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Abstract: Recent development of Vehicle-to-Vehicle (V2V) technologies enables the vehicles to communicate with 
each other and coordinate their manoeuvres. With such technologies an Advanced Driving Assistance System 
(ADAS) such as Adaptive Cruise Control (ACC) can be pushed to another level in conditional and highly 
automated vehicles, i.e. a network of cooperative connected vehicles in the form of Cooperative ACC (CACC) 
or even a platoon. In this paper, based on V2V communication between automated vehicles by using 
Manoeuvre Coordination Message (MCM), a decentralized platoon management is designed and 
implemented to manage the platooning state of each vehicle and when the vehicles are in a platoon or joining 
one, a cruise controller is designed and implemented to guarantee the desired headway to a preceding vehicle. 

1 INTRODUCTION 

An average driver has a very slow reaction time, 
around 2.3 seconds (McGehee, Mazzae, & Baldwin, 
July 2000). Driver errors play the most important 
role, with 94%, in a crash of light vehicles, based on 
the research done at National Motor Vehicle Crash 
Causation Survey (NMVCCS) (Transportation, 
March 2018). That is why the modern vehicles are 
equipped with a high number of sensors and 
Advanced Driver Assistance Systems (ADAS) to 
inform, warn and even intervene in critical driving 
situations. As further development of such systems, 
the partially-automated and automated driving 
functions aim to take the driver partially or 
completely out of the driving process. 

It is not far from imagination to think that in near 
future the traffic network will be a mixture of cars 
with different levels of automation. The conditional 
and highly automated vehicles (SAE3 & 4 level) 
(SAE International, 2021) will soon be on the road. 
These cars not only can monitor and sense the 
environment and plan and drive a trajectory, they can 
also cooperate with each other as well as with C-ITS 
infrastructure. This cooperation enabled by 
communication technologies, can be used to 
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coordinate the manoeuvre between automated 
vehicles. This coordination may be in the form of 
connected cruise control or a platoon. Vehicle 
platooning in general is a method, in which a string of 
vehicles drives together while keeping certain inter-
vehicular distances (or time-headways) by using 
various types of sensors and ways of communication, 
see Figure 1, which results in a more optimal use of 
the traffic network.  

This paper describes the aspects of vehicle 
automation and focuses particularly on a proposed 
trajectory planning module and decision-making 
module, see Figure 2. The decision-making module 
deals mostly with cooperation aspects of vehicle 
automation and it also analyses the road geometry, 
other road users and information received via 
communication and defines a strategy for the 
trajectory planning module. A platoon management 
module in the form of state machines has been 
designed as part of the decision-making module 
which deals with platooning vehicle states. How one 
car can form a platoon with another car and under 
which conditions that is possible; are the questions 
that can be answered through platoon management or 
platoon logic concepts. Based on the defined strategy 
from the decision-making module, the trajectory 
planner plans an optimal trajectory and delivers the 
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vehicle actuators input to the vehicle controller. The 
vehicle controller itself consists of several feedback 
and feedforward controllers to guarantee that the 
vehicle follows the planned trajectory. Another 
important part of the decision-making module, is the 
cooperative cruise controller which calculates a 
velocity for the vehicle based on the information 
received about the preceding vehicle via V2V 
communication. Driving with that velocity results in 
driving with shorter headway to the preceding vehicle.  

The majority of the research on the idea of 
platooning has been conducted in a highway-based 
situation. However, recently the research work has 
turned towards platooning in urban areas, where 
platooning is mostly linked to efficient intersection 
passing rather than reducing air drag. Although 
requiring a high amount of flexibility, the idea of 
urban platooning has already been tested in public 
traffic (Schindler, et al., 2020) (Dariani & Schindler, 
2019). However, it is still far from being normalized 
or standardized. The communication network needed 
for cooperation in this paper is only based on the 
preceding vehicle and no other information such as 
leader information is required. That makes the 
cooperation very dynamic especially in urban areas in 
which the string of the vehicles mostly does not have 
a common destination and the vehicles drive together 
only for few intersections. In this case forming and 
resolving a platoon is very dynamic and adaptive to 
urban area scenarios. 

 

Figure 1: String of vehicles driving with CACC. 

The main focus on this paper is on the trajectory 
planner and the decision making. Although the 
decision-making modules focuses on many aspects 
such as behaviour and intention prediction of other 
participants as well as analysing road geometry 
(Dariani & Schindler, 2019), in this paper only 
platooning related functionalities of the decision-
making module are discussed.  

The outline of the paper is as follows, chapter 2 
describes the vehicle automation and briefly explains 
the trajectory planner and decision-making module. 
In Chapter 3 the trajectory planner is explained. 
Chapter 4 is about the decision-making module with 
the focus on the platoon management module and the 
cruise controller. In Chapter 5 the functionality of the 
designed algorithms has been proven in simulations 
and tests in public traffic in a complex urban area, and 
finally Chapter 6 is conclusion.  

2 VEHICLE AUTOMATION 

The Automated Driving Open Research (ADORe) 
developed by the Institute of Transportation Systems 
of the German Aerospace Center (DLR), also 
available open source (Hess, et al., 2017), is a 
modular software library and toolkit for decision 
making, planning, control and simulation of 
automated vehicles has been used for this work, see 
Figure 2. As the same software is used in simulation 
and in research vehicles, the simulation experiments 
are very close to reality. Although many modules 
remain unchanged in this work such as Navigation, 
Controller, Data Model, etc., several modules have 
been completely changed or modified explicitly for 
this research work, such as Decision-Making, 
especially the platoon management module, 
Trajectory Planning and cruise controller. 

 

Figure 2: ADORe modular architecture. 

For Trajectory planning an optimal control 
approach is used which makes the planned trajectory 
the solution of a nonlinear optimization problem. One 
powerful method to solve a sequence of nonlinear 
Optimal Control Problems (OCP) is Sequential 
Quadratic Programming (SQP). The Newton method 
or quasi-Newton method finds a point where the 
gradient of the objective function of the OCP 
vanishes. The Newton or quasi-Newton method 
requires a starting point or an initial solution and the 
quality of the initial solution has high impact on the 
convergence rate of the optimization problem and 
consequently on the calculation time. Therefore, an 
initial solution is calculated based on the shortest path 
connecting current vehicle position to destination, 
which is already available via “Navigation” module. 
A “Decision-Making” module is designed on top of 
the trajectory planner to define the strategical and 
tactical tasks for the planner, i.e. the long- and short-
term tasks. Mainly due to the complexity of the non-
linear optimization problem, the planning horizon, ߬, 
has its real-time limitation and cannot merge to 
infinite. But the decision-making horizon can be 
extended to the vehicle perception sensors vision 
range or even to the communication range, which 
permits the trajectory planner to take required actions 
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for events out of the trajectory planner horizon and 
also, any possible cooperation between the vehicles, 
such as platooning, is decided by this module. Figure 
3 illustrates the planning horizon, green area, versus 
the decision-making horizon, red area.   

Another important part of the decision-making 
module is the cruise controller. Although it is called a 
controller, it does not have any direct interaction with 
vehicle actuators. Instead, while forming or driving in 
a platoon, based on the states of the preceding vehicle 
i.e. position and velocity, received via V2V, it 
calculates a velocity which results in a desired 
headway with preceding vehicle. This velocity is 
passed to the trajectory planner as a driving task, and 
the trajectory planner plans a trajectory based on the 
suggested velocity. 

The next chapter describes the concept and 
functionality of the trajectory planner. 

 

Figure 3: Trajectory planning horizon (green) vs. decision 
making horizon (red). 

3 TRAJECTORY PLANNER 

The trajectory planner consists of different 
components in which a non-linear optimal control 
problem is the core component. And as already 
mentioned an initial solution as optimization starting 
point is needed. Some of the main parts of the 
trajectory optimization are explained here. 

• Optimal Control Problem OCP:  

The nonlinear optimization problem is defined as min ,ݔ)ܬ (1) (ݑ

with differential equation modelling the vehicles 
dynamics and nonlinear constraints  ݔሶ = ,ݔ)݂ ௟݃(2) (ݑ ൑ ,ݔ)݃	 (ݑ ൑ ݃௨ (3)

as well as states and inputs boundaries ݔ௟ ൑ ݔ ൑ ௟ݑ௨ (4)ݔ ൑ ݑ ൑ ௨ (5)ݑ

The optimal control problem non-linearity and 
also high length of the planning course make the 
optimal control problem numerically difficult to solve 
and also it requires high computational time. A 
possibility to deal with this problem is using Moving-
Horizon approach (MHA) (Gerdts, 2003). In this 
approach, the global optimization problem covering 
the complete driving task is portioned into several 
local optimal sub-problems of ߬	second, or planning 
horizon, which are comparatively easier to solve. The 
local optimal control problem structure is similar to 
the global problem just that not the whole driving 
course is considered.  

 

Figure 4: The Moving-Horizon approach. 

That is very similar to how the human driver drives, 
i.e., in real driving scenario, the driver has limited 
information about the road and knows only about the 
area ahead. The moving-horizon approach also 
updates the optimal control problem by saving the 
solution for a part of the problem, ߦ, named increment 
as a portion of horizon ߬, and used it as the starting 
point for the next optimal sub-problem, see Figure 4.  

• Vehicle Model:   

To describe vehicle dynamics the single-track 
model also known as bicycle model is used. The 
vehicle is regarded as a rigid body moving in the ݕݔ-
plane and combines both wheels per axle into one. In 
the vehicle model roll and pitch angles are neglected 
and the tire dynamics are approximated by linear tire 
characteristic with saturation. The vehicle model (1) 
has the following state vector (6) ݔ and control vector ݔ .(7) ݑ = ,ݔ] ,ݕ ߮, ሶ߮ , ,ݒ ,ߚ ,ߜ 	[ሶߜ ݑ(6) = ,ሷߜ] 	[௫ܨ (7)
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The states variables are vehicle position in global 
coordinates [,ݔ	ݕ], vehicle yaw angle ߮ and yaw rate ߮̇, vehicle velocity ݒ, vehicle chassis sideslip angle ߚ, 
steering angle ߜ and steering rate ߜሶ . The control 
variables are steering angle acceleration ߜሷ  to 
guarantee that the vehicle applied steering angle ߜ is 
smooth (two times continuous differentiable) and 
longitudinal force ܨ௫ .The systems of differential 
equations is discretized by applying Runge-Kutta 
integration of fourth order as numerical integrator, 
with step size of Δݐ and planning horizon of ߬, see 
Figure 4.  

• Objective Function:	
The desired driving behaviour is the result of an 

objective function definition of the optimal control 
problem. Therefore, the objective function must 
result in a collision free and comfortable trajectory. 
The objective function can be written as (8)  ݔ)ܬ, (ݑ = ,ݔ)ℒܬ (8) (ݑ

Index ℒstands for Lagrange term, equation (9) which 
is an additional state inside the Ordinary Differential 
Equation (ODE) of the vehicle model (2). Steering 
rate ߜሶ  and steering acceleration ߜሷ  are inside the 
objective function to make the steering behaviour 
smooth and avoid uncomfortable steering wheel 
impulse. Δݒ	is the difference between desired speed 
and vehicle current speed. The desired speed in non-
cooperative model is calculated based on the 
Intelligent Driver Model integrated in the decision-
making module, and in the cooperative mode, i.e. 
platooning, it is calculated by the platoon controller. 
Δ݀ is the lateral vehicle distance to the center line. ሷࣲ  
and ሸࣲ are acceleration and jerk in the transverse and 
longitudinal direction as comfort parameter. The last 
two terms will not prevent rapid change of direction 
therefore ሶ߮ 	is introduced to attenuate high yaw rates. 
And ࣱ is a diagonally matrix containing weighting 
coefficients of each component.  

,ݔ)ℒܬ (ݑ = ࣱ න ℒ(ߜሶ, ,ሷߜ ,ݒ∆ ∆݀, ሷࣲ , ሸࣲ, ሶ߮ )௧೙ାఛ
௧೙  (9)

4 DECISION MAKING 

In order to take a decision for autonomous vehicles 
such as current driving speed, keeping the lane or 
changing the lane and etc. the dynamic of the traffic 
participants must be considered and based on that 
their trajectory and intention must be precited. 

While normal driving, the Intelligent Driver 
Model (IDM) is used in Decision Making module to 
calculate the velocity. IDM is a time-continuous car-
following model with the following ordinary 
differential equations ݔሶఈ = ݐఈ݀ݔ݀ = ఈ (10)ݒ

ሶఈݒ = ݐఈ݀ݒ݀ = ܽ ൭1 − ൬ݒఈݒ଴൰ఋ − ቆ൫ݒ)∗ݏఈ, Δݒఈ)൯ݏఈ ቇଶ൱ (11)

where, ݒ)∗ݏఈ, Δݒఈ) = ଴ݏ + ఈܶݒ − (12) ܾܽ√2ݒఈΔݒ

These are the velocity and acceleration equations for 
any vehicle ݏ .ߙఈ is the net distance to the preceding 
vehicle, ݔఈ is the position of the vehicle ߙ. Δݒఈ is the 
velocity difference, ݒ଴	is the desired velocity, which 
is the velocity at which the ego vehicle would drive 
on any empty road, ݏ଴  is the minimum desired net 
distance between ego vehicle and preceding vehicle, ܶ  is the desired time headway, ܽ  is the maximum 
possible acceleration and ܾ  is the comfortable 
braking deceleration. And finally, exponent ߜ  is 
usually set to 4. 
In this paper the main focus is on the cooperation, 
especially from platooning point of view, which is the 
platoon management and the cruise controller 
module, more information about other parts of 
Decision-Making module can be found in (Dariani & 
Schindler, 2019). 

4.1 Platoon Management 

The platoon management module is a sub-module of 
the decision making. The main task of the platoon 
management is to determine if the platooning with the 
preceding vehicle is possible or not. In that event, this 
module based on the information received from 
preceding vehicle via V2V communication, predict 
its intention and based on that the platooning state is 
defined. The platoon management module is state 
machine based and can be used in the CACC mode as 
well as Platoon mode. In the previous work done in 
the European Horizon 2020 project MAVEN, an 
extended CAM message was used for platooning 
information (Schindler, Dariani, Rondinone, & 
Walter, Dynamic and flexible platooning in urban 
areas, March 2018) (Schindler, Dariani, Rondinone, 
& Walter, Implementation and testing of dynamic and 
flexible platoons in urban areas, 2019). The problem 
with that approach was that the extended message 
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was not a standard message and only the vehicles 
inside the context of the project could understand and 
interpret the message. In this work we have used the 
Manoeuvre Coordination Message (MCM), which is 
a prominent candidate for becoming a standard 
message used to coordinate manoeuvres between 
automated vehicles (Lehmann & Wolf, 2018). 
Although this message is not designed for platooning, 
it is more capable for such an approach than standard 
CAM messages, as it contains also the planned 
trajectory of an automated vehicle. Here, the sketched 
draft of the MCM used in H2020 TransAID is used 
without modifications (Schindler, 2019). In this 
chapter the platoon management state machines are 
explained. 

The platoon management consists of two state 
machines, Platooning state machine and Distance 
state machine. As illustrated in Figure 5, each vehicle 
that can form a platoon has an implemented set of two 
separate state machines that cover the multiple 
potential states for platooning. The primary platoon 
state machine, which displays the vehicle’s current 
platooning status, serves as the foundation for all 
operations. There’s also the distance state machine, 
which is in charge of keeping track of the distance to 
the preceding car or opening up a space, mostly to 
react to a merge of other cars into the current ego lane. 
Both state machines are explained briefly in the next 
subsections, respectively. 

The platoon state machine depicts the vehicle’s 
overall condition. It specifies whether the 
autonomous vehicle is now capable of driving in a 
platoon or not. If the vehicle is unable to create or join 
a platoon, e.g. due to a failure in the communication 
module, or when the platooning mode has been 
disabled by the driver, the platooning state machine 
activates a transition to the state “Not able”. As a 
result, while in this mode, the vehicle must maintain 
a normal distance from other vehicles, therefore the 
distance state machine has the state “Normal 
Distance”. The state "able" is a composite state. This 
is the state machine’s default initial state. It is divided 
into four sub-states. “Want to form”, “Joining a 
platoon”, “in a platoon” and “Leaving a platoon”.  

The state "want to form" is a sub-state of the 
composite state "able". This is the “able” 
composite state’s initial state. The vehicle is 
attempting to form a platoon in this state. It is 
unrelated to any circumstance. It primarily acts as a 
state indicating that the vehicle is interested in 
platooning and that the system can presently form a 
platoon.   

 

Figure 5: Platoon management state machines. 

The state "joining" is a sub-state of the composite 
state "able". The vehicle is joining a platoon in this 
state. To look at it another way, the vehicle is in this 
state to achieve the desired time headway to the 
preceding vehicle. In this state, the distance state 
machine has a transition to “close distance” state. In 
the state "in a platoon" the vehicle is acting as a full 
platoon member. Besides, the vehicle is still 
interested in forming a platoon if it is the last or the 
first vehicle of the platoon. The distance state 
machine remains in “close distance” state.  
The state "leaving" indicates that the vehicle is 
currently leaving the platoon. The vehicle is not 
interested in forming or joining another platoon as 
long as it is in this state. When a single vehicle leaves 
the platoon, the condition "leaving" is reached. The 
distance state machine has a transition from “close 
distance” to “normal distance”. 

As already mentioned, in this work no platooning 
specific message is used, therefore the platooning 
state of the other road user is unknown and it must be 
predicted. It is though enough to know if the 
preceding vehicle is “able” or “not able” to do 
platooning or if it has “Want to form” or “leaving” 
state. And these states can be implicitly extracted 
from the MCM message. 

MCM has several containers and data frames, see 
(Schindler, 2019), but important for platooning use 
cases are the following: 
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Tolerated Distance Ahead: it is the distance to the 
trajectory points that other vehicles have to respect 
when they want to accept a desired trajectory of 
someone else. 

Tolerated Distance Behind: it is the distance to 
the trajectory points that the other vehicles have to 
respect when they want to accept a desired trajectory 
of someone else. 

Planned Trajectory: it is the future trajectory of 
the vehicle. 

Target Automation Level: it is the SAE level of 
the automation. 

Hence in the context of platooning, if a vehicle 
has an automation level greater or equal to 3 and 
broadcasts its current trajectory, then it has the “able” 
state, otherwise it is “not able”. Though the level of 
automation and current trajectory information are not 
enough, they must be combined with the tolerated 
distance ahead and behind to implicitly predict if the 
vehicle is in the state “want to form” or “leaving”. A 
vehicle which has the desire to form or join a platoon 
has a relatively short tolerated distance ahead and 
behind compare to the “leaving” vehicle. The exact 
distance threshold can be calculated based on the 
platooning desired time headway and velocity. 

Although the current platoon management is 
simpler compared to the MAVEN project (Schindler, 
Dariani, Rondinone, & Walter, Dynamic and flexible 
platooning in urban areas, March 2018) (Schindler, 
Dariani, Rondinone, & Walter, Implementation and 
testing of dynamic and flexible platoons in urban 
areas, 2019), many transitions remain unchanged or 
very similar. 

Cooperative Cruise Controller 

As explained, the cooperative cruise controller is a 
part of the decision-making process which runs in 
parallel to the trajectory planner and based on the 
latest information received via V2V communication 
calculates a desired velocity which must be followed 
in order to maintain the desired headway with 
preceding vehicle.  

In this paper we present two different approaches 
for the controller. The first one is a simple PD 
controller (13) and the second approach is an optimal 
control approach. (ݐ)ݑ = (ݐ)௉݁ܭ + ஽ܭ ݐ݀(ݐ)݁݀  (13)

The designed PD controller is based on the gap 
regulation controller for a cooperative ACC system of 
Milanes et. al. (Milanes, et al., 2014).  In our 
approach, unlike (Milanes, et al., 2014) no leader 

information is needed. Design a controller which uses 
not only preceding vehicle information, but also a 
leader results in string stability when the vehicles 
drive with extreme short distance. Anyhow that is not 
the main focus of this paper. On the other hand, in a 
string of several vehicles the V2V information must 
be analysed and be sorted to find out which 
information belongs to the preceding and which 
information belongs to the leader. And based on that 
information a mapping on a HD map must be done to 
calculate the net distance between ego and preceding 
vehicle, as well as between ego and leader vehicle. 
We believe for urban cooperation, considering the 
urban environment dynamic, an extreme short 
headway is not necessary, neither safe, therefore 
preceding vehicle information might be enough to 
design a cooperative cruise controller, but it does not 
guarantee the string stability.  

In Figure 6, (ݏ)ܩ denotes the vehicle model; the 
car-following policy with respect to the preceding 
vehicle can be represented with terms ௉ܲ(ݏ); ܭ௉(ݏ) is 
the controllers that control the time-gap error with 
respect to the preceding vehicle; (ݏ)ܦ represents the 
time delay in wireless communication; ௜ܷ  and ௜ܷିଵ 
are the control actions for the ego and the preceding 
vehicle, respectively. 

One of them is in charge of maintaining 
the present speed, but instead of using the ego 
vehicle’s or preceding vehicle’s speed as a feed-
forward term, the preceding vehicle’s target speed is 
used. This allows for faster vehicle reaction to speed 
changes and shorter transition times between throttle 
and brake actuations. The other term aims to keep the 
errors in the preceding ܭ௉(ݏ)  vehicle as little as 
possible.  ܭ௉(ݏ) = ݇ଵݏ + ݇ଶ (14)

The car-following policy can be defined as 

௉ܲ(ݏ) = ℎ௉(ݏ) + 1 (15)

where ℎ௉ is the time-gap target value to the preceding 
vehicle. The wireless communication system was 
expected to have no delay for the controller design, 
i.e., (ݏ)ܦ = 1. 

 

Figure 6: PD platoon controller. 
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Despite the fact that the PD controllers are easy to 
implement and they are effective, they do not use the 
full potential of the MCM which is the use of the 
current trajectory of the preceding vehicle. The PD 
controller requires only the next velocity and position 
of the vehicle. That is why with PD controller the 
transition from “normal distance” to “close distance” 
is not always smooth and comfortable, but once that 
the desired headway is reached, the PD controller 
functions properly. The above-mentioned problem is 
due the fact that in order to reach the desired time 
headway when the current time headway is bigger 
than the desired, an acceleration is calculated also 
when the preceding vehicle has a lower velocity or 
even stand-still. To overcome this problem, a second 
controller is designed for this work which uses the 
complete trajectory of the preceding vehicle, included 
in MCM, and calculates a velocity for the future time 
horizon. The predictive nature of this controller will 
avoid the above-mentioned problem. 

A simple vehicle longitudinal dynamics model is 
used for the optimal control with the following states; 
longitudinal acceleration, longitudinal velocity, 
progress which is the longitudinal position of the 
vehicle and an extra state for the Lagrange term of the 
objective function. The input, to be found by the 
optimizer, is the desired acceleration. ߬௘  represents 
the engine dynamics. ሶܽ = ݑ − ܽ߬௘ ሶݒ   = ሶݏ(16) ܽ =  ݒ

 
As mentioned, the objective function has only 
Lagrange part (17), as an extra state inside ODE of 
the vehicle longitudinal dynamics model. ܬℒ൫ݔ, ൯ݑ = ࣱන ℒ(ܶ, ݀, Δݒ)௧೙ାఛ௧೙  (17)

The preliminary objective is to keep the desired time 
headway ܶ. At low velocities the time headway will 
not guarantee a safe behaviour, that is why distance ݀ 
between ego and the preceding vehicle is calculated 
and the objective is to not pass the defined minimum 
distance. Δݒ is the difference of the velocity between 
the preceding vehicle and ego vehicle. This term 
makes the transition from “Normal distance” to 
“close distance” smooth and comfortable, especially 
while joining a low speed or standing still preceding 
vehicle. Boundaries can be applied to the states and 
input such as defining the maximum and minimum 
velocity, and acceleration. The boundaries and engine 

dynamics (16) make the optimization result feasible 
and customized for the vehicle dynamics. 

5 TESTS AND VALIDATION 

As previously mentioned, the simulation has been 
done in ADORe which contains all of the necessary 
data and components to create simulation scenarios 
with a large number of vehicles that can interact with 
one another and act like actual automobiles in diverse 
urban roads. The implementation in ADORe is very 
similar to the real-world implementation. All the 
simulation cars are equipped with MCM senders and 
receivers. Each car has also virtual sensors which are 
used to create an environment model. Figure 7 
illustrates the simulation environment of ADORe 
(Hess, et al., 2017). 

Although many scenarios can be tested in 
simulation, our focus is on the functionality of the 
predictive controller while joining a low speed 
preceding. In urban scenario, forming or joining at 
intersection is common, especially when 
infrastructure plays a role in traffic coordination. 
Joining a low speed or stand still vehicle is probable, 
but as mentioned, the PD cruise controller does not 
behave smooth in this case. That is why Figure 8 
illustrates the ego vehicle velocity, calculated with 
predictive controller, while joining and forming a 
platoon with a preceding vehicle with velocity zero 
which is 100 meters ahead. The ego vehicle can have 
a maximum velocity of 13.6 [݉/ݏ] but the vehicle 
does not exceed 9[݉/ݏ], as the velocity is calculated 
for a horizon of time and it is foreseen that a 
deceleration is required. That is why the ego vehicle 
decelerates smoothly till stand still. 

 

Figure 7: An example of ADORe simulation environment. 
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Figure 8: Velocity of the go while joining a stand still 
preceding. 

After several promising simulated runs the 
developed prototype has been tested under real 
conditions using DLR’s test vehicles on a public 
urban road. In this paper the main focus is on the 
urban driving scenario which was done on a street in 
Braunschweig-Germany by two highly automated 
vehicles of the German Aerospace Center’s Insitute 
of Transportation Systems (DLR), namely FASCarE 
and ViewCar 2, See Figure 9. Both cars have a similar 
sensor setup. In addition, both cars are equipped with 
V2X communication modules. Figure 10 illustrates 
the part of the road that has been used for the real 
urban scenario. As illustrated, the testing road has an 
intersection and traffic light phase is communicated 
via I2V communication to the vehicles. For the urban 
scenario the PD controller has been used 

Figure 11 illustrates the velocities of the 
preceding vehicle and ego in urban environment. 
Both vehicles had a safety driver on-board and at a 
given moment the automation has been activated and 
the data was recorded. After activation, both vehicles 
are in fully autonomous mode. Some important 
moments are numbered in figure 11. At “1”, the 
platoon management module of the ego vehicle, the 
follower, has been switched to “forming” and “close 
distance”, which resulted in acceleration of the 
following vehicle and closing the gap between two 
vehicles. At “2” the both vehicles are “in platoon”. 
While remaining in platoon, at “3” both vehicles 
approaching the intersection that has a red traffic 
light. Keeping the platoon stable while reducing 
speed till stand still is the main reason of choosing 
this road for validation. Both vehicles wait till green 
traffic light and after that they accelerate and remain 
in platoon till end of the track. 

 
 
 
 
 

6 CONCLUSIONS 

In this paper a decentralized approach for platoon 
management and control has been presented. The 
platoon management deals with platooning state of 
each vehicle, and the cooperative cruise controller 
calculates a velocity which must be followed in order 
to be in a stable platoon. Both of these modules are a 
part of decision-making module. Trajectory planner 
receives the tasks from decision-making module and 
plan a trajectory. The trajectory planner and decision-
making module functionalities have been approved in 
simulation, using ADORe and with real urban 
scenario test with two autonomous cars of German 
Aerospace Center. 

As next step, the predictive controller can be 
tested in urban scenario and also in simulation with a 
string of several vehicles. 

 

Figure 9: DLR’s test vehicles. 

 

Figure 10: Urban road used for validation. Braunschweig- 
Germany. 
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Figure 11: Velocity of the preceding and ego vehicle. 
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