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Abstract: This research concludes an overall summary of the publications so far on the applied Machine Learning (ML) 
techniques in different phases of Software Development Life Cycle (SDLC) that includes Requirement 
Analysis, Design, Implementation, Testing, and Maintenance. We have performed a systematic review of the 
research studies published from 2015-2021 and revealed that Software Requirements Analysis phase has the 
least number of papers published; in contrast, Software Testing is the phase with the greatest number of papers 
published. 

1 INTRODUCTION 

As Software Engineering has become an essential 
industrial domain and software systems have become 
increasingly complex due to the performance 
requirements of their operating environment, the 
ability to design, develop, maintain, and adapt these 
systems has surpassed human comprehension alone 
(Elhabbash et al., 2019). Therefore, software systems 
need to autonomously adapt to changing 
environments to guarantee expected quality of service 
(Wan et al, 2019).  

Artificial Intelligence (AI) has a long tradition in 
computer science. Since 1950 in its first three 
decades, the academy and industry worked 
diligently to reach to human level machine 
intelligence. In retrospect that was an overly 
optimistic expectation (Holzinger et al., 2018). 
Nevertheless, the need for more automation and 
intelligence have led to further advances in ML and 
AI. Researchers are increasingly applying ML and AI 
to remediate failures and inadequacies in the software 
systems and the SDLC (Khomh et al., 2018). ML is a 
branch of AI that uses data or former development 
experience to enhance the performance standards of 
software systems (Zhang et al., 2017, Zhu et al., 
2018).  

Traditionally, software systems are built 
deductively, by implementing the rules that 
administer the system performances as program code. 

However, with ML techniques, these rules are 
collected from training data. Conventionally, ML 
methods can learn a model’s parameters 
automatically using training data and thus it can 
create models with respectable performance that can 
satisfy the software system requirements. ML has 
achieved great success in challenging real-world AI 
and data mining scenarios, such as object detection, 
natural image processing, autonomous car driving, 
urban scene understanding, automatic machine 
translation of human speech, and web 
search/information retrieval, among others (Gong et 
al., 2019, Chen et al. 2015, Peng et al., 2017). 

ML enables computer systems to use data, 
examples, and experience without human 
involvement but to replicate some form of human 
intelligence. ML algorithms are utilized to help 
computer systems learn rules from data (England, 
2018). These technologies will be optimized to be the 
core components in a variety of software-intensive 
systems. Recent advances in ML have fostered 
extensive interest in the Information Technology 
industry to integrate AI capabilities into software and 
services. Systems employing ML technologies, have 
distinctive characteristics moderately distinctive from 
those of the other software systems. Functionalities of 
ML based systems heavily depend on the quality of 
training datasets used to create the predictive models. 
Changing the training dataset has significant impact 
on learning results and thus on functional behavior of 
programs (Bird et al., 2017, Nakajima, 2018). 
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ML is used to continuously improve system 
performance and efficiency on a particular task by 
helping computer systems to learn from experience 
how to perform the job autonomously. ML plays a 
significant role in SDLC and has been used in variety 
of domains (Alloghani et al., 2020, Shafiq et al., 2021, 
Abubakar et al., 2020). For example, these domains 
include defect prediction, requirements elicitation 
etc. Therefore, ML is becoming one of the most 
important technologies used in SDLC. It is being 
applied to poorly understood problem domains where 
little domain knowledge currently exists for the 
humans to develop effective methodologies. These 
scenarios include data mining large databases 
containing valuable but undiscovered implicit 
regularities, and domains where software systems 
must adapt to changing conditions (Khomh et al., 
2018). ML has become the preferred technique for 
developing practical Software Systems in Computer 
Vision, Speech Recognition, Natural Language 
Processing, Robot Control, Health Systems, Banking, 
Defence, E-Commerce and many more environments 
(Panichella and Ruiz, 2020, Bhatore et al., 2021). 
Conventionally, developing software systems 
necessitates on specifying the requirements in 
advance to define how the system should behave.  

ML techniques are being used to accelerate SDLC 
and has been used in many areas including behavior 
extraction, testing, and bug fixing (Meinke and 
Bennaceur, 2018, DE-Arteaga et al., 2018). This has 
led to a new paradigm in technology invention. 
During the SDLC, the development team must spend 
significant time discussing how the system must 
operate to decide which features should be prioritized 
and which ones need to be eliminated. This 
Requirement Analysis needs to be followed by 
Design, Implementation, Testing and Integration, and 
Maintenance phases (Cetiner and Sahingoz, 2018).   

By utilizing ML algorithms, software developers 
can accelerate the decision-making process based on 
the previous projects to create data-driven business 
decisions to ultimately help decrease the development 
risks and costs. This is invaluable for software 
companies. Since projects can go over costs and 
deadlines, coming up with a precise budget and 
schedule to develop software systems can be an 
overwhelming task. Therefore, accurate estimation of 
efforts is highly crucial for Software Project 
Planning. With the help of ML techniques, the 
development team can analyze data from past projects 
to provide a more precise budget estimate and 
delivery time frame (Yurdakurbann and Erdogan, 
2018).   

ML also has a great impact in decreasing the time 
spent on prototyping as well as the number of expert 
engineers required to develop the software. In 
Software Testing, with the help of ML algorithms, 
testers can come up with more accurate results to 
reduce the errors in the system. ML techniques also 
help accelerate the process of finding defects. Since 
clean code is crucial for effective software 
maintenance, large scale code refactoring is 
unavoidable.  

Utilizing ML techniques, developers can review 
the code and maintain it automatically. Since 
maintenance is one of the most critical yet expensive 
phases of SDLC, this results in developing high 
quality Software Systems. Traditional SDLC can 
benefit from ML models for rapid prototyping, 
intelligent programming assistants, automatic 
analytics and error handling, automatic code 
refactoring, and precise estimates and strategic 
decision-making. Given the significant role that ML 
techniques and AI-based systems can play in the 
development of Software systems, it is very important 
for both the Software Engineering and ML 
communities to research and develop innovative 
approaches to address the advantages and 
disadvantages (Khomh et al., 2018, Abubakar et al., 
2020). Although ML datasets for SDLC analysis are 
often poorly documented and maintained and do not 
have clear creation processes (Hutchinson et al., 
2021) there are many advantages in utilizing ML 
techniques.  

Because of the significant role of ML techniques 
in SDLC and their advantages, we have prepared an 
overall review to see the impact of data analytics and 
ML algorithms on each phase of the SDLC. We were 
interested to identify phases in which ML models are 
widely being utilized. Our goal was to see why 
researchers focused more on certain phases than 
others when it comes to utilizing ML methodologies. 
We also wanted to see if ML techniques can be 
applied to less popular phases as well.  

To prepare our review, we collected and compiled 
a database of almost 150 journal articles and 
conference papers retrieved from ACM, IEEE and 
Springer digital libraries within the past five years. 
We created figures to demonstrate visually and 
summarize current research trends. Our research 
uncovers significant differences in the use of ML 
methodologies in various aspects of Software 
Engineering and the SLDC (e.g., Requirements 
Analysis, Design, Implementation, Testing and 
Maintenance). After a discussion of related work and 
our methodology, we discuss our findings for each 
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phase of SDLC. We then conclude with a summary 
of our work and suggestions for further research. 

2 RELATED WORK 

In this paper we review current research on 
applications of ML to different phases of SDLC and 
SE generally. Because of the popularity of 
incorporating ML techniques into SDLC, several 
prior researchers have conducted empirical studies of 
SE for data science. One study focused on differences 
between the development of ML systems and non-
ML systems in various aspects of SE. That study used 
interviews to identify pain points from a general 
tooling standpoint to discover the challenges and 
obstacles of implementing visual analytic tools as 
none of the SE phases have a developed set of tools 
and methods (Kim et al., 2018, Giray, 2021). Another 
study focused on characterizing professional roles 
and practices regarding data science (Wan et al, 
2019). 

ML Software systems are challenging to test and 
verify. Sometimes the ML model may be incorrect 
even if the learning algorithm is executed properly 
due to inaccurate training data. Traditional testing 
techniques are insufficient for such systems. 
Therefore, it is crucial for Software Engineers to 
research and develop advanced ways to report these 
challenges (Khomh et al., 2018). Software Engineers 
focused on the challenge of verifying accuracy of 
systems built using ML and AI models and testing 
those systems. 

Multiple previous literature reviews have been 
written on applying ML algorithms to each phase of 
SDLC (Talele and Phalnikar, 2021, Lima et al.,2020, 
Sobhy et al., 2021, Syaeful et al.,2017). We came 
across a publication that provides a broader context 
that discusses the relationship of ML techniques and 
its tools within SDLC stages which is related to our 
work to some extend however their review was 
performed for the period of 1991 to 2021(Shafiq et 
al., 2021). Nonetheless, our paper utilizes a 
systematic review methodology to study the impact 
of ML across the entire SDLC in the most recent 
publications (2015-2021) as opposed to focusing on a 
single phase as seen in most publications. Our 
research also makes an additional contribution by 
identifying the four most popular ML algorithms in 
overall SDLC. We studied those four techniques in 
each phase independently to observe their overall 
popularity based on each phase of life cycle.    

3 METHODOLOGY 

Initially, we intended to focus on publications for the 
past decade (2010-2020). Due to overwhelming 
number of publications, we finally decided to focus 
our review on the journal articles and conference 
papers published in the past five years. We realized 
the application of ML in SDLC considerably 
increased in the past ten years where it had a slow 
start from 2010 to 2015 and then significantly boosted 
from 2015 onward based on the number of 
publications, because recent advances in ML greatly 
impacted SDLS as ML techniques can change and 
update software systems.   

We used different keywords and queries to 
retrieve our results from ACM, IEEE and Springer 
databases. Some queries gave us our desired results in 
IEEE and Springer whereas we had to modify our 
keywords and queries to retrieve relevant 
publications from ACM. Additionally, we found out 
that ACM would return significant number of 
irrelevant publications when using verbatim queries 
utilized in the other two libraries. Therefore, we had 
to apply more constraints when searching in ACM 
database. For instance, we had to include ‘Artificial 
Intelligence’ as a keyword to ensure our query 
retrieved relevant results.  

There were situations where our queries returned 
similar or enhanced work in more than one 
publication, we treated each of those as a separate 
publication since each focused on a unique topic. 
Also, there were situations where one ML technique 
was utilized in multiple phases, we counted those 
separately for each phase. The latter scenario led us 
to study the four trendiest ML techniques in each 
phase furthermore to have a more focused 
observation. 

4 CURRENT APPLICATIONS OF 
MACHINE LEARNING TO 
SDLC 

ML plays a significant role throughout the SDLC. In 
this section we discuss the impact of applying ML in 
each phase of the SDLC: 

• Software Requirements Analysis 

• Software Architecture Design 

• Software Implementation 

• Software Testing 

• Software Maintenance 
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We provide an overview of each phase of the SDLC 
and discuss current research trends in ML for each 
phase. 

4.1 Software Requirements Analysis 
and Machine Learning 

Software Requirements Analysis (also called 
Requirements Engineering) clarifies the 
specifications needed for a software system to satisfy 
the business requirements. High quality software 
development strongly depends on clearly defined 
Software Requirements (SR) that explains the needs 
and expectation of the software in a very detailed 
form (Navarro-Almanza et al., 2017). These 
requirements must be documented, measurable, 
testable, traceable, and related to the business needs.  

Requirements Engineering (RE) plays an 
important role in the overall process of Software 
Development and consists of two main phases: 
Requirements Identification and Prioritization (Talele 
and Phalnikar, 2021). Requirements Analysis is 
critical to the success or failure of a Software system. 
Software Engineers must also perform Requirements 
Classification during the Analysis phase. 
Requirements Classification is cumbersome, time 
consuming, and difficult when performed as a manual 
process. RE consists of four parts: Requirements 
Elicitation and Discovery, Requirements 
Specification and Analysis, Requirements Validation 
and Requirements Management (Iqbal et al., 2018). 
However, after utilizing ML techniques, Software 
Engineers were able to automate the process of 
grouping the requirements into Functional 
Requirement (FRs) and Non-Functional 
Requirements (NFR) (Quba et al., 2021). RE is also 
one of the key factors in Software Quality (Panichella 
and Ruiz, 2020). 

In SDLC, requirement analysis is the process of 
correct requirement gathering, the efficient 
examination of collected requirements, and clear 
requirement documentation. As software systems 
increase in complexity and scale, Requirement 
Engineering becomes a challenging issue that leads to 
increased development costs. This has led to 
engineers showing additional interest in automatic 
requirement analysis techniques which can lead to 
more accurate and rapid analysis of SR and reduction 
in development costs. ML methodologies are being 
used for Requirement Prioritization where engineers 
need to decide which set of requirements to be 
considered first and in requirement specification.  ML 
algorithms are likely to classify and prioritize the 

requirements efficiently and how they can be 
evaluated (Talele and Phalnikar, 2021). 

Researchers have shown a lot of interest in 
applying Supervised ML algorithms including 
Support Vector Machine, Naïve Bayes, Decision 
Tree, K-Nearest Neighbor and Random Forest when 
their focus is on one of the following broad categories 
(Gramajo et al., 2020): 

• Detection of linguistic problems in 
requirements documents and artifacts 
written in natural language 

• Classification of document content 

• Requirement traceability 

• Effort estimation 

• Requirements analysis 

• Failures Prediction 

• Quality of and detection of business rules. 

Techniques used in Software Requirements 
Specification (SRS) approach are Natural Language 
Processing (NLP) and Information Retrieval (IR) 
(Navarro-Almanza et al., 2017). ML provides 
approaches that use big data to enable a ML algorithm 
to learn from producing outputs, which would be 
difficult to obtain otherwise (Horkoff, 2019). RE 
plays a key role in the success of a project. Based on 
previous research that was conducted on 350 
companies to understand project failure rates, 16.2% 
projects were completed successfully, 52.7% faced 
challenges and were partially completed. About 31% 
of the projects were never completed due to poor RE 
(Haleem et al., 2021). 

One main limitation with public ML datasets is 
that there are a limited number of such datasets 
available for Requirements Analysis. One of the most 
used RE databases is the PROMISE repository, which 
is unbalanced and has only 625 classified 
requirements written in natural language (Iqbal et al., 
2018). Despite limitations of current ML algorithms 
in recognizing and prioritizing requirements, 
including scalability, dependency, and complexity 
(Talele and Phalnikar, 2021), what prompts 
researchers to show continued interest in utilizing ML 
algorithms in SR classification is the significant role 
that these techniques play in helping developers 
document their software with more precision and 
validation. This makes the software system easier to 
understand and use (Quba et al., 2021).  
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4.2 Software Architecture Design and 
Machine Learning 

The Architecture Design phase (also called the 
preliminary or general design stage) deals with 
converting the defined requirements from the 
Analysis phase into an implementable form. Software 
design has a major impact on software quality. 
Examples of bad design include anti-patterns, high 
dependency design, and massive source code files. 
These make SE tasks more difficult by exacerbating 
the challenges and expense of fixing software defects 
(Zhang et al., 2017, McIntosh and Kamei 2017).  

This phase can be divided into three categories: 
Interface Design, Architectural Design and Detailed 
Design. Interface Design specifies interaction 
between a system and its users. In the Architectural 
Design, the specification of major system 
components, their responsibilities, relationships, and 
their interactions are defined. During Detailed Design 
the specification of internal elements of all major 
system components along with their properties, 
relationships and data structures are determined. 
Evaluation of system architecture is a turning point in 
the decision-making process. It aims at justifying the 
extent to which decisions made during Architecture 
Design satisfy a system’s quality requirements. 
Specifically, when there are functional uncertainties 
and changing requirements. Architecture Evaluation 
facilitates the process of identifying and minimizing 
the design risks that save integration, testing and 
evolution costs in software systems (Sobhy et al., 
2021). 

Software Design should be clear and 
understandable to meet all system requirements. 
Since subsequent phases of SDLC significantly rely 
on the Architecture Design phase, many companies 
and researchers show interest in understanding the 
relationship between Software Design and 
Maintenance. Researchers have been working on 
introducing various ML techniques for efficient 
prediction of Software Design’s impact on 
maintainability of a system (Elmidaoui et al., 2020). 

Several ML techniques are being used in this 
phase on criteria such as predicting the design for a 
mobile application’s user interface (UI), predicting 
the architecture for safety critical systems, web 
service anti-pattern detection, etc. For instance, 
design patterns can add complexity. This leads to an 
increase in maintenance and evolution efforts. Using 
ML for design pattern detection decreases the system 
complexity and results in increased understandability 
of the software’s architecture and design (Mhawish 

and Gupta, 2019, Dwivedi et al., 2016, Dwivedi et al., 
2016). 

Code Smells, Call Dependencies and Lines of 
Code can be indicators of poor architecture and 
design (McIntosh and Kamei, 2021). Code Smells are 
not the errors in implementation; rather they are 
weaknesses in the design of part of the software 
system that can either impede the development 
process or increase the chance of system failure and 
errors in the future.  Detecting Code Smells could 
lessen the work of developers, resources, and cost of 
development (Kaur et al., 2017). 

 Since detecting Code Anomalies requires 
refactoring approach, Support Vector Machine is the 
most effective ML algorithm used for this matter 
(Gramajo et al., 2020). Design patterns are a known 
reverse engineering technique to solve numerous 
problems in the design phase; they can be mined from 
source code of similar category software. Data 
mining from design patterns, which is based on 
supervised learning and software metrics, is another 
most popular research area in Design phase. ML 
techniques are being used to enhance pattern mining 
by excluding as many false matches as possible. ML 
algorithms such as Layer Recurrent Neural Network, 
Random Forest, Support Vector Machine and Boost 
are mostly used in this process (Navarro-Almanza et 
al., 2017, Giray, 2021). 

4.3 Software Implementation and 
Machine Learning 

The Implementation phase involves construction of 
the actual software system. Coding the system takes 
place in this phase and when it is complete, the result 
will be evaluated against the elicited requirements 
from the Analysis phase. Software defects are 
prevalent in software development and might cause 
several problems for users and developers alike. As a 
result, research has examined distinct techniques to 
diminish the impacts of these defects in the source 
code. One of the most prominent algorithms focuses 
on defect prediction using ML methods. This helps 
developers in managing these defects before they are 
commenced in the production (Esteves et al., 2020). 

Code refactoring is one of the popular research 
areas for this phase. Refactoring changes the system 
in such a way that does not alter the external behavior 
of the code but will improve its internal structure. 
Software containing code smells indicates a violation 
of design and coding practices in SDLC. This issue 
can turn into a larger problem as the effort to remove 
the errors will increase exponentially if code smells 
are left unremedied (Gupta et al., 2019). 
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ML algorithms can precisely model the 
refactoring recommendations. Process and ownership 
metrics both play a significant role in the creation of 
highly effective models. In addition, models trained 
with data from heterogeneous projects generalize 
better and achieve great performance (Aniche et al., 
2020). God Classes, Long Methods, Functional 
Decomposition and Spaghetti Code are the most 
frequently identified code smells (Paiva et al., 2017). 

Supervised Machine Learning algorithms are 
known to be the most effective approach in predicting 
code refactoring, as these will help developers to 
make faster and more-educated decisions considering 
what to refactor. These ML techniques evaluated 
included Support Vector Machines, Naïve Bayes, 
Decision Trees, Random Forest, Logistic Regression 
and Neural Networks. Random Forest has emerged as 
the most accurate approach in predicting software 
refactoring using Apache, F-Droid and GitHub 
datasets (Sagar et al., 2021). 

4.4 Software Testing and Machine 
Learning 

In order to verify and validate Software Systems, 
engineers need to find a system’s faults and defects. 
Software Testing is thus one of the most important 
phases in SDLC. The objective of Software Testing is 
to reveal existing faults, particularly during 
automated testing (Nasrabadi and Parsa, 2021). Due 
to constant changes to the codebase of a system, 
errors, failures and defects can happen in system 
behavior, there should be automated tests to identify 
these errors before a system is deployed.  
Improvements in system infrastructure by finding its 
faults could save up to third of its costs (Lima et al., 
2020).  

Testing helps developers ensure the behavior of a 
system is working as specified. Testing efforts must 
be predicted in advance to guarantee time efficiency, 
effort, and cost usage (Syaeful et al., 2017). In 
general, Software Testing is an inductive inference in 
which the tester determines the general properties of 
a software system by carefully studying the behavior 
of the system on a finite number of test cases (Zhu et 
al., 2018).  

As software systems increase in complexity, it 
becomes more difficult to detect faults (Li et al., 
2020). We can collect numerous kinds of data during 
software testing process, including execution traces, 
coverage information for test cases, failure data etc. 
ML techniques applied during Software Testing 
identifies the patterns in data that often feature about 
data generation process and will be used for decision-

making. Experts need to provide inputs to transform 
raw test data into abstract test cases (Bhavsar et al., 
2019).  

Test cases are generated to provide test output 
data. Decision trees or induction rules are widely used 
in Software Testing especially in fault prediction. 
Models produced by these techniques are simpler to 
interpret compared to techniques that are more 
sophisticated such as neural networks or support 
vector machines. Support Vector Machine and 
Random Forest provide best prediction models for 
these datasets (the most widely used Testing dataset 
is from NASA) in fault prediction (Bhavsar et al., 
2019, Zhu, 2020).  

When testing software, there are considerable 
advantages to be gained from techniques which 
propose unusual interactions within a system. 
Techniques such as Random Testing, Fuzzing and 
Exploratory Testing have a disadvantage, however, in 
that the outputs of the tests need to be manually 
checked for correctness which adds additional effort 
for Software Engineers (Roper, 2019). Currently 
testing techniques and software reengineering are 
critical and most crucial in determining software 
usability (Banga et al., 2019, Herzig and Nagappan, 
2015).  

Due to the quantifiable nature of Software 
Testing, there are many datasets available. Likewise, 
the number of publications is also significantly higher 
compared to other phases.  

4.5 Software Maintenance and 
Machine Learning 

The process of maintaining a software system after it 
has been delivered, modifying, and updating it to 
correct defects is called Software Maintenance. This 
is the final phase of SDLC. Software Maintenance has 
become an important area in SE related to software 
quality. Consequently, predicting this characteristic 
in an accurate and timely manner is a crucial 
requirement for efficient management during the final 
phase of SDLC (Gupta and Chug, 2021). 

Software Maintenance incorporates repair, 
preservation, and continuing optimization of a 
system. This phase has four different categories: 
Preventive Maintenance, Corrective Maintenance, 
Adaptive Maintenance and Perfective Maintenance 
(Sulaiman, 2005). As change is inevitable, engineers 
must develop techniques for evaluating, controlling, 
and making modification.  Software Engineers need 
to be capable of predicting software maintainability 
in time, ensuring a constrained and optimum use of 
the available resources. A large number of ML 
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techniques, including hybrid techniques, ensemble 
techniques, and meta-heuristic techniques have been 
explored for Software Maintainability Prediction 
(SMP) (Alsolai, 2018, Gupta and Chug, 2021, Baskar 
and Chandrasekar, 2018). Yet researchers continue to 
seek improvement in this area.  

A significant amount of time sometimes about 60-
70% in SDLC total cost is dedicated to maintenance 
purposes (Gupta and Chug, 2021). As software 
systems are getting more complex and increasing in 
size, maintenance has become increasingly difficult. 
Therefore, software maintainability has turned into a 
serious challenge that companies are dealing with. 
Software maintainability is directly connected with 
the financial implementation and project success (Jha 
et al., 2019). 

Software Maintenance is classified based on three 
viewpoints: intention-based classification, activity-
based classification, and evidence- based 
classification. Software Maintenance involves bug 
fixing, upgrading, and enhancing the software 
program.  

Many ML and AI techniques have been used in 
Software Maintenance. Yet, there are not sufficient 
datasets available as input data. Among available 
datasets, their size is not large enough to give accurate 
results. More work is needed in this area. Fuzzy logic 
is the mostly frequently used ML technique in 
Software Maintenance predictive models (Haleem et 
al.,2021). Other techniques include ML algorithms 
such as Soft Computing, Fuzzy Networks, 
Evolutionary Algorithm, Deep Learning and ID3 
(Xin et al., 2018).  

5 RESULTS 

We include publications from 2015 to 2021 in this 
review.   

The figure below summarizes how many journal 
articles and conference papers are published in ACM, 
IEEE and Springer for the period of 2015 to 2021 that 
focus on ML techniques applied in each phase of 
SDLC.  

Table 1 lists the keywords we used to retrieve 
these publications and ultimately generate the figures 
to show the overall results. For some of the phases, 
we had to modify our search queries as it was a quite 
challenge to find more related and accurate results. 
Whereas some phases like Testing, had a very large 
number of publications.  
 

 
 

Table 1: Searched Keywords for Paper Retrieval. 

Keywords (Searched Queries) 
Software engineering AND Machine learning 

Software Development Life Cycle AND Machine 
Learning 

Machine Learning AND Software System 
Requirements Analysis 

Machine Learning AND Software Design  

Machine Learning AND Software Implementation 

Machine Learning AND Software Testing 

Machine Learning AND Software Maintenance 

Impact of Machine Learning in Software 
Maintenance 

Impact of Machine Learning in Software 
Architecture 

Impact of Machine Learning in Software 
Requirements  

Software Requirements Analysis AND Random 
Forest Algorithm 

Software Requirements Analysis AND Support 
Vector Machine 

Software Requirements Analysis AND Naïve 
Bayes 

Software Requirements Analysis AND Decision 
Trees 

Software Design Phase AND Random Forest 
Algorithm 

Software Design Phase AND Support Vector 
Machine 

Software Design Phase Analysis AND Naïve 
Bayes 

Software Implementation AND Random Forest 
Algorithm 

Software Implementation AND Support Vector 
Machine 

Software Implementation AND Naïve Bayes 

Software Testing AND Random Forest Algorithm 

Software Testing AND Support Vector Machine 

Software Testing Analysis AND Naïve Bayes 

Software Maintenance AND Random Forest 
Algorithm 

Software Maintenance AND Support Vector 
Machine 

Software Maintenance Analysis AND Naïve 
Bayes 

Software Maintenance AND Decision Trees 
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As shown in Figure 1, Software Requirements 
Analysis has the least number of papers published in 
this topic; in contrast, Software Testing has the largest 
number of publications. The reason is partially 
because there are many datasets available for 
Software Testing due to its quantifiable nature as well 
as the ease of obtaining data for this phase.  

 

Figure 1: ML Applied in SDLC – Papers published from 
2015 to 2021.  

Hence it is much easier to utilize ML techniques 
in Software Testing than in Requirements Analysis. 

In Figure 2, we narrowed our findings by selecting 
the four most used ML algorithms in all phases of 
SDLC (Random Forest, Support Vector Machine, 
Naïve Bayes and Decision Trees). Ultimately, we 
analyzed all the relevant publications done in ACM, 
IEEE and Springer in the same timeframe to see 
which ML methodologies are the most popular in 
particular phases.  

 

Figure 2: SDLC Software Requirements Analysis - ML 
Applied in SDLC – Papers published from 2015 to 2021. 

Based on the results shown in Figure 2, Decision 
Trees are most popular algorithms among these four 
elected techniques. One reason is because Decision 
Trees are quick to create and help with eliminating 
dead ends. This decreases the probability of errors 
made in this phase that can affect subsequent phases 
as well. This technique can greatly simplify the SR 
gathering process and saves engineers significant 
time and budget resources.  

In the process of SR, due to their exclusive 
characteristics, the appropriate data sets are extremely 
dimensional, sparse, and are mostly the outcome of 
ambiguous expressions and, consequently, show 
problematic challenges for data processing 
techniques (Borges et al., 2021). there are many 
repositories with duplicate code, which constitutes 
data inconsistency (Allamanis, 2018). Hence, more 
work needs to be done on creating more diverse and 
appropriate datasets for this phase. 

 

Figure 3: SDLC Software Architecture Design - ML 
Applied in SDLC – Papers published from 2015 to 2021. 

Support Vector Machine (SVM) is one of the most 
popular ML techniques used in SDLC. It is a 
supervised learning algorithm used for both 
classification and regression problems. This 
technique is very accurate and robust in detecting 
design anomalies such as code smells also known as 
Bad Smells, Design Flaws, Anti Patterns and Code 
Anomaly (Zhang et al., 2006).  

ML demands massive datasets to train on and 
these should be unbiased and have great quality 
which sometimes requires new data to be generated. 
We suggest applying ML algorithms more in 
Software architecture design as little work has been 
done and needs to be explored more (Borges et al., 
2021).  

11
17

11
16

11
12

11
06

11
04

30
3

17
22

81
0

19
60

42
1

68
6

16
04

14
07

19
46

61
4

0

500

1000

1500

2000

SDLC
PHASE 1

& ML

SDLC
PHASE 2

& ML

SDLC
PHASE 3

& ML

SDLC
PHASE 4

& ML

SDLC
PHASE 5

& ML

ACM IEEE SPRINGER

66
5

45

29
5

94
5

19 22 12 1710
4

33
9

56

17
9

0

200

400

600

800

1000

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Tree

ACM IEEE Springer

42
8

42
8

97
0

3392

27
5

20

14
1

98
0 12

45

29
5

88
3

0
200
400
600
800

1000
1200
1400

Random
Forest

Support
Vector

Machine

Naïve Bayes Decision
Trees

ACM IEEE Springer

Machine Learning in Software Development Life Cycle: A Comprehensive Review

351



 

Figure 4: SDLC Phase Implementation - ML Applied in 
SDLC – Papers published from 2015 to 2021. 

Again, Support Vector Machine is most frequent 
algorithm used in the third phase of Software 
Development Life Cycle known as Software 
Implementation. This technique is very popular in 
Design and Development of software applications. 

 

Figure 5: SDLC Phase Testing- ML Applied in SDLC – 
Papers published from 2015 to 2021. 

As shown in Figure 5, both Random Forest and 
Support Vector Machine are popular techniques in 
Software Testing phase. However, SVM has slightly 
more publications. One reason for this is SVM is the 
better classifier to eliminate infeasible test cases 
saving time and costs in projects which is a huge 
achievement as testers spend more time and their 
resources on testing mobile and hybrid applications. 
ML helps testers to better understand user’s needs and 
respond faster to the everchanging expectations by 
improving automation testing, reduced UI based 
testing, assisting in API testing, and improving 
accuracy. 

 

Figure 6: SDLC Maintenance - ML Applied in SDLC – 
Papers published from 2015 to 2021. 

Data Scientists and Software Engineers have 
shown the most interest in applying Support Vector 
Machine in last phase of SDLC than other techniques. 
However, Decision Trees have high usage as well. 
Classification and refactoring approaches play a 
significant role when maintaining software systems. 
Available datasets are not sufficient to give 
conclusive results which provide information 
regarding the input data of the system (Jha et al., 
2019) and more work need to be done to create new 
datasets to determine the accuracy of the precision 
and decreasing the complexity.  

6 CONCLUSIONS 

Machine Learning is becoming one of the most 
important technologies used in Software 
Development Life Cycle. ML approaches are being 
used for inadequately implied problem domains 
where little knowledge exists for humans to develop 
effective algorithms. ML has different types: 
Supervised Learning, Semi-Supervised Learning, 
Unsupervised Learning and Reinforcement Learning. 
Our study shows Support Vector Machine (SVM) is 
one of the most popular supervised ML algorithms in 
current SE research. It is being applied on all the 
phases of SDLC as it can be used for both 
classification and regression problems. While SVM is 
not considered the best performing algorithm in all 
cases, it remains among the most highly used ML 
methods. Reinforcement Learning is among the least 
mentioned ML algorithms in SDLC. Although it has 
been used in Software requirements analysis for 
understanding the relationships between 
requirements at different levels of abstractions a few 
times, it is an interesting topic that we can study on 
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more in terms of simplifying SE. Software Testing is 
utilizing ML techniques more than any other SDLC 
phase since there are a lot of datasets available to 
researchers. 

Our future work aims at addressing the challenges 
outlined in Software Requirements Analysis, 
Architecture Patterns, Software Maintenance and 
ultimately creation of datasets for those phases. Also, 
future works could look at data mining, predictive 
design and modeling for different software 
applications including mobile applications.  
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