
State-free End-to-End Encrypted Storage and Chat Systems based on
Searchable Encryption

Keita Emura1 a, Ryoma Ito1 b, Sachiko Kanamori1, Ryo Nojima1 and Yohei Watanabe1,2 c

1National Institute of Information and Communications Technology, Japan
2The University of Electro-Communications, Japan

Keywords: Dynamic Searchable Symmetric Encryption, State-free, Secure Storage and Chat Systems.

Abstract: Searchable symmetric encryption (SSE) has attracted significant attention because it can prevent data leakage
from external devices, e.g., on clouds. SSE appears to be effective to construct such a secure system; however,
it is not trivial to construct such a system from SSE in practice because other parts must be designed, e.g., user
login management, defining the keyword space, and sharing secret keys among multiple users who usually
do not have public key certificates. In this paper, we describe the implementation of two systems based upon
the state-free dynamic SSE (DSSE) (Watanabe et al., ePrint 2021), i.e., a secure storage system (for a single
user) and a chat system (for multiple users). In addition to the Watanabe et al. DSSE protocol, we employ a
secure multipath key exchange (SMKEX) protocol (Costea et al., CCS 2018), which is secure against some
classes of unsynchronized active attackers. It allows the chat system users without certificates to share a secret
key of the DSSE protocol in a secure manner. To realize end-to-end encryption, the shared key must be kept
secret; thus, we must consider how to preserve the secret on, for example, a user’s local device. However, this
requires additional security assumptions, e.g., tamper resistance, and it seems difficult to assume that all users
have such devices. Thus, we propose a secure key agreement protocol by combining the SMKEX and login
information (password) that does not require an additional tamper-resistant device. Combining the proposed
key agreement protocol and the underlying state-free DSSE protocol allow users who know the password to
use the systems on multiple devices.

1 INTRODUCTION

1.1 Searchable Symmetric Encryption

Searchable symmetric encryption (SSE) (Curtmola
et al., 2006; Song et al., 2000) provides search func-
tionality against encrypted documents, and dynamic
SSE (DSSE) (Bost, 2016; Bost et al., 2017; Cash
et al., 2014; Etemad et al., 2018; Chamani et al., 2018;
Kamara and Papamanthou, 2013; Kamara et al., 2012;
Kim et al., 2017; Lai and Chow, 2017; Miers and
Mohassel, 2017; Naveed et al., 2014; Stefanov et al.,
2014; Sun et al., 2018; Yoneyama and Kimura, 2017;
Shibata and Yoneyama, 2021; Watanabe et al., 2021)
allows us to update encrypted databases. For exam-
ple, in practical applications, when encrypted stor-
age is constructed, the database is updated frequently;
thus, DSSE is employed. As a fundamental security
of DSSE, Stefanov et al. (Stefanov et al., 2014) de-

a https://orcid.org/0000-0002-8969-3581
b https://orcid.org/0000-0002-4929-8974
c https://orcid.org/0000-0003-4028-8603

fined forward privacy, which guarantees that even if
some data are added, information about whether the
data contain keywords that have been searched previ-
ously is not revealed.

DSSE prevents data leakage from external stor-
ages, e.g., on clouds, because all stored data are en-
crypted. Such a DSSE-based storage system is de-
scribed as follows. A user selects a key k that is
kept secret, and an identifier id is associated with
each file fid. Here, assume that no information of
fid is revealed from id. A storage server manages an
encrypted database that comprises the pair (id,cid),
where cid is the ciphertext of fid. Let Wid be a set of
keywords of file fid with identifier id. The user com-
putes a search query using k, a keyword to be searched
ω ∈Wid, and the state information. The user sends
the query to the server, and then obtains cid in which
the corresponding fid (i.e., the decryption result of cid
using k) contains ω. No information of ω is revealed
from the query. More precisely, a leakage function is
defined, and no information of ω is revealed besides
this function. Finally, the user obtains fid by decrypt-
ing cid using k.

106
Emura, K., Ito, R., Kanamori, S., Nojima, R. and Watanabe, Y.
State-free End-to-End Encrypted Storage and Chat Systems based on Searchable Encryption.
DOI: 10.5220/0011045200003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 106-113
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

A secure storage system can be constructed eas-
ily from DSSE; however, many issues must be con-
sidered if such a system is launched in practice. For
example, a set of keywords Wid, which is assumed to
be given in advance in DSSE, must be defined. Al-
though a promising approach is to employ a morpho-
logical analysis tool, this approach introduces other
issues, e.g., selecting the most appropriate tool. In
addition, in a storage system, an independent area is
assigned to each user; thus, authentication and the
user login process must also be considered. More-
over, DSSE attempts to prevent information leakage
against the server; thus, we must also consider cases
where search queries sent from users are modified in
the communication channel. We must also consider
the case where multiple users share a key, e.g., a se-
cure chat system, where the ciphertexts of chat history
are preserved on the server, each user can search chat
messages owing to DSSE, and each user reads them
in a plaintext manner by locally decrypting the cipher-
texts. Here, we must consider how to share a secret
key among multiple users, and, if the state informa-
tion (which is updated periodically and used to gen-
erate search queries) must be managed, then it must
also be shared among users, which represents an ad-
ditional synchronization problem. Note that users do
not possess public key certificates in many cases, e.g.,
smartphones; thus, man-in-the-middle attacks can be
made by an active adversary that controls the commu-
nication channel among users. In summary, it would
be beneficial to address these issues (in addition to
DSSE) in secure systems.

1.2 Our Contribution

In this paper, we implement two systems based
upon the DSSE scheme proposed by Watanabe et
al. (Watanabe et al., 2021), i.e., a secure storage sys-
tem (for a single user) and a chat system (for multiple
users). Watanabe’s DSSE protocol is state-free, which
means that if a user knows a (stateless) secret key,
then no other state information is required. This al-
lows us to consider multiple users easily, and we only
need to handle key agreement. In other words, we
do not have to consider the synchronization of state
information.1 By combining a key agreement proto-
col (which is explained later) and the Watanabe DSSE
protocol, these two systems are state-free; thus, the
user can use the systems via a web browser (without
considering devices) if they know the appropriate lo-
gin information (i.e., the user ID and password).

1To the best of our knowledge, Watanabe’s DSSE proto-
col is the first state-free construction with forward privacy;
thus, we employed this protocol in this paper.

Security Model. In our system, we prepared two
(semi-honest) servers, i.e., an authentication server
(to manage login information) and an application
server (that preserves encrypted data and responds to
the users’ search queries). We considered a realistic
situation where two servers have public key certifi-
cates via a public key infrastructure (PKI), and the
users do not have certificates. Here, we pursue end-
to-end encryption (E2EE), i.e., only the correspond-
ing users have a secret key, and no server can observe
the plaintext data (even two servers collude with each
other). Thus, we considered a relaxed security model,
i.e., unsynchronized active adversaries, presented by
Costea et al. (Costea et al., 2018). Costea et al. pro-
posed the secure multipath key exchange (SMKEX)
protocol, which is secure against unsynchronized ac-
tive adversaries. The SMKEX protocol allows chat
users to share a secret key without assuming a PKI.

Our Key Agreement Protocol. To realize E2EE, the
shared key must be kept secret; thus, we must con-
sider how to preserve key secrecy on, for example, a
local user device. However, this requires additional
security assumptions, e.g., tamper resistance, and it
seems difficult to assume that all users have such a
device, as in certificates. In addition, it would be
beneficial to access the systems via multiple devices
without synchronization; thus, we propose a secure
key agreement protocol that combines the SMKEX
protocol and login information (password). The pro-
posed secure key agreement protocol does not require
additional (tamper-resistant) devices. Here, a DSSE
secret key is defined by the password and a random
value preserved in the application server. Then, when
a user logs into the system, they obtain the random
and compute the DSSE secret key locally. Although
this is similar to password-based authenticated key
exchange (PAKE) (Katz et al., 2001), no secret value
shared in advance is required in the proposed protocol
(under relaxed security). By combining the key man-
agement protocol and Watanabe’s state-free DSSE
protocol, users can access the systems on multiple de-
vices, and state-free E2EE storage and chat systems
can be constructed.

Concierge Functionality. We also consider the ex-
plainability of the system. Typically, general users
are not aware SSE; thus, such secure systems should
be used without recognizing the underlying crypto-
graphic tools. Even for general users, it is highly
desirable to easily explain how data are encrypted,
how encrypted data are preserved on external stor-
age devices, and so on. Thus, we also implemented
a concierge functionality where DSSE-related data
processing can be viewed. In the storage system
(concierge mode), the encrypted file names and the

State-free End-to-End Encrypted Storage and Chat Systems based on Searchable Encryption

107

corresponding ciphertexts are displayed. In addi-
tion, when a keyword is searched, the correspond-
ing trapdoor is displayed. These show the application
server’s point of view. The chat system also supports
concierge mode. Due to the page limitation, we omit
showing the functionality and see our preprint version
for details (Emura et al., 2021).

1.3 Related Work

CryptDB (Popa et al., 2015; Popa et al., 2011; Popa
et al., 2012) is a popular encrypted database system
in which SQL queries are executed on encrypted data.
As discussed in the literature (Popa et al., 2014), the
application server obtains access to the unencrypted
data and receives each user’s key when a user logs
in. In this sense, it is not an E2EE system. Popa
et al. (Popa et al., 2014) proposed Mylar, which is
a platform to build web applications using a multi-
key DSSE protocol (Popa and Zeldovich, 2013). They
also published the kChat chat service, which is based
on Mylar. Although they insisted that Mylar protects
data confidentiality against attackers who have full ac-
cess to the servers, Grubbs et al. (Grubbs et al., 2016)
demonstrated that Mylar is vulnerable against active
adversarial servers that modify the encryption algo-
rithm. Here, we assume that the two servers in our
systems are semi-honest; thus, Mylar might be em-
ployed. However, this is not dynamic and requires
paring groups; thus, we employ Watanabe’s DSSE
protocol.

Chen et al. proposed password-authenticated
searchable encryption (PASE) (Chen et al., 2021). As
in our protocol, a password can be used to outsource
encrypted data and can be used for keyword search.
Moreover, they also employed two server model, and
as in our protocol, no single server can mount an of-
fline attack on the user’s password. Unlike to our
protocol, PASE does not consider multiple users who
have own password respectively but share a common
encrypted data.

Secure messaging protocols have been widely re-
searched, e.g., Signal and WhatsApp. Unlike to our
E2EE systems, they do not consider the search func-
tionality over encrypted data. Crypto-chat (cry) was
established for secure messaging, where users share
passwords, and encrypted messages are decrypted on
the device only. To the best of our knowledge, no
search functionality against encrypted data is sup-
ported.

2 PRELIMINARIES

2.1 Watanabe et al. DSSE

In this section, we introduce the Watanabe DSSE pro-
tocol (Watanabe et al., 2021). Let π = {πk : {0,1}∗→
{0,1}λ+`}k∈{0,1}κ be a variable input-length pseudo-
random function, where λ is the keyword length, ` is
the identity length, and κ is the key length, which are
all polynomial of the security parameter. Typically,
the DSSE protocol does not explicitly consider data
encryption; however, here we consider it explicitly
because the search result is a ciphertext in the storage
and chat systems.

Setup: A user selects a secret key k ∈ {0,1}κ. For
the simplicity, we assume that k is also used for
data encryption.

Update: When data are preserved on the server, the
user computes πk(ω, id) for all ω ∈Wid. Here,
Wid is a set of keywords in the file fid with the
identifier id. The set of identifiers I is considered
to be the state information, which is updated pe-
riodically according to the current database. The
user encrypts fid using k and sends id, πk(ω, id),
and the ciphertext cid to the server. Then, the
server preserves (id,cid) on the address πk(ω, id).
When data are removed, the user sends the id of
the removed data to the server, and the server re-
moves (id,cid).

Search: If the user searches files containing keyword
ω, the user computes a trapdoor πk(ω, id) for all
id ∈ I and sends a search query {πk(ω, id)}id∈I .
The server sends (id,cid) preserved on the address
πk(ω, id). Finally, the user decrypts cid using k
and obtains fid.

In the Watanabe DSSE protocol, the server is
modeled as semi-honest, i.e., it always follows the
protocol procedure but may extract information. As-
sume that id does not reveal any information of fid.
Then state information I = {id} can be publicly avail-
able, and simply the server preserves I and sends it to
the user before the user searches. The server knows
ciphertexts cid and pseudorandom numbers πk(ω, id).
Moreover, queries {πk(ω, id)}id∈I are computed for
the current database. Thus, the Watanabe DSSE pro-
tocol supports forward privacy and is state-free.

2.2 SMKEX and Unsynchronized
Adversaries

In this section, we introduce SMKEX proposed by
Costea et al. (Costea et al., 2018) and its security

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

108

model. In the two adversaries case which we also
employed, unsynchronized adversaries are defined as
follows:

Definition 1 (Costea et al., 2018). Two adversaries
X1 and X2 are said to be unsynchronized (writ-
ten X1/X2) if they can only exchange messages
before the start and after the end of a specific pro-
tocol session.

For example, let two active adversaries be considered
and two paths be prepared. Then, one active adversary
can observe and modify data on the first path, and the
other active adversary can also observe and modify
the data on the second path; however, these adver-
saries cannot communicate with each other. Costea et
al. proposed the SMKEX protocol, which is secure
against the adversaries.

The SMKEX protocol is described as follows.
Essentially, it is a simple Diffie-Hellman (DH)-type
key exchange with an additional confirmation phase.
Here, let G be a group with prime order p and let
g ∈ G be a generator. Two users, i.e., Alice and
Bob, would like to share a key. Then, Alice (resp.

Bob) selects x $←− Zp (resp. y $←− Zp) and computes
gx (resp. gy). Note that gx and gy are not long-
lived keys, and they need to choose them for each
key exchange. Through Path 1, Alice sends gx to
Bob, and Bob sends gy to Alice. Note that these
values may be modified because the adversary is ac-
tive. Alice further selects a nonce NA and sends it to
Bob in Path 2. Then, Bob selects a nonce NB, com-
putes hsess= Hash(NA,gx,NB,gy), and sends NB and
hsess to Alice in Path 2. Alice then checks whether
hsess = Hash(NA,gx,NB,gy) holds. Since the adver-
saries are unsynchronized, even if one adversary ob-
serves gy in Path 1, the adversary cannot compute
Hash(NA,gx,NB,gy) and send it to Alice in Path 2.
Here, the actual shared key (application traffic key
atk) is computed according to RFC5869 (Krawczyk
and Eronen,), where a negotiated secret string is com-
puted from the DH key gxy with a 0 seed via HKDF-
extract, and atk is the HKDF-expand value of the
string.

3 PROPOSED SYSTEMS

In this section, we present our storage and chat sys-
tems.

3.1 Common Part

DSSE Library. We implemented our DSSE library
in the C programming language. Here, we defined the

APIs by following the DSSE syntax (Setup,Update,
Search). When data are added, a trapdoor is com-
puted for the data. In addition, when data are re-
moved, the user sends the corresponding id, and the
server removes (id,cid). In other words, no cryp-
tographic operations are required. Thus, we imple-
mented the Add API as Update and did not imple-
ment the Delete API in the library. We employed
OpenSSL (1.1.1h) to select k randomly, and HMAC-
SHA256 as πk.2 We also employed the WebCrypto
API, which is a JavaScript API, to implement the en-
cryption functionality as a web application. For en-
cryption, pseudo-randomness against chosen plain-
text attack (PCPA) security (Curtmola et al., 2006)
is required.3 Thus, we employed AES-CTR with a
256-bit key. In addition, we employed MeCab (MeC)
as the underlying morphological analysis tool. Note
that we used the wasm MeCab library (v 0.996; ipadic
dictionary).4 After executing the morphological anal-
ysis tool, trapdoors are generated using the Add API.
To the best of our knowledge, “pneumonoultramicro-
scopicsilicovolcanokoniosis” (containing 45 charac-
ters) is the longest English word; thus, we set λ = 45.

System Architecture. We prepared an authentication
server to manage user login information and applica-
tion server to preserve the encrypted data and respond
to the users’ search queries. A user can use the DSSE
library via a web browser (WebAssembly). In this
implementation, we employed Amazon Elastic Com-
pute Cloud (Amazon EC2)5 and assumed that the two
servers have public key certificates. We also assumed
that the communication channel between the user and
the application server is secured via transport layer
security (TLS). The system architecture is shown in
Fig. 1

Login Interface. In this implementation, the login
interface is common to both systems, and the user se-
lects the storage or chat system. Here, we employed a
simple login system, where each user has a username
uname and password pw. The authentication server
preserves Hash(pw) with uname, and the user sends
(uname,Hash(pw)) via TLS to the server. The gener-

2The Watanabe DSSE protocol requires that (1)
πk(ω, id) is pseudorandom and (2) the probability that a
probabilistic polynomial-time adversary finds two distinct
inputs (ω, id) 6= (ω′, id′) where πk(ω, id) = πk(ω

′, id′) holds
is negligible for the security parameter. Thus, we employed
HMAC-SHA256 in our implementation.

3The reason behind is that the simulator just responds a
random value in the security proof. Thus, a standard CPA
security is also enough owing to the indistinguishability of
ciphertext of 0.

4https://github.com/fasiha/mecab-emscripten
5https://aws.amazon.com/jp/ec2/

State-free End-to-End Encrypted Storage and Chat Systems based on Searchable Encryption

109

������ �����

�	
�����	�

�������
���������������������

���	���	�������	�

Figure 1: System Architecture.

ation of the DSSE secret key k is explained later. The
application server preserves (id,cid) as mentioned in
Watanabe’s DSSE protocol. Here, id is generated
by the universally unique identifier (UUID) version
4 (Leach et al., 2005). It does not take file informa-
tion as input; therefore, the requirement is satisfied,
i.e., id does not reveal any information of fid. The
application server also preserves the state information
I = {id} for each user.

3.2 Our Storage System

In this section, we give our storage system.

DSSE Key Generation. A user generates a DSSE
key k as follows. First, the user selects a random value
R ∈ {0,1}κ, where κ is the security parameter, and
we set κ = 256. In the user registration phase, the
user selects two different passwords. From a usabil-
ity and practicality perspective, we assume that the
user selects one password PW, and the system sep-
arates it such as PW = pw||pw′.6 The user sends R
and (uname,Hash(pw)) via TLS to the authentica-
tion server, and the server preserves R in addition to
(uname,Hash(pw)) where Hash is SHA256.7 Then,
a DSSE secret key is defined as

k = R⊕Hash(pw′)

6E.g., the first half and the second half, or more
generally, PW is divided into pw||pw′ where |pw| =
floor(|PW|/2) and |pw′|= ceiling(|PW|/2).

7We can employ some zero-knowledge proof system
to demonstrate that the user actually knows pw, e.g., zk-
SNARK (Groth, 2016). Here, the communication channel
is secure (TLS), and there is no intermediate adversary that
can observe or modify Hash(pw); thus, we did not further
consider it in this implementation. However, the system can
be extended easily in this sense.

where⊕ is a bitwise exclusive OR. In the login phase,
the user sends uname and Hash(pw) to the application
server via TLS, and the server returns R if Hash(pw)
is preserved with uname. This structure allows the
user to generate the DSSE secret key k without re-
quiring additional information (besides uname, pw,
and pw′). Briefly, R is random, and no information
of k is revealed from R. Even if the authentication
server recovers pw from Hash(pw) via an offline dic-
tionary attack, no information of k is revealed because
pw′ is only used locally by the user. As a potential at-
tack, if the authentication server obtains a ciphertext
cid, then the server performs an offline dictionary at-
tack where choose pw′, compute k = R⊕Hash(pw′),
and check whether the decryption result of cid using
k is meaningful, e.g., whether a readable file is recov-
ered or not. Note that cid is sent from the user to the
application server via TLS, which means that the au-
thentication server does not perform this attack unless
the authentication and application servers collude.

Secure Storage. When the user stores a file on the
application server, the file is encrypted automatically.
When a user downloads a file to the application server,
the file is decrypted automatically. Although the file
names are encrypted, they are also decrypted auto-
matically and displayed as usual. Thus, users are not
required to aware DSSE.

3.3 Our Chat System

Here, we describe the chat system. The main differ-
ence from the storage system is the preparation of a
random value R for each room in the chat system. In
addition, a DSSE key is shared to users belonging to
the room. Here, we assume that Alice creates a room
and invites Bob to the room, and then both Alice and
Bob are registered in the system (i.e., they have their
own storage). Let pwA and pw′A (pwB and pw′B) be Al-
ice’s (Bob’s) two passwords. We assume that there are
two different communication paths as in the SMKEX
protocol. Concretely, we consider the following.

Path 1: Alice ↔ the authentication server ↔ Bob
which are secure due to TLS.

Path 2: Alice↔ Bob which is different from Path 1
and we simply assume an e-mail system.

In other words, the system is secure if the authenti-
cation server cannot read e-mails sent from Alice to
Bob and from Bob to Alice, which is a realistic as-
sumption. Finally, the authentication server preserves
the random values RA and RB for Alice and Bob, re-
spectively. Then, the room key k is defined as k =
RA⊕Hash(pw′A)=RB⊕Hash(pw′B). Our main idea is
to encrypt the DSSE key by using a SMKEX key atk,

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

110

Figure 2: Our Key Agreement Protocol Based on SMKEX.

and Alice sends the ciphertext to Bob. Then, Bob can
obtain k and define RB such that RB = k⊕Hash(pw′B).
This protocol allows Alice and Bob to log into the
chat system (similar to the storage system). The ac-
tual key agreement is described as follows (Fig. 2).

Alice: Choose a random value RA ∈ {0,1}κ. Set
the DSSE key for the room k = RA⊕Hash(pw′A).

Choose x $←− Zp and compute a SMKEX public
key gx. Send gx and RA to the authentication
server (via Path 1).

Authentication Server: Preserve RA with the user
name Alice. Send gx to Bob (via Path 1).

Bob: Choose y $←− Zp and compute a SMKEX public
key gy. Send gy to the authentication server (via
Path 1).

Authentication Server: Forward gy to Alice (via
Path 1).

Alice: Choose a nonce NA and send it to Bob (via
Path 2).

Bob: Choose a nonce NB, compute hsess =
Hash(NA,gx,NB,gy), and send NB and hsess to Al-
ice (via Path 2).

Alice: Compute Hash(NA,gx,NB,gy) and if it is the
same as hsess, then derive atk (as in SMKEX, we
employ HKDF-extract and HKDF-expand defined
in RFC5869 for key derivation) and encrypt k us-
ing atk. We denote the ciphertext C = Encatk(k)
and assume AES-GCM256. Send C to the authen-
tication server (via Path 1).

Authentication Server: Forward C to Bob (via Path
1).

Bob: Derive atk, decrypt C using atk, and obtain k.
Define RB = k⊕Hash(pw′B) and send RB to the
authentication server (via Path 1).

Authentication Server: Preserve RB with the user
name Bob.

Here, RA is chosen independently from k, pwA,
and pw′A. Thus no information of them is revealed
from RA directly. Moreover, k is encrypted by atk and
due to the security of SMKEX, only Alice and Bob
know atk. Thus, no information of k is revealed from
C. Finally, the authentication server knows RA and
RB; however, as in the storage system, the authentica-
tion server does not know pw′A and pw′B. Therefore,
the authentication server cannot obtain k. Although
Alice knows k, she does not know RB because it is
sent via a TLS communication between the authenti-
cation server and Bob. In other words, Alice cannot
extract Hash(pw′B) from k. However, if Alice and the
authentication server collude, then Hash(pw′B) can be
extracted from k and RB that allows they can observe
Bob’s storage and his chat messages sent in other
room. Thus, we assume that the authentication server
does not collude with any user.

Secure Chat. When a user posts a message to the
application server, the message is encrypted automat-
ically, and when a user displays a message, the mes-
sage is decrypted automatically. Thus, users are not
required to aware DSSE.

State-free End-to-End Encrypted Storage and Chat Systems based on Searchable Encryption

111

4 PERFORMANCE ANALYSIS

We employed AWS EC2 (t2.micro (vCPU1, 1GiB
memory), OS: Ubuntu 20.04, CPU: Intel(R) Xeon(R)
CPU E5-2676 v32.40GHz) as the authentication and
application servers, and OS: Windows 10 Pro, CPU:
Intel® Core™ i7-8565U CPU 1.80GHz as a user. We
compared our system to a non-DSSE system. In this
non-DSSE case, we employed a classical inverted in-
dex method as a searching method for the storage sys-
tem, and SELECT supported by PostgreSQL8 for the
chat system.

Storage System. We used copyright-free Japanese
books published by Aozora Bunko.9 For example,
Botchan (Soseki Natsume) contains approximately
100,000 characters. When a file was uploaded, the
runtime was 13.7 s in the non-DSSE case and 13.5
s in the DSSE case. We consider that the DSSE
case was more efficient because indexes are gener-
ated in the non-DSSE case, whereas this procedure
is not required in the DSSE case. When a keyword is
searched, we gave the case when a keyword is found
(Search Hit) in Table 1, and the case when a keyword
is not found (Search does not Hit) in Table 2, re-
spectively. Due to the AWS environment, it appears
that computation resources are not always guaranteed;
thus, there were fluctuations in run times; however,
we found that the run time is generally linearly de-
pendent on the number of files.

Table 1: Storage System: Search Hit (msec).

Cases \# Files 1 3 5 10
Non-DSSE(A) 54.0 55.5 62.5 53.5

DSSE(B) 82.5 89.0 112.0 103.5
(B)-(A) 28.5 33.5 49.5 50.0

Table 2: Storage System: Search does not Hit (msec).

Cases \# Files 1 3 5 10
Non-DSSE(A) 54.0 56.0 49.0 55.0

DSSE(B) 59.5 75.0 56.5 70.5
(B)-(A) 5.5 19.0 7.5 15.5

Chat System. We used Tweet data posted by NICT
official publicity.10 When a message was posted, the
running time was 35.0 ms in the non-DSSE case and
66.4 ms in the DSSE case. Although it becomes
worse almost twice, it seems acceptable for practice
application. When a keyword ω is searched, we gave
the case when a keyword is found (Search Hit) in

8https://www.postgresql.org/
9https://www.aozora.gr.jp/

10https://twitter.com/NICT Publicity

Table 3, and the case when a keyword is not found
(Search does not Hit) in Table 4, respectively. Note
that the difference (B)-(A) increased as number of
messages increased due to the DSSE.

Table 3: Chat System: Search Hit (msec).

Case \# Messages 20 40 60
Non-DSSE(A) 43.8 41.0 61.2

DSSE(B) 114.6 129.4 158.2
(B)-(A) 70.8 88.4 97.0

Table 4: Chat System: Search does not Hit (msec).

Case \# Messages 20 40 60
Non-DSSE(A) 32.4 39.4 46.4

DSSE(B) 68.2 103.8 131.2
(B)-(A) 35.8 64.4 84.8

5 CONCLUSION

In this paper, we implement secure storage and chat
systems from the Watanabe et al.’s state-free DSSE
scheme and our key agreement protocol that com-
bines the SMKEX protocol and login information
(password). Encrypted Files and messages are stored
on the application server, and users can search them in
a secure manner, i.e., the server does not know what
keyword is searched. Owing to state-freeness, no ad-
ditional tamper-resistant device is required, and users
who know the password to use the systems on multi-
ple devices.

Owing to the SMKEX protocol, we assume two
different communication paths, TLS and an e-mail
system. Discussing whether this selection is reason-
able in practice, especially considering a recent work
by Fischlin et al. (Fischlin et al., 2021) that showed
multipath TCP can be used for SMKEX, and imple-
menting the key agreement protocol part are left as
future works of this paper.

ACKNOWLEDGEMENTS

The authors thank Mr. Satoru Kanno (Ierae Se-
curity, Inc.), Dr. Yumi Sakemi (Ierae Security,
Inc.), Prof. Tetsu Iwata (Nagoya University), and
Prof. Shuichi Hirose (University of Fukui) for
their invaluable comments and suggestions. This
work was supported by JSPS KAKENHI Grant
Numbers JP21K11897, JP21H03441, JP18K11293,
JP18H05289, and JP21H03395.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

112

REFERENCES

Crypto-chat. http://www.crypto-chat.com/.
MeCab: Yet another part-of-speech and morphological an-

alyzer. https://sourceforge.net/projects/mecab/.
Bost, R. (2016). ∑oϕoς: Forward secure searchable encryp-

tion. In ACM CCS, pages 1143–1154.
Bost, R., Minaud, B., and Ohrimenko, O. (2017). Forward

and backward private searchable encryption from con-
strained cryptographic primitives. In ACM CCS, pages
1465–1482.

Cash, D., Jaeger, J., Jarecki, S., Jutla, C. S., Krawczyk, H.,
Rosu, M., and Steiner, M. (2014). Dynamic search-
able encryption in very-large databases: Data struc-
tures and implementation. In NDSS.

Chamani, J. G., Papadopoulos, D., Papamanthou, C., and
Jalili, R. (2018). New constructions for forward and
backward private symmetric searchable encryption. In
ACM CCS, pages 1038–1055.

Chen, L., Huang, K., Manulis, M., and Sekar, V. (2021).
Password-authenticated searchable encryption. Inter-
national Journal of Information Security, 20(5):675–
693.

Costea, S., Choudary, M. O., Gucea, D., Tackmann, B., and
Raiciu, C. (2018). Secure opportunistic multipath key
exchange. In ACM CCS, pages 2077–2094.

Curtmola, R., Garay, J. A., Kamara, S., and Ostrovsky, R.
(2006). Searchable symmetric encryption: improved
definitions and efficient constructions. In ACM CCS,
pages 79–88.

Emura, K., Ito, R., Kanamori, S., Nojima, R., and Watan-
abe, Y. (2021). State-free end-to-end encrypted stor-
age and chat systems based on searchable encryption.
IACR Cryptol. ePrint Arch., page 953.

Etemad, M., Küpçü, A., Papamanthou, C., and Evans, D.
(2018). Efficient dynamic searchable encryption with
forward privacy. Privacy Enhancing Technologies,
2018(1):5–20.

Fischlin, M., Müller, S., Münch, J., and Porth, L. (2021).
Multipath TLS 1.3. In ESORICS, pages 86–105.

Groth, J. (2016). On the size of pairing-based non-
interactive arguments. In EUROCRYPT, pages 305–
326.

Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., and
Shmatikov, V. (2016). Breaking web applications built
on top of encrypted data. In ACM CCS, pages 1353–
1364.

Kamara, S. and Papamanthou, C. (2013). Parallel and dy-
namic searchable symmetric encryption. In Financial
Cryptography and Data Security, pages 258–274.

Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dy-
namic searchable symmetric encryption. In ACM
CCS, pages 965–976.

Katz, J., Ostrovsky, R., and Yung, M. (2001). Efficient
password-authenticated key exchange using human-
memorable passwords. In EUROCRYPT, pages 475–
494.

Kim, K. S., Kim, M., Lee, D., Park, J. H., and Kim, W.
(2017). Forward secure dynamic searchable symmet-

ric encryption with efficient updates. In ACM CCS,
pages 1449–1463.

Krawczyk, H. and Eronen, P. HMAC-based extract-and-
expand key derivation function (HKDF). https://
datatracker.ietf.org/doc/html/rfc5869.

Lai, R. W. F. and Chow, S. S. M. (2017). Forward-secure
searchable encryption on labeled bipartite graphs. In
Applied Cryptography and Network Security, pages
478–497.

Leach, P., Mealling, M., and Salz, R. (2005). A Universally
Unique IDentifier (UUID) URN Namespace. https:
//tools.ietf.org/html/rfc4122.

Miers, I. and Mohassel, P. (2017). IO-DSSE: scaling dy-
namic searchable encryption to millions of indexes by
improving locality. In NDSS.

Naveed, M., Prabhakaran, M., and Gunter, C. A. (2014).
Dynamic searchable encryption via blind storage. In
IEEE Symposium on Security and Privacy, pages 639–
654.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). CryptDB: protecting confidential-
ity with encrypted query processing. In ACM SOSP,
pages 85–100.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2012). CryptDB: processing queries on an
encrypted database. Commun. ACM, 55(9):103–111.

Popa, R. A., Stark, E., Valdez, S., Helfer, J., Zeldovich,
N., and Balakrishnan, H. (2014). Building web ap-
plications on top of encrypted data using Mylar. In
USENIX NSDI, pages 157–172.

Popa, R. A. and Zeldovich, N. (2013). Multi-key searchable
encryption. IACR Cryptol. ePrint Arch., 2013:508.

Popa, R. A., Zeldovich, N., and Balakrishnan, H. (2015).
Guidelines for using the CryptDB system securely.
IACR Cryptol. ePrint Arch., 2015:979.

Shibata, T. and Yoneyama, K. (2021). Universally com-
posable forward secure dynamic searchable symmet-
ric encryption. In ACM ASIA Public-Key Cryptogra-
phy Workshop, pages 41–50.

Song, D. X., Wagner, D. A., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy, pages 44–55.

Stefanov, E., Papamanthou, C., and Shi, E. (2014). Practical
dynamic searchable encryption with small leakage. In
NDSS.

Sun, S., Yuan, X., Liu, J. K., Steinfeld, R., Sakzad, A.,
Vo, V., and Nepal, S. (2018). Practical backward-
secure searchable encryption from symmetric punc-
turable encryption. In ACM CCS, pages 763–780.

Watanabe, Y., Nakai, T., Ohara, K., Nojima, T., Liu, Y.,
Iwamoto, M., and Ohta, K. (2021). How to make a
secure index for searchable symmetric encryption, re-
visited. Cryptology ePrint Archive, Report 2021/948.

Yoneyama, K. and Kimura, S. (2017). Verifiable and for-
ward secure dynamic searchable symmetric encryp-
tion with storage efficiency. In ICICS, pages 489–501.

State-free End-to-End Encrypted Storage and Chat Systems based on Searchable Encryption

113

