suited for social science research, while platforms
that would support such research are not easy to use. I outline requirements for a sufficiently powerful, easy-
to-use system, which requires no programming skills on the part of the user. I explain the design and devel-
opment of an ABM which features a GUI and a menu of agents, statistics, and visualizations which are com-
monly desired. This system is robust enough for social science research; it is portable, flexible, and customi-
zable. Users will have access to pre-designed complex and recursive agents, running distributed across all
available processors, as well as user-selected geometries and time clocks. Progress and future work are dis-
cussed.

1 INTRODUCTION

Agent based modeling (ABM) has come a long way
from its humble beginnings, and has proved its worth
in a number of fields, from environmental sciences to
genetics and epidemiology. ABM can provide
preliminary results to research questions which
cannot be explored directly; it can eliminate
inappropriate solutions; it can illuminate emergent
behavior; and it can simplify complex environments.
Perhaps most usefully, ethical considerations can be
ignored or resolved using “agents” before testing with
live subjects, whether that is a pond ecosystem or
corporate employees (Gilbert, 2007).

Because the social science field considers the
behavior of human actors, ethical considerations are
in play almost immediately, which constrains
research. Furthermore, experiments are often difficult
to replicate, since human subjects are unreliable due
to many biases and research threats (such as social
desirability, hypothesis guessing, or experimental
interference) which may cause them to react
inaccurately to a study, to which ABMs are immune
(Gilbert, 2007). Thus, ABMs enable social science
researchers to do considerable preliminary work,
eliminating dead ends and ethical traps before the first
subject is contacted.

a https://orcid.org/0000-0003-0108-9177

However, ABMs are considerably underused in
social science (Conte & Paolucci, 2014; Hughes et al.,
2012; Jackson et al., 2017). Seeing an opportunity, I
began to search for social science research,
particularly in applied social psychology, which was
well adapted to expansion with ABM. However, it
quickly became clear that the existing platforms are
not well suited for social science research, and/or are
difficult to use. I realized that what was needed was
an ABM which is well adapted to social science
research.

We know from decades of research with the
Technology Acceptance Model (TAM) (Davis, 1989)
that, in order to be adopted, technology should be
perceived as both easy to use and useful. Of currently
available ABM platforms, those that are easy to use
are not well suited to social science research, and
those that support social science research are not easy
to use. This contention is supported by papers
reviewing ABM platforms (Abar et al., 2017).

As an experienced software engineer now
working in the social sciences (MIS), I am well
positioned to create an ABM for social science
research. In this paper, I will first provide the
requirements for a system which would be easy to use
and useful for research in social science, and briefly
examine major current platforms in light of those

Conway, C.
SNAP: Scalable Networkable ABM Platform for the Social Sciences.
DOI: 10.5220/0011051400003274
In Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2022), pages 165-171
ISBN: 978-989-758-578-4; ISSN: 2184-2841
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

165

requirements. I will then present a design for a system
which I believe will meet all the requirements.
Finally, I will explain my progress in implementing
this platform, and what future work I am planning.

2 ABM AND THE SOCIAL
SCIENCES

2.1 Making an ABM Easy to Use

Social scientists are not, generally, also experts in
computer science and programming, especially
systems programming. Early conversations with my
social sciences colleagues suggest that they need a way
to specify their ABM models simply and intuitively,
without requiring knowledge of application efficiency,
parallelization, synchronization, or guaranteeing
consistency. As with many users of this type, this
means that they need a graphic interface which will
provide a simpler set of intuitive and, to the extent
possible, self-explanatory tools to allow execution of
typical tasks without requiring detailed knowledge of
the underlying system. For ABM systems, these
typical needs are as follows:
1. Select among “typical” agents and add them to a

simulation run, without needing to program them
2. Extract typical data and statistics from a run,

either by integrating with a common statistical
program or by providing raw data in a format
usable by common statistical programs

3. Initialize simulation runs easily, including options
to specify multiple runs with or without parameter
changes

4. Predict run time required when possible, given a
set of computing resources and past history

5. Provide typically desired visualizations of a run in
progress

6. Perform the above tasks from the user interface,
without any required programming

2.2 Making an ABM Useful

The research domain of social sciences is humans and
their interactions. This introduces complexity at both
the micro and macro levels. At the micro level, each
human is a complex entity with goals, desires,
emotions, moods, beliefs, attitudes and behaviors. An
individual is, in fact, an entire ecosystem. At the
macro level, humans are embedded in the society that
surrounds them. This embedding is recursive;
humans are embedded in groups, which are

embedded in larger groups, and larger, until one gets
to the entire population of the planet. Additionally,
each individual is embedded in multiple groups,
which may or may not share memberships. The study
of humans is inherently multilevel and has an
extremely complex geometry. Thus, the ideal ABM
would require considerable flexibility and nuance in
the agent specifications. In fact, the meaning of
“agent” itself becomes complicated, since agents may
contain other agents: individuals are embedded in
groups, which are embedded in larger groups
recursively. Additionally, they are often members of
multiple groups, and the group membership of these
groups may have non-identity and non-null
intersections.

What this means in practice is a considerable
increase in complexity, on several fronts.

In the first place, the addition of nuance requires
that each agent make multiple choices, often among
multiple options. Most ABM platforms require that
these choices happen in sequence. Each additional
option, or nuance, is likely to double (or more) the
processing time and memory required. At its most
basic level, the model is turn based. Each agent
calculates and performs the appropriate action for its
current state, sequentially. When all of those
calculations have finished, the timer sets to the next
turn, and so forth. As the model increases in
complexity, whether in complexity of choice or in
number of agents, the length of time required for each
turn increases, and the number of turns required to
reach a new equilibrium also increases.

The multilevel nature adds further complexity.
The groupings may operate simultaneously with the
individuals, sequentially with the individuals, or may
even be in a feedback loop with the individuals, a loop
which needs to reach an equilibrium before the
current turn can end. This becomes more complicated
the more levels are introduced, and the more complex
the geometry of the groupings becomes.

Current ABM platforms primarily run as a single
process, and hence on a single CPU. Any attempt to
schedule other tasks risks thrashing by the CPU
and/or interruption to the program. CPU speed is the
hard limit for the length of time required for a
complete run. However, modern systems have
multiple CPUs; these CPUs are left idle by most
ABM platforms. Restricting the simulation to a single
CPU makes scaling to the level needed by social
simulations extremely problematic.

In the second place, current ABM platforms
primarily use a checkerboard model, in which each

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

166

agent occupies a specific geographical space. Many
of its actions will be prompted by the change in state
of its neighbors in the previous turn. Empty spaces
must be evaluated at each turn, as well.

However, many human interactions take place in
social space. Although this often overlaps with
physical space, social space is increasingly virtual
(e.g. FaceBook) and proximity is less important than
relationships. For example, we are likely to be more
influenced by the opinion of a relative or close friend
(strong relationship) than by a neighbor or fellow
commuter (strong proximity). Social space groupings
are also critical and increase the dimensional space of
the geometry exponentially.

Social space is difficult to map onto a standard
checkerboard model, because the exact number of
connections between this agent and other agents is
fluid. On a checkerboard, a square has 4 direct
neighbors and 4 diagonal neighbors; similar
calculations apply to an n-dimensional matrix.
However, in a social space, the number and strength
of these connections does not align easily with a
physical diagram. What's more, it is a sparse matrix;
there are many, many empty spaces. If we draw a
diagram showing whether a given agent is connected
to each of the other agents, we will find that the
number of extant connections is much lower than the
number of non-connections. I may know one
thousand people; I may have one million Twitter
followers; but there are 6 billion people in the world
and I have no connection to 5,999,000,000 of them.

In a checkerboard model, each of those 5.999
billion non-connections will take up a space, and must
be processed at each turn. Thus, the ABM platform
needs to support a more abstract notion of space, to
allow these kind of sparse geometries to be used
efficiently.

This leads to the following requirements:
 1. The platform needs to be portable. As computer

systems and resources change, current ABM
platforms become obsolete. It should not rely on
use of a particular operating system or
programming language.

 2. The platform needs make use of all available
computing resources. This means it must make
use of
 2.1. multiple processors and cores in a system
 2.2. GPUs contained in a system, and
 2.3. networked nodes.

 3. The platform needs flexibility. In particular, this
means that the platform needs to pre-specify as
little as possible of a simulation.
 3.1. The platform must support multiple user-

defined geometries.

 3.2. The platform must permit embedding of
groups of agents into other agents to enable
multilevel models.

 3.3. The platform must allow use of multiple
types of time, as time may flow differently
for different agents (e.g. quarterly results
versus weekly sales quotas versus sudden
interruptions for emergency tasks of
undefined length).

 4. The platform needs to be customizable and
extensible by the user.
 4.1. It must be possible to easily modify

existing components to provide new or
modified functionality, or to add new
components such as new types of agents,
new groupings, new geometries, and new
measures of time.

 4.2. Adding or modifying modules necessarily
implies some level of sophistication in the
user beyond our expected case. The
sophisticated user may be familiar with
specific programming languages or
systems. The platform needs to allow for
use of the programming language, design,
and run environment which is comfortable
for this more experienced user. For them,
use of their preferred language and
environment will also add to the platform's
ease of use, since they will not need to
learn a new language or system
environment.

3 CURRENTLY AVAILABLE
ABMS

I have taken as my starting point a recent
categorization of ABM platforms. In the
categorization, platforms were ranked on ease of
model development and scalability. Ease of model
development had three levels: easy, moderate, or
hard; scalability had four levels: small, medium,
large, and extreme (Abar et al., 2017). In Table 1
below, I have looked at platforms which are "easy" to
develop models on, and which have scalability
"large" or better. While these do not directly
correspond to "ease of use" and "usefulness" as
explored above, they are a good proxy for limiting the
search to a manageable number. This gives three
possible candidates: Altreva Adaptive Modeler,
SeSAm, and NetLogo. Of these, SeSAm and
NetLogo are the only general-purpose platforms;
Altreva Adaptive Modeler only handles financial

SNAP: Scalable Networkable ABM Platform for the Social Sciences

167

market simulations, so I exclude it from
consideration. Table 1 shows which requirements
SeSAm and NetLogo meet.

4 BUILDING A BETTER
MOUSETRAP

Clearly the available platforms do not simultaneously
provide ease of use and usefulness to the social
science researcher. A better solution is needed. Based
in my experience in computer science and real-time,
distributed, and systems programming, I propose the

following design. Two principles guide this design.
First, small tools that do one thing well, and can be
easily combined with other tools, are more powerful
and flexible than large tools that try to do everything.
Second, offload functionality to already extant system
components whenever possible, as much as possible,
to take advantage of domain expertise beyond my
own.

1. Framework management is decoupled from
the interface and the agents. This is an
approach which has previously been used for
reasons of scalability and performance (Bosse,
2021; Collier & North, 2013).

Table 1: Requirements and Existing Platforms.

Requirement NetLogo SeSAm

1. Select among “typical” agents and add them to a
simulation run, without needing to program them

Yes Yes

2. Extract typical data and statistics from a run Yes Yes

3. Initialize simulation runs easily, including options
to specify multiple runs with or without parameter
changes

Yes Yes

4. Predict run time required when possible, given a set
of computing resources and past history

No No

5. Provide typically desired visualizations of a run in
progress

Yes Yes

6. Perform the above tasks from the user interface,
without any required programming

Yes Yes

1. Portable Yes; requires Java Virtual
Machine

Yes; requires Java Virtual
Machine

2.1. Uses multiple processors and cores in a system Only when multiple runs are
made; a single ecosystem is not
split across processors

Only when multiple runs are
made; a single ecosystem is not
split across processors

2.2 Uses GPUs contained in a system No No

2.3 Uses networked nodes No, although an extension can
run multiple versions of a
simulation across clustered
systems; again, a single
ecosystem cannot be split across
nodes

No, although an extension can
run multiple versions of a
simulation across clustered
systems; again, a single
ecosystem cannot be split across
nodes

3.1 Allows user-specified geometries No Yes

3.2 Supports multilevel agents No Yes

3.3 Allows user-specified types of time No No

4.1 Allows modification of included agents and
creation of new agents

Yes Yes

4.2 Allows creation of agents in any language Native creation in NetLogo
language. Bindings for some
languages exist to allow external
calls; others could be added

No

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

168

2. A basic communications library abstracts all
the information needed for two independent
programs to send each other messages,
regardless of the location of the agents (on the
system, on a GPU, on another networked
node) in the most efficient possible manner.
Messages

3. between agents will be plain text strings
(encrypted in transit, but plain text to the agent
itself).

4. A directory server allows programs to find
each other (similar to RPC portmapper or
CORBA). The directory server will also
enable broadcast and multicast messages. The
directory server is simply an agent with a well-
known (to the ABM platform) address.

5. All agents are self-contained programs which
use the library in (2) above and the directory
in (3) above to find and communicate with
other agents; this creates extreme modularity.
The agents are normal processes scheduled by
the operating system, leveraging the expertise
that goes into operating systems
implementation to efficiently use the CPUs
and cores available. This approach also has
some precedent, though not quite to the
fundamental level that I propose (Collier &
North, 2013). This also allows agent
parameterization to be handled by command-
line arguments.

6. All framework components (GUI,
visualizations, geometry, time, etc.) are
themselves agents, no more or less powerful
than user agents.

7. A library of typical agents is provided for ease
of use (visualization, data tapping, statistics
creation, etc.)

8. The communications library directory server
and all included agents are written in C using
POSIX standard libraries for portability.

9. Library stubs in other languages are provided,
to allow agent programming in any language.

10. The design builds in security from the start.
Agents will need to authenticate with each
other in order to communicate with each other.
Messages sent between agents will be
encrypted. These are done in the provided
library, and the user does not need to concern
themselves with it beyond very simple
decisions (e.g., what is the password for the
simulation?). Encryption and authentication
will be handled by POSIX standard libraries.

4.1 How Does This Design Match the
Requirements?

First, a word on terminology. For this discussion,
"system" means the hardware and operating system
components. "Platform" means the overall ABM
platform, which, with this design, may have multiple
independent simulations running simultaneously.
"Ecosystem" is a user-defined set of agents which are
able to talk to each other in a particular simulation
run. Thus, the platform may run on multiple systems,
and may contain multiple ecosystems. There is no a
priori linkage between a system and an ecosystem.

4.1.1 Ease of Use

Since the user interface is completely decoupled from
the ABM platform, all usability aspects are handled
by an agent library. If the user wants a GUI, they start
the provided GUI agent. This interface provides for
agent creation, standard data extraction, run control,
statistical results, parameterization, run time
predictions, and visualization via provided agents.
These are each individual programs, which
communicate with the GUI agent to interface with the
user. A preset suite of interface agents is provided, but
it is possible for the user to determine how many or
few of these predefined agents they wish to use.

The fact that the agents are self-contained
programs using command line arguments for
parameterization makes the creation of a graphic user
interface very simple. The interface will not be as
efficient as an integrated GUI would be; however,
since the execution time of the GUI is going to be tiny
compared to the execution time of the simulation
runs, this tradeoff for simplicity seems worthwhile.

4.1.2 Usefulness

Because the provided programs and library are
written in C using POSIX libraries, they can easily be
compiled and run on any POSIX-compliant system
(including Windows, MACOS, Linux, and any UNIX
system (either SYSTEM V or BSD derivatives). As
standard research practices, university resources, and
technical best practices change, the entire model or
individual systems can be moved to any hardware
desired.

The problem of scheduling CPU resources has
been well studied in the computer science field; good
solutions exist and better ones are being developed
(e.g., (Chen et al., 2020; Kim et al., 2020; Wang et al.,
2020; Cheng et al., 2016)). An ABM platform which
allows the operating system to perform scheduling

SNAP: Scalable Networkable ABM Platform for the Social Sciences

169

tasks can take advantage of the latest updates, without
itself having to change. Thus, the operating system
handles internal load balancing. External load
balancing among networked nodes is an ongoing field
of study in cloud computing, with experimental load
balancers available (Hamdani et al., 2020). I
anticipate providing an agent which will handle this
in the medium-term future.

The reduced size of the ABM platform core
results in low overhead. Again, since agents are
simply programs, a program which runs in a GPU can
easily be an agent in the ecosystem like any other.
Since individual agents are self-contained, they can
be easily migrated to other systems. The directory
server and the communications library understand
how to communicate to agents which are located on
the same system, on a GPU, or on other network
nodes. The library uses shared memory on a single
system and either IPV6 or IPV4 to communicate to
other systems.

Geometry is just an agent. The user can use a
predefined agent (e.g. checkerboard), or can provide
their own agent to provide the geometry. This permits
use of agents which can efficiently handle the sparse
space of a social network. Similarly, time is just an
agent. The user can use a predefined agent (e.g. event
tick) or provide their own to create a more complex
idea of time, possibly including a real-time clock. The
ability of agents to migrate to other systems makes
dynamic reallocation of computing resources simple.
All of these being individual programs, starting or not
starting any individual agent is trivial.

Again, the fact that every agent is a self-contained
program guarantees the maximum amount of
modularity. Users can easily pick and choose which
agents to include in an ecosystem.

All the ease of use functions are provided by
predefined agents. The user is free to modify those or
provide their own to allow for more customizability.
Since each agent is its own program, the user is not
limited to the language of the framework for
programming their own agents. The stub libraries
provided allow the user to use whatever programming
language they choose to implement their own agents.

5 CURRENT STATUS OF THE
WORK

I have created the basic framework to allow agent
communication, creation, and removal. I also have a
basic checkerboard geometry agent and event tick
timer agent. I anticipate that in the near future I will

be able to reproduce Schelling's (Schelling, 1971) and
March's (March, 1991) models to verify correct
operation, with statistics showing scalability across
CPUs and additional systems.

6 FURTHER WORK

Currently very little of the standard ease of use set of
agents is complete. Additionally, "ease of use" is
currently based upon my conceptions, informed by a
few colleagues. I intend to formally research what the
simulation community considers a full set of
requirements. Much of this will be ongoing; in the
spirit of agile development, it is better to get
something working, and then fine tune it as users
interact with it and understand better their needs, than
to lock in a feature set at the very beginning.

I have not implemented use of GPUs at this point;
Library bindings are currently only in C, so agents
can only be written in C right now. Stub libraries will
need to be provided for other languages, to include at
least: Java, C++, R, and Python.

REFERENCES

Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare,
G. M. P. (2017). Agent Based Modelling and Simula-
tion tools: A review of the state-of-art software. Com-
puter Science Review, 24, 13–33. https://doi.
org/10.1016/j.cosrev.2017.03.001

Bosse, S. (2021). Parallel and Distributed Agent-based
Simulation of Large-scale Socio-technical Systems
with Loosely Coupled Virtual Machines. 344–351.
https://www.scitepress.org/PublicationsDetail.aspx?ID
=trckToYQetc=&t=1

Chen, J., Soomro, P. N., Abduljabbar, M., Manivannan, M.,
& Pericas, M. (2020). Scheduling Task-parallel Appli-
cations in Dynamically Asymmetric Environments.
49th International Conference on Parallel Processing -
ICPP : Workshops, 1–10. https://doi.org/10.1145/34
09390.3409408

Cheng, L., Rao, J., & Lau, F. C. M. (2016). vScale: Auto-
matic and efficient processor scaling for SMP virtual
machines. Proceedings of the Eleventh European Con-
ference on Computer Systems, 1–14. https://doi.
org/10.1145/2901318.2901321

Collier, N., & North, M. (2013). Parallel Agent-Based Sim-
ulation with Repast for High Performance Computing.
SIMULATION, 89(10), 1215–1235. https://doi.org/
10.117 7/0037549712462620

Conte, R., & Paolucci, M. (2014). On Agent-Based Model-
ing and Computational Social Science. Frontiers in Psy-
chology, 5. https://doi.org/10.3389/fpsyg.2014.00668

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

170

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease
of Use, and User Acceptance of Information Technol-
ogy. MIS Quarterly, 13(3), 319–340. https://doi.org/Ar-
ticle

Gilbert, N. (2007). Agent-Based Models. SAGE Publica-
tions, Inc.

Hamdani, M., Aklouf, Y., & Chaalal, H. (2020). A Com-
parative Study on Load Balancing Algorithms in Cloud
Environment. Proceedings of the 10th International
Conference on Information Systems and Technologies,
1–4. https://doi.org/10.1145/3447568.3448466

Hughes, H. P. N., Clegg, C. W., Robinson, M. A., &
Crowder, R. M. (2012). Agent-based modelling and
simulation: The potential contribution to organizational
psychology. Journal of Occupational and Organiza-
tional Psychology, 85(3), 487–502. https://doi.org/
10.1111/j.2044-8325.2012.02053.x

Jackson, J. C., Rand, D., Lewis, K., Norton, M. I., & Gray,
K. (2017). Agent-Based Modeling: A Guide for Social
Psychologists. Social Psychological and Personality
Science, 8(4), 387–395. https://doi.org/10.1177/19485
50617691100

Kim, J., Kim, J., & Park, Y. (2020). Navigator: Dynamic
multi-kernel scheduling to improve GPU performance.
Proceedings of the 57th ACM/EDAC/IEEE Design Au-
tomation Conference, 1–6.

March, J. G. (1991). Exploration and Exploitation in Or-
ganizational Learning. Organization Science, 2(1), 71–
87. https://doi.org/10.1287/orsc.2.1.71

Schelling, T. C. (1971). Dynamic models of segregation.
The Journal of Mathematical Sociology, 1(2), 143–186.
https://doi.org/10.1080/0022250X.1971.9989794

Wang, Y., Li, R., Huang, Z., & Zhou, X. (2020). An In-
depth Analysis of System-level Techniques for Simulta-
neous Multi-threaded Processors in Clouds. Proceedings
of the 2020 4th International Conference on High Perfor-
mance Compilation, Computing and Communications,
145–149. https://doi.org/10.1145/3407947.3407964

Willinsky, J. (2005). The unacknowledged convergence of
open source, open access, and open science. First Mon-
day. https://doi.org/10.5210/fm.v10i8.1265

SNAP: Scalable Networkable ABM Platform for the Social Sciences

171

