
Machine Learning in Software Development Life Cycle:
A Comprehensive Review

Maryam Navaei and Nasseh Tabrizi
Department of Computer Science, East Carolina University, East 5th Street, Greenville, NC, U.S.A.

Keywords: Software Engineering, Software Development Life Cycle, Artificial Intelligence, Machine Learning, Machine
Learning Algorithms.

Abstract: This research concludes an overall summary of the publications so far on the applied Machine Learning (ML)
techniques in different phases of Software Development Life Cycle (SDLC) that includes Requirement
Analysis, Design, Implementation, Testing, and Maintenance. We have performed a systematic review of the
research studies published from 2015-2021 and revealed that Software Requirements Analysis phase has the
least number of papers published; in contrast, Software Testing is the phase with the greatest number of papers
published.

1 INTRODUCTION

As Software Engineering has become an essential
industrial domain and software systems have become
increasingly complex due to the performance
requirements of their operating environment, the
ability to design, develop, maintain, and adapt these
systems has surpassed human comprehension alone
(Elhabbash et al., 2019). Therefore, software systems
need to autonomously adapt to changing
environments to guarantee expected quality of service
(Wan et al, 2019).

Artificial Intelligence (AI) has a long tradition in
computer science. Since 1950 in its first three
decades, the academy and industry worked
diligently to reach to human level machine
intelligence. In retrospect that was an overly
optimistic expectation (Holzinger et al., 2018).
Nevertheless, the need for more automation and
intelligence have led to further advances in ML and
AI. Researchers are increasingly applying ML and AI
to remediate failures and inadequacies in the software
systems and the SDLC (Khomh et al., 2018). ML is a
branch of AI that uses data or former development
experience to enhance the performance standards of
software systems (Zhang et al., 2017, Zhu et al.,
2018).

Traditionally, software systems are built
deductively, by implementing the rules that
administer the system performances as program code.

However, with ML techniques, these rules are
collected from training data. Conventionally, ML
methods can learn a model’s parameters
automatically using training data and thus it can
create models with respectable performance that can
satisfy the software system requirements. ML has
achieved great success in challenging real-world AI
and data mining scenarios, such as object detection,
natural image processing, autonomous car driving,
urban scene understanding, automatic machine
translation of human speech, and web
search/information retrieval, among others (Gong et
al., 2019, Chen et al. 2015, Peng et al., 2017).

ML enables computer systems to use data,
examples, and experience without human
involvement but to replicate some form of human
intelligence. ML algorithms are utilized to help
computer systems learn rules from data (England,
2018). These technologies will be optimized to be the
core components in a variety of software-intensive
systems. Recent advances in ML have fostered
extensive interest in the Information Technology
industry to integrate AI capabilities into software and
services. Systems employing ML technologies, have
distinctive characteristics moderately distinctive from
those of the other software systems. Functionalities of
ML based systems heavily depend on the quality of
training datasets used to create the predictive models.
Changing the training dataset has significant impact
on learning results and thus on functional behavior of
programs (Bird et al., 2017, Nakajima, 2018).

344
Navaei, M. and Tabrizi, N.
Machine Learning in Software Development Life Cycle: A Comprehensive Review.
DOI: 10.5220/0011040600003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 344-354
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ML is used to continuously improve system
performance and efficiency on a particular task by
helping computer systems to learn from experience
how to perform the job autonomously. ML plays a
significant role in SDLC and has been used in variety
of domains (Alloghani et al., 2020, Shafiq et al., 2021,
Abubakar et al., 2020). For example, these domains
include defect prediction, requirements elicitation
etc. Therefore, ML is becoming one of the most
important technologies used in SDLC. It is being
applied to poorly understood problem domains where
little domain knowledge currently exists for the
humans to develop effective methodologies. These
scenarios include data mining large databases
containing valuable but undiscovered implicit
regularities, and domains where software systems
must adapt to changing conditions (Khomh et al.,
2018). ML has become the preferred technique for
developing practical Software Systems in Computer
Vision, Speech Recognition, Natural Language
Processing, Robot Control, Health Systems, Banking,
Defence, E-Commerce and many more environments
(Panichella and Ruiz, 2020, Bhatore et al., 2021).
Conventionally, developing software systems
necessitates on specifying the requirements in
advance to define how the system should behave.

ML techniques are being used to accelerate SDLC
and has been used in many areas including behavior
extraction, testing, and bug fixing (Meinke and
Bennaceur, 2018, DE-Arteaga et al., 2018). This has
led to a new paradigm in technology invention.
During the SDLC, the development team must spend
significant time discussing how the system must
operate to decide which features should be prioritized
and which ones need to be eliminated. This
Requirement Analysis needs to be followed by
Design, Implementation, Testing and Integration, and
Maintenance phases (Cetiner and Sahingoz, 2018).

By utilizing ML algorithms, software developers
can accelerate the decision-making process based on
the previous projects to create data-driven business
decisions to ultimately help decrease the development
risks and costs. This is invaluable for software
companies. Since projects can go over costs and
deadlines, coming up with a precise budget and
schedule to develop software systems can be an
overwhelming task. Therefore, accurate estimation of
efforts is highly crucial for Software Project
Planning. With the help of ML techniques, the
development team can analyze data from past projects
to provide a more precise budget estimate and
delivery time frame (Yurdakurbann and Erdogan,
2018).

ML also has a great impact in decreasing the time
spent on prototyping as well as the number of expert
engineers required to develop the software. In
Software Testing, with the help of ML algorithms,
testers can come up with more accurate results to
reduce the errors in the system. ML techniques also
help accelerate the process of finding defects. Since
clean code is crucial for effective software
maintenance, large scale code refactoring is
unavoidable.

Utilizing ML techniques, developers can review
the code and maintain it automatically. Since
maintenance is one of the most critical yet expensive
phases of SDLC, this results in developing high
quality Software Systems. Traditional SDLC can
benefit from ML models for rapid prototyping,
intelligent programming assistants, automatic
analytics and error handling, automatic code
refactoring, and precise estimates and strategic
decision-making. Given the significant role that ML
techniques and AI-based systems can play in the
development of Software systems, it is very important
for both the Software Engineering and ML
communities to research and develop innovative
approaches to address the advantages and
disadvantages (Khomh et al., 2018, Abubakar et al.,
2020). Although ML datasets for SDLC analysis are
often poorly documented and maintained and do not
have clear creation processes (Hutchinson et al.,
2021) there are many advantages in utilizing ML
techniques.

Because of the significant role of ML techniques
in SDLC and their advantages, we have prepared an
overall review to see the impact of data analytics and
ML algorithms on each phase of the SDLC. We were
interested to identify phases in which ML models are
widely being utilized. Our goal was to see why
researchers focused more on certain phases than
others when it comes to utilizing ML methodologies.
We also wanted to see if ML techniques can be
applied to less popular phases as well.

To prepare our review, we collected and compiled
a database of almost 150 journal articles and
conference papers retrieved from ACM, IEEE and
Springer digital libraries within the past five years.
We created figures to demonstrate visually and
summarize current research trends. Our research
uncovers significant differences in the use of ML
methodologies in various aspects of Software
Engineering and the SLDC (e.g., Requirements
Analysis, Design, Implementation, Testing and
Maintenance). After a discussion of related work and
our methodology, we discuss our findings for each

Machine Learning in Software Development Life Cycle: A Comprehensive Review

345

phase of SDLC. We then conclude with a summary
of our work and suggestions for further research.

2 RELATED WORK

In this paper we review current research on
applications of ML to different phases of SDLC and
SE generally. Because of the popularity of
incorporating ML techniques into SDLC, several
prior researchers have conducted empirical studies of
SE for data science. One study focused on differences
between the development of ML systems and non-
ML systems in various aspects of SE. That study used
interviews to identify pain points from a general
tooling standpoint to discover the challenges and
obstacles of implementing visual analytic tools as
none of the SE phases have a developed set of tools
and methods (Kim et al., 2018, Giray, 2021). Another
study focused on characterizing professional roles
and practices regarding data science (Wan et al,
2019).

ML Software systems are challenging to test and
verify. Sometimes the ML model may be incorrect
even if the learning algorithm is executed properly
due to inaccurate training data. Traditional testing
techniques are insufficient for such systems.
Therefore, it is crucial for Software Engineers to
research and develop advanced ways to report these
challenges (Khomh et al., 2018). Software Engineers
focused on the challenge of verifying accuracy of
systems built using ML and AI models and testing
those systems.

Multiple previous literature reviews have been
written on applying ML algorithms to each phase of
SDLC (Talele and Phalnikar, 2021, Lima et al.,2020,
Sobhy et al., 2021, Syaeful et al.,2017). We came
across a publication that provides a broader context
that discusses the relationship of ML techniques and
its tools within SDLC stages which is related to our
work to some extend however their review was
performed for the period of 1991 to 2021(Shafiq et
al., 2021). Nonetheless, our paper utilizes a
systematic review methodology to study the impact
of ML across the entire SDLC in the most recent
publications (2015-2021) as opposed to focusing on a
single phase as seen in most publications. Our
research also makes an additional contribution by
identifying the four most popular ML algorithms in
overall SDLC. We studied those four techniques in
each phase independently to observe their overall
popularity based on each phase of life cycle.

3 METHODOLOGY

Initially, we intended to focus on publications for the
past decade (2010-2020). Due to overwhelming
number of publications, we finally decided to focus
our review on the journal articles and conference
papers published in the past five years. We realized
the application of ML in SDLC considerably
increased in the past ten years where it had a slow
start from 2010 to 2015 and then significantly boosted
from 2015 onward based on the number of
publications, because recent advances in ML greatly
impacted SDLS as ML techniques can change and
update software systems.

We used different keywords and queries to
retrieve our results from ACM, IEEE and Springer
databases. Some queries gave us our desired results in
IEEE and Springer whereas we had to modify our
keywords and queries to retrieve relevant
publications from ACM. Additionally, we found out
that ACM would return significant number of
irrelevant publications when using verbatim queries
utilized in the other two libraries. Therefore, we had
to apply more constraints when searching in ACM
database. For instance, we had to include ‘Artificial
Intelligence’ as a keyword to ensure our query
retrieved relevant results.

There were situations where our queries returned
similar or enhanced work in more than one
publication, we treated each of those as a separate
publication since each focused on a unique topic.
Also, there were situations where one ML technique
was utilized in multiple phases, we counted those
separately for each phase. The latter scenario led us
to study the four trendiest ML techniques in each
phase furthermore to have a more focused
observation.

4 CURRENT APPLICATIONS OF
MACHINE LEARNING TO
SDLC

ML plays a significant role throughout the SDLC. In
this section we discuss the impact of applying ML in
each phase of the SDLC:

• Software Requirements Analysis

• Software Architecture Design

• Software Implementation

• Software Testing

• Software Maintenance

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

346

We provide an overview of each phase of the SDLC
and discuss current research trends in ML for each
phase.

4.1 Software Requirements Analysis
and Machine Learning

Software Requirements Analysis (also called
Requirements Engineering) clarifies the
specifications needed for a software system to satisfy
the business requirements. High quality software
development strongly depends on clearly defined
Software Requirements (SR) that explains the needs
and expectation of the software in a very detailed
form (Navarro-Almanza et al., 2017). These
requirements must be documented, measurable,
testable, traceable, and related to the business needs.

Requirements Engineering (RE) plays an
important role in the overall process of Software
Development and consists of two main phases:
Requirements Identification and Prioritization (Talele
and Phalnikar, 2021). Requirements Analysis is
critical to the success or failure of a Software system.
Software Engineers must also perform Requirements
Classification during the Analysis phase.
Requirements Classification is cumbersome, time
consuming, and difficult when performed as a manual
process. RE consists of four parts: Requirements
Elicitation and Discovery, Requirements
Specification and Analysis, Requirements Validation
and Requirements Management (Iqbal et al., 2018).
However, after utilizing ML techniques, Software
Engineers were able to automate the process of
grouping the requirements into Functional
Requirement (FRs) and Non-Functional
Requirements (NFR) (Quba et al., 2021). RE is also
one of the key factors in Software Quality (Panichella
and Ruiz, 2020).

In SDLC, requirement analysis is the process of
correct requirement gathering, the efficient
examination of collected requirements, and clear
requirement documentation. As software systems
increase in complexity and scale, Requirement
Engineering becomes a challenging issue that leads to
increased development costs. This has led to
engineers showing additional interest in automatic
requirement analysis techniques which can lead to
more accurate and rapid analysis of SR and reduction
in development costs. ML methodologies are being
used for Requirement Prioritization where engineers
need to decide which set of requirements to be
considered first and in requirement specification. ML
algorithms are likely to classify and prioritize the

requirements efficiently and how they can be
evaluated (Talele and Phalnikar, 2021).

Researchers have shown a lot of interest in
applying Supervised ML algorithms including
Support Vector Machine, Naïve Bayes, Decision
Tree, K-Nearest Neighbor and Random Forest when
their focus is on one of the following broad categories
(Gramajo et al., 2020):

• Detection of linguistic problems in
requirements documents and artifacts
written in natural language

• Classification of document content

• Requirement traceability

• Effort estimation

• Requirements analysis

• Failures Prediction

• Quality of and detection of business rules.

Techniques used in Software Requirements
Specification (SRS) approach are Natural Language
Processing (NLP) and Information Retrieval (IR)
(Navarro-Almanza et al., 2017). ML provides
approaches that use big data to enable a ML algorithm
to learn from producing outputs, which would be
difficult to obtain otherwise (Horkoff, 2019). RE
plays a key role in the success of a project. Based on
previous research that was conducted on 350
companies to understand project failure rates, 16.2%
projects were completed successfully, 52.7% faced
challenges and were partially completed. About 31%
of the projects were never completed due to poor RE
(Haleem et al., 2021).

One main limitation with public ML datasets is
that there are a limited number of such datasets
available for Requirements Analysis. One of the most
used RE databases is the PROMISE repository, which
is unbalanced and has only 625 classified
requirements written in natural language (Iqbal et al.,
2018). Despite limitations of current ML algorithms
in recognizing and prioritizing requirements,
including scalability, dependency, and complexity
(Talele and Phalnikar, 2021), what prompts
researchers to show continued interest in utilizing ML
algorithms in SR classification is the significant role
that these techniques play in helping developers
document their software with more precision and
validation. This makes the software system easier to
understand and use (Quba et al., 2021).

Machine Learning in Software Development Life Cycle: A Comprehensive Review

347

4.2 Software Architecture Design and
Machine Learning

The Architecture Design phase (also called the
preliminary or general design stage) deals with
converting the defined requirements from the
Analysis phase into an implementable form. Software
design has a major impact on software quality.
Examples of bad design include anti-patterns, high
dependency design, and massive source code files.
These make SE tasks more difficult by exacerbating
the challenges and expense of fixing software defects
(Zhang et al., 2017, McIntosh and Kamei 2017).

This phase can be divided into three categories:
Interface Design, Architectural Design and Detailed
Design. Interface Design specifies interaction
between a system and its users. In the Architectural
Design, the specification of major system
components, their responsibilities, relationships, and
their interactions are defined. During Detailed Design
the specification of internal elements of all major
system components along with their properties,
relationships and data structures are determined.
Evaluation of system architecture is a turning point in
the decision-making process. It aims at justifying the
extent to which decisions made during Architecture
Design satisfy a system’s quality requirements.
Specifically, when there are functional uncertainties
and changing requirements. Architecture Evaluation
facilitates the process of identifying and minimizing
the design risks that save integration, testing and
evolution costs in software systems (Sobhy et al.,
2021).

Software Design should be clear and
understandable to meet all system requirements.
Since subsequent phases of SDLC significantly rely
on the Architecture Design phase, many companies
and researchers show interest in understanding the
relationship between Software Design and
Maintenance. Researchers have been working on
introducing various ML techniques for efficient
prediction of Software Design’s impact on
maintainability of a system (Elmidaoui et al., 2020).

Several ML techniques are being used in this
phase on criteria such as predicting the design for a
mobile application’s user interface (UI), predicting
the architecture for safety critical systems, web
service anti-pattern detection, etc. For instance,
design patterns can add complexity. This leads to an
increase in maintenance and evolution efforts. Using
ML for design pattern detection decreases the system
complexity and results in increased understandability
of the software’s architecture and design (Mhawish

and Gupta, 2019, Dwivedi et al., 2016, Dwivedi et al.,
2016).

Code Smells, Call Dependencies and Lines of
Code can be indicators of poor architecture and
design (McIntosh and Kamei, 2021). Code Smells are
not the errors in implementation; rather they are
weaknesses in the design of part of the software
system that can either impede the development
process or increase the chance of system failure and
errors in the future. Detecting Code Smells could
lessen the work of developers, resources, and cost of
development (Kaur et al., 2017).

 Since detecting Code Anomalies requires
refactoring approach, Support Vector Machine is the
most effective ML algorithm used for this matter
(Gramajo et al., 2020). Design patterns are a known
reverse engineering technique to solve numerous
problems in the design phase; they can be mined from
source code of similar category software. Data
mining from design patterns, which is based on
supervised learning and software metrics, is another
most popular research area in Design phase. ML
techniques are being used to enhance pattern mining
by excluding as many false matches as possible. ML
algorithms such as Layer Recurrent Neural Network,
Random Forest, Support Vector Machine and Boost
are mostly used in this process (Navarro-Almanza et
al., 2017, Giray, 2021).

4.3 Software Implementation and
Machine Learning

The Implementation phase involves construction of
the actual software system. Coding the system takes
place in this phase and when it is complete, the result
will be evaluated against the elicited requirements
from the Analysis phase. Software defects are
prevalent in software development and might cause
several problems for users and developers alike. As a
result, research has examined distinct techniques to
diminish the impacts of these defects in the source
code. One of the most prominent algorithms focuses
on defect prediction using ML methods. This helps
developers in managing these defects before they are
commenced in the production (Esteves et al., 2020).

Code refactoring is one of the popular research
areas for this phase. Refactoring changes the system
in such a way that does not alter the external behavior
of the code but will improve its internal structure.
Software containing code smells indicates a violation
of design and coding practices in SDLC. This issue
can turn into a larger problem as the effort to remove
the errors will increase exponentially if code smells
are left unremedied (Gupta et al., 2019).

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

348

ML algorithms can precisely model the
refactoring recommendations. Process and ownership
metrics both play a significant role in the creation of
highly effective models. In addition, models trained
with data from heterogeneous projects generalize
better and achieve great performance (Aniche et al.,
2020). God Classes, Long Methods, Functional
Decomposition and Spaghetti Code are the most
frequently identified code smells (Paiva et al., 2017).

Supervised Machine Learning algorithms are
known to be the most effective approach in predicting
code refactoring, as these will help developers to
make faster and more-educated decisions considering
what to refactor. These ML techniques evaluated
included Support Vector Machines, Naïve Bayes,
Decision Trees, Random Forest, Logistic Regression
and Neural Networks. Random Forest has emerged as
the most accurate approach in predicting software
refactoring using Apache, F-Droid and GitHub
datasets (Sagar et al., 2021).

4.4 Software Testing and Machine
Learning

In order to verify and validate Software Systems,
engineers need to find a system’s faults and defects.
Software Testing is thus one of the most important
phases in SDLC. The objective of Software Testing is
to reveal existing faults, particularly during
automated testing (Nasrabadi and Parsa, 2021). Due
to constant changes to the codebase of a system,
errors, failures and defects can happen in system
behavior, there should be automated tests to identify
these errors before a system is deployed.
Improvements in system infrastructure by finding its
faults could save up to third of its costs (Lima et al.,
2020).

Testing helps developers ensure the behavior of a
system is working as specified. Testing efforts must
be predicted in advance to guarantee time efficiency,
effort, and cost usage (Syaeful et al., 2017). In
general, Software Testing is an inductive inference in
which the tester determines the general properties of
a software system by carefully studying the behavior
of the system on a finite number of test cases (Zhu et
al., 2018).

As software systems increase in complexity, it
becomes more difficult to detect faults (Li et al.,
2020). We can collect numerous kinds of data during
software testing process, including execution traces,
coverage information for test cases, failure data etc.
ML techniques applied during Software Testing
identifies the patterns in data that often feature about
data generation process and will be used for decision-

making. Experts need to provide inputs to transform
raw test data into abstract test cases (Bhavsar et al.,
2019).

Test cases are generated to provide test output
data. Decision trees or induction rules are widely used
in Software Testing especially in fault prediction.
Models produced by these techniques are simpler to
interpret compared to techniques that are more
sophisticated such as neural networks or support
vector machines. Support Vector Machine and
Random Forest provide best prediction models for
these datasets (the most widely used Testing dataset
is from NASA) in fault prediction (Bhavsar et al.,
2019, Zhu, 2020).

When testing software, there are considerable
advantages to be gained from techniques which
propose unusual interactions within a system.
Techniques such as Random Testing, Fuzzing and
Exploratory Testing have a disadvantage, however, in
that the outputs of the tests need to be manually
checked for correctness which adds additional effort
for Software Engineers (Roper, 2019). Currently
testing techniques and software reengineering are
critical and most crucial in determining software
usability (Banga et al., 2019, Herzig and Nagappan,
2015).

Due to the quantifiable nature of Software
Testing, there are many datasets available. Likewise,
the number of publications is also significantly higher
compared to other phases.

4.5 Software Maintenance and
Machine Learning

The process of maintaining a software system after it
has been delivered, modifying, and updating it to
correct defects is called Software Maintenance. This
is the final phase of SDLC. Software Maintenance has
become an important area in SE related to software
quality. Consequently, predicting this characteristic
in an accurate and timely manner is a crucial
requirement for efficient management during the final
phase of SDLC (Gupta and Chug, 2021).

Software Maintenance incorporates repair,
preservation, and continuing optimization of a
system. This phase has four different categories:
Preventive Maintenance, Corrective Maintenance,
Adaptive Maintenance and Perfective Maintenance
(Sulaiman, 2005). As change is inevitable, engineers
must develop techniques for evaluating, controlling,
and making modification. Software Engineers need
to be capable of predicting software maintainability
in time, ensuring a constrained and optimum use of
the available resources. A large number of ML

Machine Learning in Software Development Life Cycle: A Comprehensive Review

349

techniques, including hybrid techniques, ensemble
techniques, and meta-heuristic techniques have been
explored for Software Maintainability Prediction
(SMP) (Alsolai, 2018, Gupta and Chug, 2021, Baskar
and Chandrasekar, 2018). Yet researchers continue to
seek improvement in this area.

A significant amount of time sometimes about 60-
70% in SDLC total cost is dedicated to maintenance
purposes (Gupta and Chug, 2021). As software
systems are getting more complex and increasing in
size, maintenance has become increasingly difficult.
Therefore, software maintainability has turned into a
serious challenge that companies are dealing with.
Software maintainability is directly connected with
the financial implementation and project success (Jha
et al., 2019).

Software Maintenance is classified based on three
viewpoints: intention-based classification, activity-
based classification, and evidence- based
classification. Software Maintenance involves bug
fixing, upgrading, and enhancing the software
program.

Many ML and AI techniques have been used in
Software Maintenance. Yet, there are not sufficient
datasets available as input data. Among available
datasets, their size is not large enough to give accurate
results. More work is needed in this area. Fuzzy logic
is the mostly frequently used ML technique in
Software Maintenance predictive models (Haleem et
al.,2021). Other techniques include ML algorithms
such as Soft Computing, Fuzzy Networks,
Evolutionary Algorithm, Deep Learning and ID3
(Xin et al., 2018).

5 RESULTS

We include publications from 2015 to 2021 in this
review.

The figure below summarizes how many journal
articles and conference papers are published in ACM,
IEEE and Springer for the period of 2015 to 2021 that
focus on ML techniques applied in each phase of
SDLC.

Table 1 lists the keywords we used to retrieve
these publications and ultimately generate the figures
to show the overall results. For some of the phases,
we had to modify our search queries as it was a quite
challenge to find more related and accurate results.
Whereas some phases like Testing, had a very large
number of publications.

Table 1: Searched Keywords for Paper Retrieval.

Keywords (Searched Queries)
Software engineering AND Machine learning

Software Development Life Cycle AND Machine
Learning

Machine Learning AND Software System
Requirements Analysis

Machine Learning AND Software Design

Machine Learning AND Software Implementation

Machine Learning AND Software Testing

Machine Learning AND Software Maintenance

Impact of Machine Learning in Software
Maintenance

Impact of Machine Learning in Software
Architecture

Impact of Machine Learning in Software
Requirements

Software Requirements Analysis AND Random
Forest Algorithm

Software Requirements Analysis AND Support
Vector Machine

Software Requirements Analysis AND Naïve
Bayes

Software Requirements Analysis AND Decision
Trees

Software Design Phase AND Random Forest
Algorithm

Software Design Phase AND Support Vector
Machine

Software Design Phase Analysis AND Naïve
Bayes

Software Implementation AND Random Forest
Algorithm

Software Implementation AND Support Vector
Machine

Software Implementation AND Naïve Bayes

Software Testing AND Random Forest Algorithm

Software Testing AND Support Vector Machine

Software Testing Analysis AND Naïve Bayes

Software Maintenance AND Random Forest
Algorithm

Software Maintenance AND Support Vector
Machine

Software Maintenance Analysis AND Naïve
Bayes

Software Maintenance AND Decision Trees

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

350

As shown in Figure 1, Software Requirements
Analysis has the least number of papers published in
this topic; in contrast, Software Testing has the largest
number of publications. The reason is partially
because there are many datasets available for
Software Testing due to its quantifiable nature as well
as the ease of obtaining data for this phase.

Figure 1: ML Applied in SDLC – Papers published from
2015 to 2021.

Hence it is much easier to utilize ML techniques
in Software Testing than in Requirements Analysis.

In Figure 2, we narrowed our findings by selecting
the four most used ML algorithms in all phases of
SDLC (Random Forest, Support Vector Machine,
Naïve Bayes and Decision Trees). Ultimately, we
analyzed all the relevant publications done in ACM,
IEEE and Springer in the same timeframe to see
which ML methodologies are the most popular in
particular phases.

Figure 2: SDLC Software Requirements Analysis - ML
Applied in SDLC – Papers published from 2015 to 2021.

Based on the results shown in Figure 2, Decision
Trees are most popular algorithms among these four
elected techniques. One reason is because Decision
Trees are quick to create and help with eliminating
dead ends. This decreases the probability of errors
made in this phase that can affect subsequent phases
as well. This technique can greatly simplify the SR
gathering process and saves engineers significant
time and budget resources.

In the process of SR, due to their exclusive
characteristics, the appropriate data sets are extremely
dimensional, sparse, and are mostly the outcome of
ambiguous expressions and, consequently, show
problematic challenges for data processing
techniques (Borges et al., 2021). there are many
repositories with duplicate code, which constitutes
data inconsistency (Allamanis, 2018). Hence, more
work needs to be done on creating more diverse and
appropriate datasets for this phase.

Figure 3: SDLC Software Architecture Design - ML
Applied in SDLC – Papers published from 2015 to 2021.

Support Vector Machine (SVM) is one of the most
popular ML techniques used in SDLC. It is a
supervised learning algorithm used for both
classification and regression problems. This
technique is very accurate and robust in detecting
design anomalies such as code smells also known as
Bad Smells, Design Flaws, Anti Patterns and Code
Anomaly (Zhang et al., 2006).

ML demands massive datasets to train on and
these should be unbiased and have great quality
which sometimes requires new data to be generated.
We suggest applying ML algorithms more in
Software architecture design as little work has been
done and needs to be explored more (Borges et al.,
2021).

11
17

11
16

11
12

11
06

11
04

30
3

17
22

81
0

19
60

42
1

68
6

16
04

14
07

19
46

61
4

0

500

1000

1500

2000

SDLC
PHASE 1

& ML

SDLC
PHASE 2

& ML

SDLC
PHASE 3

& ML

SDLC
PHASE 4

& ML

SDLC
PHASE 5

& ML

ACM IEEE SPRINGER

66
5

45

29
5

94
5

19 22 12 1710
4

33
9

56

17
9

0

200

400

600

800

1000

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Tree

ACM IEEE Springer

42
8

42
8

97
0

3392

27
5

20

14
1

98
0 12

45

29
5

88
3

0
200
400
600
800

1000
1200
1400

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Trees

ACM IEEE Springer

Machine Learning in Software Development Life Cycle: A Comprehensive Review

351

Figure 4: SDLC Phase Implementation - ML Applied in
SDLC – Papers published from 2015 to 2021.

Again, Support Vector Machine is most frequent
algorithm used in the third phase of Software
Development Life Cycle known as Software
Implementation. This technique is very popular in
Design and Development of software applications.

Figure 5: SDLC Phase Testing- ML Applied in SDLC –
Papers published from 2015 to 2021.

As shown in Figure 5, both Random Forest and
Support Vector Machine are popular techniques in
Software Testing phase. However, SVM has slightly
more publications. One reason for this is SVM is the
better classifier to eliminate infeasible test cases
saving time and costs in projects which is a huge
achievement as testers spend more time and their
resources on testing mobile and hybrid applications.
ML helps testers to better understand user’s needs and
respond faster to the everchanging expectations by
improving automation testing, reduced UI based
testing, assisting in API testing, and improving
accuracy.

Figure 6: SDLC Maintenance - ML Applied in SDLC –
Papers published from 2015 to 2021.

Data Scientists and Software Engineers have
shown the most interest in applying Support Vector
Machine in last phase of SDLC than other techniques.
However, Decision Trees have high usage as well.
Classification and refactoring approaches play a
significant role when maintaining software systems.
Available datasets are not sufficient to give
conclusive results which provide information
regarding the input data of the system (Jha et al.,
2019) and more work need to be done to create new
datasets to determine the accuracy of the precision
and decreasing the complexity.

6 CONCLUSIONS

Machine Learning is becoming one of the most
important technologies used in Software
Development Life Cycle. ML approaches are being
used for inadequately implied problem domains
where little knowledge exists for humans to develop
effective algorithms. ML has different types:
Supervised Learning, Semi-Supervised Learning,
Unsupervised Learning and Reinforcement Learning.
Our study shows Support Vector Machine (SVM) is
one of the most popular supervised ML algorithms in
current SE research. It is being applied on all the
phases of SDLC as it can be used for both
classification and regression problems. While SVM is
not considered the best performing algorithm in all
cases, it remains among the most highly used ML
methods. Reinforcement Learning is among the least
mentioned ML algorithms in SDLC. Although it has
been used in Software requirements analysis for
understanding the relationships between
requirements at different levels of abstractions a few
times, it is an interesting topic that we can study on

15
0

44
1

83

22
0

12

16
3

37

10
1

10

45

29
5

18

0
50

100
150
200
250
300
350
400
450
500

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Tree

14
7

32
4

11
9

28
7

20
6

59
2

13
0 26

3

84
5

44
3

15
8

49
9

0

200

400

600

800

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Tree

ACM IEEE Springer

4,
3

32
7

11
8

29
2

47 64 38 55

12
0

37
3

86 11
0

0
50

100
150
200
250
300
350
400

Random
Forest

Support
Vector

Machine

Naïve
Bayes

Decision
Trees

ACM IEEE Springer

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

352

more in terms of simplifying SE. Software Testing is
utilizing ML techniques more than any other SDLC
phase since there are a lot of datasets available to
researchers.

Our future work aims at addressing the challenges
outlined in Software Requirements Analysis,
Architecture Patterns, Software Maintenance and
ultimately creation of datasets for those phases. Also,
future works could look at data mining, predictive
design and modeling for different software
applications including mobile applications.

REFERENCES

Abubakar, H., Obaidat, M. S., Gupta, A., Bhattacharya, P.,
Tanwar, S. (2020) - Interplay of Machine Learning and
Software Engineering for Quality Estimations – IEEE

Allamanis, M. (2018) - The adverse effects of code
duplication in machine learning models of code –
Research Gate.

Alloghani, M., Al-Jumeily, D., Baker, T., Hussain, A.,
Mustafina, J., Ahmed J. Aljaaf (2020) - An Intelligent
Journey to Machine Learning Applications in
Component-Based Software Engineering - Springer.
Software Maintainability Metrics Prediction – IEEE.

Aniche, M., Maziero, E., Durelli, R., Durelli, V. H. S.
(2020) - The Effectiveness of Supervised Machine
Learning Algorithms in Predicting Software
Refactoring – IEEE.

Alsolai, H. (2018) - Predicting Software Maintainability in
Object-Oriented Systems Using Ensemble Techniques –
IEEE.

Banga, M., Bansal, A., Singh, A. (2019) - Implementation
of Machine Learning Techniques in Software
Reliability: A framework – IEEE.

Baskar, N. and Chandrasekar, C. (2018) - An Evolving
Neuro-PSO-based Software Maintainability Prediction
– IEEE.

Bhatore, S., Reddy, Y., R., Sanagavarapu, L. M, Chandra,
S. S. (2021) - Software Patterns to Identify Credit Risk
Patterns – IEEE.

Bhavsar, K., Gopalan, S., Shah, V. (2019) - Machine
Learning: A Software Process Reengineering in
Software Development Organization – Research Gate.

Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi B., Zimmermann, T. (2017) - Software
Engineering for Machine-Learning: A Case Study –
IEEE.

Borges, O. T., Couto, J. C., Ruiz, D., Priklladnicki, R.
(2021) – Challeneges in using Machine Learning to
Support Software Engineering – Research Gate.

Cetiner, M., Sahingoz, O. K. (2020) - A Comparative
Analysis for Machine Learning based Software Defect
Prediction Systems – IEEE.

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015) -
DeepDriving: Learning affordance for direct
perception in autonomous driving - IEEE.

Dwivedi, A. K., Tirkey, A. , Rath, S. K. (2016) - Applying
software metrics for the mining of design pattern –
IEEE.

Dwivedi, A. K., Tirkey, A., Ray, R. B., Rath, S. K. (2016)
- Software design pattern recognition using machine
learning techniques – IEEE.

DE-Arteaga, M., Herlands, W., Neill, D. B., Dubrawski, A.
(2018) - Machine Learning for the Developing World –
ACM.

Elhabbash, A., Salama, M., Bahsoon, R., Tino, P. (2019) -
Self-awareness in Software Engineering: A Systematic
Literature Review – ACM

Elmidaoui, S., Cheikhi, L., Idri, A., Abran, A. (2020) -
Machine Learning Techniques for Software
Maintainability Prediction: Accuracy Analysis –
Springer.

England, M. (2018) - Machine Learning for Mathematical
Software – Springer.

Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., Nivio
(2020) - Understanding Machine Learning Software
Defect Predictions – Springer.

Giray, G (2021) - A software engineering perspective on
engineering machine learning systems: State of the art
and challenges - Science Direct.

Gramajo, M., Ballejos, L., Ale, M. (2020) - Seizing
Requirements Engineering Issues through Supervised
Learning Techniques – IEEE.

Gong, Z., Zhong, P., Hu, P. (2019) - Diversity in Machine
Learning – IEEE.

Gupta, S., Chug, A. (2021) - An Optimized Extreme
Learning Machine Algorithm for Improving Software
Maintainability Prediction – IEEE.

Gupta, H., Kumar, L., Neti, L. B. M. (2019) - An Empirical
Framework for Code Smell Prediction using Extreme
Learning Machine – IEEE.

Haleem, M., Farooqui, M. F., Faisal, M. (2021) - Cognitive
impact validation of requirement uncertainty in
software project development – Science Direct.

Herzig, K. and Nagappan, N. (2015) - empirically detecting
false test alarms using association rules – IEEE.

Holzinger, A., Kieseberg, P., Weippl, D., Tjoa, A. (2018) -
Current Advances, Trends and Challenges of Machine
Learning and Knowledge Extraction: From Machine
Learning to Explainable AI – Springer.

Horkoff, J. (2019) - Non-Functional Requirements for
Machine Learning: Challenges and New Directions –
IEEE.

Hutchinson, B., Smart, A., Hanna, A., Denton, E. (2021) -
Towards Accountability for Machine Learning
Datasets: Practices from Software Engineering and
Infrastructure – ACM.

Iqbal, T., Elahidoost, P., Lúcio, L. (2018) - A Bird's Eye
View on Requirements Engineering and Machine
Learning – IEEE.

Jha, S., Kumar, R., Son, L. H., Abdel-Basset, M.,
Priyadarshini, I., Sharma, R., Long, H. V. (2019) - Deep
Learning Approach for Software Maintainability
Metrics Prediction

Karim, M. S., Warnars, H. L. H. S., Gaol, F. L.,
Abdurachman, E., Soewito, B. (2017) - Software

Machine Learning in Software Development Life Cycle: A Comprehensive Review

353

metrics for fault prediction using machine learning
approaches: A literature review with PROMISE
repository dataset – IEEE.

Kaur, A., Jain, S., Goel, S. (2017) - A Support Vector
Machine Based Approach for Code Smell Detection –
IEEE.

Khomh, F., Adams, B., Cheng, J. , Fokaefs, M., Antoniol,
G. (2018) - Software Engineering for Machine-
Learning Applications: The Road Ahead – IEEE.

Kim, M., Zimmermann, T., DeLine, R. and Begel, A.
(2018) - Data scientists in software teams: State of the
art and challenges – IEEE.

Li, J. J., Ulrich, A., Bai, X., Bertolino, A. (2020) - Advances
in test automation for software with special focus on
artificial intelligence and machine learning – Springer.

Lima, R. , Da Cruz, A. M. R., Ribeiro, J. (2020) - Artificial
Intelligence Applied to Software Testing: A Literature
Review – IEEE

Meinke, K., Bennaceur, A. (2018) - Machine Learning for
Software Engineering: Models, Methods, and
Applications – IEEE.

McIntosh, S., Kamei, Y. (2017) - Are fix-inducing changes
a moving target? a longitudinal case study of just-in-
time defect prediction – IEEE.

Mhawish, M. Y., Gupta, M. (2019) - Software Metrics and
tree-based machine learning algorithms for
distinguishing and detecting similar structure design
patterns – Springer.

Nakajima, S. (2018) - Quality Assurance of Machine
Learning Software – IEEE.

Nasrabadi, M. Z., Parsa, S. (2021) – Learning to Predict
Software Testability - IEEE.

Navarro-Almanza, R., Juarez-Ramirez, R., Licea, G. (2017)
- Towards Supporting Software Engineering Using
Deep Learning: A Case of Software Requirements
Classification – IEEE.

Quba, G., Qaisi, H. A., Althunibat, A., AlZu’bi, S. (2021) -
Software Requirements Classification using Machine
Learning algorithm’s – IEEE.

Paiva, T., Damasceno, A., Figueiredo, E., Sant’Anna, C.
(2017) - On the evaluation of code smells and detection
tools – Springer.

Panichella, S., Ruiz, M. (2020) - Requirements-Collector:
Automating Requirements Specification from
Elicitation Sessions and User Feedback – IEEE.

Peng, H., Li, B., Ling, H., Hu, W., Xiong, W. and Maybank,
S. J. (2017) - Salient object detection via structured
matrix decomposition - IEEE.

Roper, M. (2019) - Using Machine Learning to Classify
Test Outcomes – IEEE.

Sagar, P. S., AlOmar, E. A., Mkaouer, M. W., Ouni, A.,
Christian Newman (2021) - Comparing Commit
Messages and Source Code Metrics for the Prediction
Refactoring Activities – Research Gate.

Shafiq, S., Mashkoor, A., Mayr-Dorn, C., Egyed, A. (2021)
- A Literature Review of Using Machine Learning in
Software Development Life Cycle Stages – IEEE.

Sobhy, D., Bahsoon, R., Minku, L., Kazman, R. (2021) -
Evaluation of Software Architectures under
Uncertainty: A Systematic Literature Review – ACM.

Sulaiman, S. (2005) - Viewing Software Artifacts for
Different Software Maintenance Categories Using
Graph Representations – Research Gate.

Talele, P., Phalnikar, R. (2021) - Classification and
Prioritisation of Software Requirements using Machine
Learning – A Systematic Review – IEEE.

Wan, Z., Xia, X., Lo, D., Murphy, G. C. (2019) - How does
Machine Learning Change Software Development
Practices? – IEEE.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao,
H., Hou, H., Wang, C. (2018) - Machine Learning and
Deep Learning Methods for Cybersecurity – IEEE.

Yurdakurbann, V., Erdogan, N. (2018) - Comparison of
machine learning methods for software project effort
estimation – IEEE.

Zhu, H. (2018) - Software Testing as a Problem of Machine
Learning: Towards a Foundation on Computational
Learning Theory – IEEE.

Zhang, L., Tan, J., et al, D. H.. (2017) - From machine
learning to deep learning: progress in machine
intelligence for rational drug discovery – IEEE.

Zhang, X., Gu, C., Lin, J (2006) - Support Vector Machines
for Anomaly Detection – Research Gate.

Zhang, X., Zhou, T., Zhu, C. (2017) - An Empirical Study
of the Impact of Bad Designs on Defect Proneness –
IEEE.

Zhu, Y, Chen, L, Zhou, H, Feng, W., Zhu, Q. (2018) -
Design and Implementation of WeChat Robot Based on
Machine Learning – IEEE.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

354

