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Abstract: Agent-Based models (ABMs), although increasingly useful and widespread, are underused in social science. 
I show that extant “user-friendly” platforms are not well suited for social science research, while platforms 
that would support such research are not easy to use. I outline requirements for a sufficiently powerful, easy-
to-use system, which requires no programming skills on the part of the user. I explain the design and devel-
opment of an ABM which features a GUI and a menu of agents, statistics, and visualizations which are com-
monly desired. This system is robust enough for social science research; it is portable, flexible, and customi-
zable. Users will have access to pre-designed complex and recursive agents, running distributed across all 
available processors, as well as user-selected geometries and time clocks. Progress and future work are dis-
cussed. 

1 INTRODUCTION 

Agent based modeling (ABM) has come a long way 
from its humble beginnings, and has proved its worth 
in a number of fields, from environmental sciences to 
genetics and epidemiology. ABM can provide 
preliminary results to research questions which 
cannot be explored directly; it can eliminate 
inappropriate solutions; it can illuminate emergent 
behavior; and it can simplify complex environments. 
Perhaps most usefully, ethical considerations can be 
ignored or resolved using “agents” before testing with 
live subjects, whether that is a pond ecosystem or 
corporate employees (Gilbert, 2007). 

Because the social science field considers the 
behavior of human actors, ethical considerations are 
in play almost immediately, which constrains 
research. Furthermore, experiments are often difficult 
to replicate, since human subjects are unreliable due 
to many biases and research threats (such as social 
desirability, hypothesis guessing, or experimental 
interference) which may cause them to react 
inaccurately to a study, to which ABMs are immune 
(Gilbert, 2007). Thus, ABMs enable social science 
researchers to do considerable preliminary work, 
eliminating dead ends and ethical traps before the first 
subject is contacted. 

 
a  https://orcid.org/0000-0003-0108-9177 

However, ABMs are considerably underused in 
social science (Conte & Paolucci, 2014; Hughes et al., 
2012; Jackson et al., 2017). Seeing an opportunity, I 
began to search for social science research, 
particularly in applied social psychology, which was 
well adapted to expansion with ABM. However, it 
quickly became clear that the existing platforms are 
not well suited for social science research, and/or are 
difficult to use. I realized that what was needed was 
an ABM which is well adapted to social science 
research. 

We know from decades of research with the 
Technology Acceptance Model (TAM) (Davis, 1989) 
that, in order to be adopted, technology should be 
perceived as both easy to use and useful. Of currently 
available ABM platforms, those that are easy to use 
are not well suited to social science research, and 
those that support social science research are not easy 
to use. This contention is supported by papers 
reviewing ABM platforms (Abar et al., 2017).  

As an experienced software engineer now 
working in the social sciences (MIS), I am well 
positioned to create an ABM for social science 
research. In this paper, I will first provide the 
requirements for a system which would be easy to use 
and useful for research in social science, and briefly 
examine major current platforms in light of those 
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requirements. I will then present a design for a system 
which I believe will meet all the requirements. 
Finally, I will explain my progress in implementing 
this platform, and what future work I am planning. 

2 ABM AND THE SOCIAL  
SCIENCES 

2.1 Making an ABM Easy to Use 

Social scientists are not, generally, also experts in 
computer science and programming, especially 
systems programming. Early conversations with my 
social sciences colleagues suggest that they need a way 
to specify their ABM models simply and intuitively, 
without requiring knowledge of application efficiency, 
parallelization, synchronization, or guaranteeing 
consistency. As with many users of this type, this 
means that they need a graphic interface which will 
provide a simpler set of intuitive and, to the extent 
possible, self-explanatory tools to allow execution of 
typical tasks without requiring detailed knowledge of 
the underlying system. For ABM systems, these 
typical needs are as follows: 
1. Select among “typical” agents and add them to a 

simulation run, without needing to program them 
2. Extract typical data and statistics from a run, 

either by integrating with a common statistical 
program or by providing raw data in a format 
usable by common statistical programs  

3. Initialize simulation runs easily, including options 
to specify multiple runs with or without parameter 
changes 

4. Predict run time required when possible, given a 
set of computing resources and past history 

5. Provide typically desired visualizations of a run in 
progress 

6. Perform the above tasks from the user interface, 
without any required programming 

2.2 Making an ABM Useful 

The research domain of social sciences is humans and 
their interactions. This introduces complexity at both 
the micro and macro levels. At the micro level, each 
human is a complex entity with goals, desires, 
emotions, moods, beliefs, attitudes and behaviors. An 
individual is, in fact, an entire ecosystem. At the 
macro level, humans are embedded in the society that 
surrounds them. This embedding is recursive; 
humans are embedded in groups, which are 

embedded in larger groups, and larger, until one gets 
to the entire population of the planet. Additionally, 
each individual is embedded in multiple groups, 
which may or may not share memberships. The study 
of humans is inherently multilevel and has an 
extremely complex geometry. Thus, the ideal ABM 
would require considerable flexibility and nuance in 
the agent specifications. In fact, the meaning of 
“agent” itself becomes complicated, since agents may 
contain other agents: individuals are embedded in 
groups, which are embedded in larger groups 
recursively. Additionally, they are often members of 
multiple groups, and the  group membership of these 
groups may have non-identity and non-null 
intersections. 

What this means in practice is a considerable 
increase in complexity, on several fronts. 

In the first place, the addition of nuance requires 
that each agent make multiple choices, often among 
multiple options. Most ABM platforms require that 
these choices happen in sequence. Each additional 
option, or nuance, is likely to double (or more) the 
processing time and memory required. At its most 
basic level, the model is turn based. Each agent 
calculates and performs the appropriate action for its 
current state, sequentially. When all of those 
calculations have finished, the timer sets to the next 
turn, and so forth. As the model increases in 
complexity, whether in complexity of choice or in 
number of agents, the length of time required for each 
turn increases, and the number of turns required to 
reach a new equilibrium also increases. 

The multilevel nature adds further complexity. 
The groupings may operate simultaneously with the 
individuals, sequentially with the individuals, or may 
even be in a feedback loop with the individuals, a loop 
which needs to reach an equilibrium before the 
current turn can end. This becomes more complicated 
the more levels are introduced, and the more complex 
the geometry of the groupings becomes. 

Current ABM platforms primarily run as a single 
process, and hence on a single CPU. Any attempt to 
schedule other tasks risks thrashing by the CPU 
and/or interruption to the program. CPU speed is the 
hard limit for the length of time required for a 
complete run. However, modern systems have 
multiple CPUs; these CPUs are left idle by most 
ABM platforms. Restricting the simulation to a single 
CPU makes scaling to the level needed by social 
simulations extremely problematic. 

In the second place, current ABM platforms 
primarily use a checkerboard model, in which each 
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agent occupies a specific geographical space. Many 
of its actions will be prompted by the change in state 
of its neighbors in the previous turn. Empty spaces 
must be evaluated at each turn, as well. 

However, many human interactions take place in 
social space. Although this often overlaps with 
physical space, social space is increasingly virtual 
(e.g. FaceBook) and proximity is less important than 
relationships. For example, we are likely to be more 
influenced by the opinion of a relative or close friend 
(strong relationship) than by a neighbor or fellow 
commuter (strong proximity). Social space groupings 
are also critical and increase the dimensional space of 
the geometry exponentially. 

Social space is difficult to map onto a standard 
checkerboard model, because the exact number of 
connections between this agent and other agents is 
fluid. On a checkerboard, a square has 4 direct 
neighbors and 4 diagonal neighbors; similar 
calculations apply to an n-dimensional matrix. 
However, in a social space, the number and strength 
of these connections does not align easily with a 
physical diagram. What's more, it is a sparse matrix; 
there are many, many empty spaces. If we draw a 
diagram showing whether a given agent is connected 
to each of the other agents, we will find that the 
number of extant connections is much lower than the 
number of non-connections. I may know one 
thousand people; I may have one million Twitter 
followers; but there are 6 billion people in the world 
and I have no connection to 5,999,000,000 of them.  

In a checkerboard model, each of those 5.999 
billion non-connections will take up a space, and must 
be processed at each turn. Thus, the ABM platform 
needs to support a more abstract notion of space, to 
allow these kind of sparse geometries to be used 
efficiently. 

This leads to the following requirements: 
 1. The platform needs to be portable. As computer 

systems and resources change, current ABM 
platforms become obsolete. It should not rely on 
use of a particular operating system or 
programming language. 

 2. The platform needs make use of all available 
computing resources. This means it must make 
use of  
 2.1. multiple processors and cores in a system 
 2.2. GPUs contained in a system, and 
 2.3. networked nodes. 

 3. The platform needs flexibility. In particular, this 
means that the platform needs to pre-specify as 
little as possible of a simulation.  
 3.1. The platform must support multiple user-

defined geometries. 

 3.2. The platform must permit embedding of 
groups of agents into other agents to enable 
multilevel models. 

 3.3. The platform must allow use of multiple 
types of time, as time may flow differently 
for different agents (e.g. quarterly results 
versus weekly sales quotas versus sudden 
interruptions for emergency tasks of 
undefined length). 

 4. The platform needs to be customizable and 
extensible by the user. 
 4.1. It must be possible to easily modify 

existing components to provide new or 
modified functionality, or to add new 
components such as new types of agents, 
new groupings, new geometries, and new 
measures of time.  

 4.2. Adding or modifying modules necessarily 
implies some level of sophistication in the 
user beyond our expected case. The 
sophisticated user may be familiar with 
specific programming languages or 
systems. The platform needs to allow for 
use of the programming language, design, 
and run environment which is comfortable 
for this more experienced user. For them, 
use of their preferred language and 
environment will also add to the platform's 
ease of use, since they will not need to 
learn a new language or system 
environment. 

3 CURRENTLY AVAILABLE 
ABMS 

I have taken as my starting point a recent 
categorization of ABM platforms. In the 
categorization, platforms were ranked on ease of 
model development and scalability. Ease of model 
development had three levels: easy, moderate, or 
hard; scalability had four levels: small, medium, 
large, and extreme (Abar et al., 2017). In Table 1 
below, I have looked at platforms which are "easy" to 
develop models on, and which have scalability 
"large" or better. While these do not directly 
correspond to "ease of use" and "usefulness" as  
explored above, they are a good proxy for limiting the 
search to a manageable number. This gives three 
possible candidates: Altreva Adaptive Modeler, 
SeSAm, and NetLogo. Of these, SeSAm and 
NetLogo are the only general-purpose platforms; 
Altreva Adaptive Modeler only handles financial 
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market simulations, so I exclude it from 
consideration. Table 1 shows which requirements 
SeSAm and NetLogo meet. 

4 BUILDING A BETTER  
MOUSETRAP 

Clearly the available platforms do not simultaneously 
provide ease of use and usefulness to the social 
science researcher. A better solution is needed. Based 
in my experience in computer science and real-time, 
distributed, and systems programming, I propose the 

following design. Two principles guide this design. 
First, small tools that do one thing well, and can be 
easily combined with other tools, are more powerful 
and flexible than large tools that try to do everything. 
Second, offload functionality to already extant system 
components whenever possible, as much as possible, 
to take advantage of domain expertise beyond my 
own. 

1. Framework management is decoupled from 
the interface and the agents. This is an 
approach which has previously been used for 
reasons of scalability and performance (Bosse, 
2021; Collier & North, 2013). 

Table 1: Requirements and Existing Platforms. 

Requirement NetLogo SeSAm 

1. Select among “typical” agents and add them to a 
simulation run, without needing to program them 

Yes Yes 

2. Extract typical data and statistics from a run Yes Yes 

3. Initialize simulation runs easily, including options 
to specify multiple runs with or without parameter 
changes 

Yes Yes 

4. Predict run time required when possible, given a set 
of computing resources and past history 

No No 

5. Provide typically desired visualizations of a run in 
progress 

Yes Yes 

6. Perform the above tasks from the user interface, 
without any required programming 

Yes Yes 

1. Portable Yes; requires Java Virtual 
Machine 

Yes; requires Java Virtual 
Machine 

2.1. Uses multiple processors and cores in a system Only when multiple runs are 
made; a single ecosystem is not 
split across processors 

Only when multiple runs are 
made; a single ecosystem is not 
split across processors 

2.2 Uses GPUs contained in a system No No 

2.3 Uses networked nodes No, although an extension can 
run multiple versions of a 
simulation across clustered 
systems; again, a single 
ecosystem cannot be split across 
nodes 

No, although an extension can 
run multiple versions of a 
simulation across clustered 
systems; again, a single 
ecosystem cannot be split across 
nodes 

3.1 Allows user-specified geometries No Yes 

3.2 Supports multilevel agents No Yes 

3.3 Allows user-specified types of time No No 

4.1 Allows modification of included agents and 
creation of new agents 

Yes Yes 

4.2 Allows creation of agents in any language Native creation in NetLogo 
language. Bindings for some 
languages exist to allow external 
calls; others could be added 

No 
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2. A basic communications library abstracts all 
the information needed for two independent 
programs to send each other messages, 
regardless of the location of the agents (on the 
system, on a GPU, on another networked 
node) in the most efficient possible manner.  
Messages 

3. between agents will be plain text strings 
(encrypted in transit, but plain text to the agent 
itself). 

4. A directory server allows programs to find 
each other (similar to RPC portmapper or 
CORBA). The directory server will also 
enable broadcast and multicast messages. The 
directory server is simply an agent with a well-
known (to the ABM platform) address. 

5. All agents are self-contained programs which 
use the library in (2) above and the directory 
in (3) above to find and communicate with 
other agents; this creates extreme modularity. 
The agents are normal processes scheduled by 
the operating system, leveraging the expertise 
that goes into operating systems 
implementation to efficiently use the CPUs 
and cores available. This approach also has 
some precedent, though not quite to the 
fundamental level that I propose (Collier & 
North, 2013). This also allows agent 
parameterization to be handled by command-
line arguments. 

6. All framework components (GUI, 
visualizations, geometry, time, etc.) are 
themselves agents, no more or less powerful 
than user agents. 

7. A library of typical agents is provided for ease 
of use (visualization, data tapping, statistics 
creation, etc.) 

8. The communications library directory server 
and all included agents are written in C using 
POSIX standard libraries for portability. 

9. Library stubs in other languages are provided, 
to allow agent programming in any language. 

10. The design builds in security from the start. 
Agents will need to authenticate with each 
other in order to communicate with each other. 
Messages sent between agents will be 
encrypted. These are done in the provided 
library, and the user does not need to concern 
themselves with it beyond very simple 
decisions (e.g., what is the password for the 
simulation?). Encryption and authentication 
will be handled by POSIX standard libraries. 

4.1 How Does This Design Match the 
Requirements? 

First, a word on terminology. For this discussion, 
"system" means the hardware and operating system 
components. "Platform" means the overall ABM 
platform, which, with this design, may have multiple 
independent simulations running simultaneously. 
"Ecosystem" is a user-defined set of agents which are 
able to talk to each other in a particular simulation 
run. Thus, the platform may run on multiple systems, 
and may contain multiple ecosystems. There is no a 
priori linkage between a system and an ecosystem. 

4.1.1 Ease of Use 

Since the user interface is completely decoupled from 
the ABM platform, all usability aspects are handled 
by an agent library. If the user wants a GUI, they start 
the provided GUI agent. This interface provides for 
agent creation, standard data extraction, run control, 
statistical results, parameterization, run time 
predictions, and visualization via provided agents. 
These are each individual programs, which 
communicate with the GUI agent to interface with the 
user. A preset suite of interface agents is provided, but 
it is possible for the user to determine how many or 
few of these predefined agents they wish to use. 

The fact that the agents are self-contained 
programs using command line arguments for 
parameterization makes the creation of a graphic user 
interface very simple. The interface will not be as 
efficient as an integrated GUI would be; however, 
since the execution time of the GUI is going to be tiny 
compared to the execution time of the simulation 
runs, this tradeoff for simplicity seems worthwhile. 

4.1.2 Usefulness 

Because the provided programs and library are 
written in C using POSIX libraries, they can easily be 
compiled and run on any POSIX-compliant system 
(including Windows, MACOS, Linux, and any UNIX 
system (either SYSTEM V or BSD derivatives). As 
standard research practices, university resources, and 
technical best practices change, the entire model or 
individual systems can be moved to any hardware 
desired. 

The problem of scheduling CPU resources has 
been well studied in the computer science field; good 
solutions exist and better ones are being developed 
(e.g., (Chen et al., 2020; Kim et al., 2020; Wang et al., 
2020; Cheng et al., 2016)). An ABM platform which 
allows the operating system to perform scheduling 
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tasks can take advantage of the latest updates, without 
itself having to change. Thus, the operating system 
handles internal load balancing. External load 
balancing among networked nodes is an ongoing field 
of study in cloud computing, with experimental load 
balancers available (Hamdani et al., 2020). I 
anticipate providing an agent which will handle this 
in the medium-term future. 

The reduced size of the ABM platform core 
results in low overhead. Again, since agents are 
simply programs, a program which runs in a GPU can 
easily be an agent in the ecosystem like any other. 
Since individual agents are self-contained, they can 
be easily migrated to other systems. The directory 
server and the communications library understand 
how to communicate to agents which are located on 
the same system, on a GPU, or on other network 
nodes. The library uses shared memory on a single 
system and either IPV6 or IPV4 to communicate to 
other systems. 

Geometry is just an agent. The user can use a 
predefined agent (e.g. checkerboard), or can provide 
their own agent to provide the geometry. This permits 
use of agents which can efficiently handle the sparse 
space of a social network. Similarly, time is just an 
agent. The user can use a predefined agent (e.g. event 
tick) or provide their own to create a more complex 
idea of time, possibly including a real-time clock. The 
ability of agents to migrate to other systems makes 
dynamic reallocation of computing resources simple. 
All of these being individual programs, starting or not 
starting any individual agent is trivial.  

Again, the fact that every agent is a self-contained 
program guarantees the maximum amount of 
modularity. Users can easily pick and choose which 
agents to include in an ecosystem. 

All the ease of use functions are provided by 
predefined agents. The user is free to modify those or 
provide their own to allow for more customizability. 
Since each agent is its own program, the user is not 
limited to the language of the framework for 
programming their own agents. The stub libraries 
provided allow the user to use whatever programming 
language they choose to implement their own agents. 

5 CURRENT STATUS OF THE 
WORK 

I have created the basic framework to allow agent 
communication, creation, and removal. I also have a 
basic checkerboard geometry agent and event tick 
timer agent. I anticipate that in the near future I will 

be able to reproduce Schelling's (Schelling, 1971) and 
March's (March, 1991) models to verify correct 
operation, with statistics showing scalability across 
CPUs and additional systems. 

6 FURTHER WORK 

Currently very little of the standard ease of use set of 
agents is complete. Additionally, "ease of use" is 
currently based upon my conceptions, informed by a 
few colleagues. I intend to formally research what the 
simulation community considers a full set of 
requirements. Much of this will be ongoing; in the 
spirit of agile development, it is better to get 
something working, and then fine tune it as users 
interact with it and understand better their needs, than 
to lock in a feature set at the very beginning. 

I have not implemented use of GPUs at this point; 
Library bindings are currently only in C, so agents 
can only be written in C right now. Stub libraries will 
need to be provided for other languages, to include at 
least: Java, C++, R, and Python. 
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