
Exploring the Impact of Toxic Comments in Code Quality

Jaime Sayago-Heredia1 a, Gustavo Chango1 b, Ricardo Pérez-Castillo2 c and Mario Piattini3 d
1Escuela de Sistemas y Computación, Pontificia Universidad Católica del Ecuador, Sede Esmeraldas,

Espejo y subida a Santa Cruz Casilla 08-01-0065, Ecuador
2Facultad de Ciencias Sociales de Talavera de la Reina, University of Castilla-La Mancha,

Avenida Real Fábrica de Seda s/n 45600, Talavera de la Reina, Spain
3Information Technology & Systems Institute (ITSI), University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain

Keywords: Sentiments Analysis, Toxic Comment Classification, GitHub, SonarQube, Commits, Software Quality,
Software Engineering.

Abstract: Software development has an important human-side, which implies that developers' feelings have a significant
impact to software development and could affect developers' quality, productivity, and performance. In this
paper, we explore the process to find, understand and relate the effects of toxic emotions on code quality. We
propose a tool and sentiments dataset, a clean set of commit messages, extracted from SonarQube code quality
metrics and toxic comments obtained from GitHub. Moreover, we perform a preliminary statistical analysis
of the dataset. We apply natural language processing techniques to identify toxic developer sentiments on
commits that could impact code quality. Our study describes data retrieval process along with tools used for
performing a preliminary analysis. The preliminary dataset is available in CSV format to facilitate queries on
the data and to investigate in depth factors that impact developer emotions. Preliminary results imply that
there is a relationship between toxic comments and code quality that may affect the quality of the software
project. Future research will be the development of a complete dataset and an in-depth analysis for efficiency
validation experiments along with a linear regression. Finally, we will estimate the code quality as a function
of developers' toxic comments.

1 INTRODUCTION

Research in the field of software engineering has
increasingly applied techniques and methods from
other research areas (Novielli et al., 2018), such as
sentiment analysis (Cheruvelil and Da-Silva, 2019;
Ding et al., 2018; Guzman et al., 2014; Murgia et al.,
2014). Software development has an important
human-side, so it is evident that the developer's
feelings have a significant impact on various issues
related to software development, such as quality.
Nowadays, software development projects depend on
a large number of programmers who collaborate with
each other in their efforts to develop a software
system (Boehm, 1988). These efforts to build and
maintain a software project are continuous and

a https://orcid.org/0000-0003-3657-5407
b https://orcid.org/0000-0003-3231-0153
c https://orcid.org/0000-0002-9271-3184
d https://orcid.org/0000-0002-7212-8279

stressful for developers, which becomes a difficult
problem to solve (Rezvani and Khosravi, 2019).
Research community are concerned that these
feelings could lead to buggy code and consequently
poor quality code, as evidenced by some works (Asri
et al., 2019; Cheruvelil and Da-Silva, 2019; Singh and
Singh, 2018).

Developers are confronted with various problems
every day and have to find a solution that require high
levels of technical knowledge. For developers, these
obstacles to successfully complete the development
of a software project can be exhausting and stressful
(Rezvani and Khosravi, 2019). This subsequently
impacts on their ability to self-regulate their feelings
and understanding (Hancock and Szalma, 2008), e.g.
commit messages have a lot of negative feelings
(Sinha et al., 2016). These messages contain an

Sayago-Heredia, J., Chango, G., Pérez-Castillo, R. and Piattini, M.
Exploring the Impact of Toxic Comments in Code Quality.
DOI: 10.5220/0011039700003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 335-343
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

335

emotional expression (negative or toxic), which could
either influence the quality of the code, or be a
reflection of the fact that the quality of the code also
influences the negative feelings of the developers.
Therefore, there is a need to analyze, understand and
relate developers' negative feelings and code quality,
an important and understudied field of research.
There are several important research questions that
are raised in this research, for example: ¿Toxic
comments are related to code quality during the
software project lifecycle? ¿Developer’s toxic
feelings related to the increase of bugs in software
project? Our research was answer to some questions
empirically using direct and indirect methods, and
one of these indirect methods was development of a
tool for analyzing large amounts of data and offering
the possibility of statistical analysis and hypothesis
testing. Commit messages can be used to extract
developer sentiment (Ding et al., 2018), function as
an important resource to analyze and understand a
possible relationship between developer sentiment
and code quality.

We have developed a research tool (classifier) to
extract toxic comments from commit messages.
Toxic language can be present in different places
online (Facebook, YouTube and others), they are also
present in commit messages software projects on
GitHub. Toxic can manifest itself in multiple ways, in
the case of software development, through messages
corroborating the lack of help for a bug together with
name calling, insults or threats. We carried out a
preliminary study with data extracted with the
constructed tool. This tool obtains toxic comments
from commit messages of the selected projects from
GitHub and jointly extracts the code quality metrics
corresponding to commit messages of the software
projects.

Our work makes a main contribution, verifying
that toxic of messages can be identified through
Natural Language Processing (NLP) techniques and
obtaining a corpus of data with negative sentiments
and toxic comments. Results preliminary study
suggest a correlation between toxic comments and
code quality. Moreover, future research we will
explore how code quality can affect developers'
emotions. This paper allows us to expand our research
possibilities and areas involved in sentiment analysis
that we will explore in next future.

2 BACKGROUND

This section provides background information about
sentiment analysis, toxic comment classification and
code quality.

2.1 Sentiment Analysis

Sentiment analysis (also known as opinion mining)
was initially developed as an automated method to
extract sentiment polarity from short texts published
online, such as movie reviews, product reviews,
microblogs and tweets (Sinha et al., 2016) that had a
great application in the marketing world.
Specifically, sentiment analysis is the study of the
subjectivity and polarity of a manually written text
(usually identified as neutral positive or negative)
(Pang and Lee, 2008). There are some works
analyzing sentiments in the software engineering
domain where sentiments are analyzed (Cheruvelil
and Da-Silva, 2019; Guzman et al., 2014; Kaur et al.,
2018; Singh and Singh, 2018), using different
artifacts such as GitHub (Pletea et al., 2014; Sinha et
al., 2016), issue resolution with Jira (Ortu et al., 2016)
and bug reports (Kritikos et al., 2020). Other research
suggests uncertainties related to the unsuccessful
application of sentiment analysis tools for software
engineering (Asri et al., 2019; Sun, 2021). Existing
tools require configurations for their specific use or
adaptation for the specific context to be used and this
can be crucial for the performance of the tool (Lin et
al., 2018). Moreover, other works (Cheruvelil and
Da-Silva, 2019; Ding et al., 2018; Guzman et al.,
2014; Murgia et al., 2014), have focused on analyzing
and classifying emotions in software artefacts and, at
the same time, proposing emotion standards (sadness,
happiness, anger, fear, etc.) in development teams.
Guzmán et al. (Guzman et al., 2014) proposed a
sentiment analysis approach for discussions in
mailing lists and web-based software collaboration
tools. Ding et al. (Ding et al., 2018) conducted an
entity-level sentiment analysis by creating a dataset
and a SentiSW tool. SentiSW is an entity-level
sentiment analysis tool that consists of sentiment
classification and entity recognition and classifies
problematic comments with significantly higher
accuracy than other tools. Murgia et al.(Murgia et al.,
2014) analyzed development artefacts and problem
reports to find out whether they contain any
emotional information about software development
through an automatic tool for emotion extraction in
software development artefact. Authors (Cheruvelil
and Da-Silva, 2019) applied a sentiment analysis tool
to problem follow-up comments and observed how
scores varied for problems with no reopening’s, with
one reopening and with many reopening, suggesting
that negative sentiment correlates with reopened
problems, although the effect size appears to be quite
small.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

336

2.1.1 Sentiment Analysis Tools

Analyses described in the previous section focused on
finding and locating emotions through tools that have
not been created for the software engineering context.
Sentiment analysis tools are available, both
commercial (Lin et al., 2018) and free (Jongeling et
al., 2017). Some sentiment analysis tools applied in
software engineering are:
 SentiStrength is the most widely used in software

engineering studies(Guzman et al., 2014; Novielli
et al., 2014; Ortu et al., 2016).

 NLTK is a lexicon- and rule-based sentiment
analysis tool, whose core is VADER (Valence
Aware Dictionary and sEntiment Reasoner);
VADER is specifically tailored to social network
texts by incorporating a sentiment lexicon
extracted from microblog contexts and manually
validated by multiple independent human judges
(Wilson and Hernández-Hall, 2014).

 Stanford CoreNLP is based on a recursive neural
network, which differs from other tools in its ability
to derive the sentiment of a sentence based on how
the words compose the meaning of the sentence,
rather than by summing the sentiment of individual
words. It has been trained on movie reviews
(Socher et al., 2013).

Tools described, encounter some discrepancies in
terms of their effectiveness and coincidence of
results, which may lead to different conclusions,
making them not replicable when using different
sentiment analysis tools (Jongeling et al., 2017).
Specifically, several authors acknowledge (Howard
et al., 2013; Jongeling et al., 2017; Lin et al., 2018)
that it's necessary to build analysis tools targeted at
specific datasets for software engineering so that they
do not cast doubt on the validity of sentiment analysis
results.

2.2 Code Quality

Code quality consists of characteristics such as
capability, usability, performance, reliability and
maintainability (Horch, 1996), security, portability,
compatibility, performance efficiency, functional
adequacy (ISO, 2011). Characteristics which affect
the code in its efficiency, vulnerability and
security(Liu and Woo, 2020). Several tools exist to
detect software quality (Lewis et al., 2017). Open
source projects such as Squale, SonarQube and
CodeMetrics provide static analysis of target
programs to check for coding errors (Ardito et al.,
2020). There are programs to measure errors that

affect code quality such as QScored (Thakur et al.,
2020) and E-Quality (Erdemir et al., 2011). Are also
paid tools such as Codacy, FortifyVeracode, Static
Analysis, Reshift, NextGen Static Analysis
(OWASP, 2021). Challenge for tools described is that
exist a greater complexity than just reviewing code
written by the developer, the literature review
suggests that there is a relationship between code
quality and emotions as demonstrated Gunsel
(Gunsel, 2014) in which project complexity has an
effect on the relationship between work emotions and
code quality. Consequently, it is imperative to explore
and understand whether there is a relationship
between negative emotions such as developer
feedback toxicity affecting and impacting the code
quality of a software project.

2.3 Toxic Comment Classification

In area of sentiment analysis, the classification of
toxic comments is not clearly defined in scope. The
research community has investigated the toxicity of
comments on the web (Georgakopoulos et al., 2018).
Risch (Risch et al., 2021) constructed a toxicity
dataset describing its data origin along with a
combination of the different targets found such as
hate, attacks, aggressive, toxic, online harassment,
abusive language, cyberbullying and offensive
language, racism, sexism and insults. The definitions
go according to each area to be classified; it is noted
that the methods used for the analyses are similar
because they are applied on social media platforms.
Sarker (Sarker et al., 2020) in the area of software
engineering validates the following broad definition
of toxic content: “An SE conversation will be
considered as toxic, if it includes any of the following:
offensive name calling, insults, threats, personal
attacks, flirtations, reference to sexual activities, and
swearing or cursing”. State-of-the-art review
indicates that toxicity is part of sentiment analysis in
the area of software engineering. This approach has
been used to detect the psychological state of
developers (Rousinopoulos et al., 2014). Authors
(Guzman and Bruegge, 2013) used this technique to
investigate the role of emotional awareness in
development teams. Gachechiladze (Gachechiladze
et al., 2017) used sentiment analysis to identify a
classification for anger detection. Pletea (Pletea et al.,
2014) suggests negativity increases when developers
are concerned with the security of the software
project. Other research has also explored the specific
concept of happiness at work, connecting it to high
quality software artefacts such as the work of
Graziotin et al. (Graziotin et al., 2018) The sentiment

Exploring the Impact of Toxic Comments in Code Quality

337

expressed on websites like Stack Overflow is studied
to analyze and classify toxic sentiments of users
(Cheriyan et al., 2021). Carige (Carige and de
Figueiredo Carneiro, 2020) indicates that positive and
negative emotions have a tendency to influence
developers' productivity, task quality and job
satisfaction. We focus on understand and detecting
toxic comments for the software engineering context
from commit messages and choosing most effective
method for extracting toxicity and relate the effects of
toxic comments on the code quality of a software
project during its lifecycle.

3 DATA COLLECTION AND
METHODS

3.1 Project Selection

The software projects were obtained from the search
performed on the software repository GitHub, which
is the largest online platform and contain more than
3.4 million users (Li et al., 2017). This significant
number of projects can contribute to our research,
although it can be detrimental when selecting
software projects that are irrelevant, so it is necessary
to define both selection and exclusion criteria to filter
those results. Inclusion and exclusion practices and
strategies are valuable in several researches
concerning software engineering (Petersen and
Gencel, 2013). The following inclusion criteria were
defined:

- The software project is in production.
- The metrics and reports are accessible from the
SonarCloud platform.
- The team of developers of the software project

must meet an average value of developers (5) which
is an average value obtained from the pilot review of
the software repositories. In addition, we applied
other criteria based on the research of (Lenarduzzi et
al., 2019):

- More than 10 releases
- More than 5000 commits,
- More than 1000 classes,
- More than 100000 lines of code.

Exclusion criteria are the english language must be
used by the development team in commit messages,
incomplete software and projects that are on the
SonarQube platform but with low or no activity i.e.,
without any recent analysis or releases.

3.1.1 Classification Toxic Model

The context of the classification to be carried out to
obtain the level of toxicity of developers' comments
should be focused on software engineering as this is
our area of study. The training data for the
preliminary study is not large. The developed tool
extracts the toxicity of commit messages with natural
language processing (NLP) classification techniques
suggested by state-of-the-art review (Geet et al.,
2020; Saeed et al., 2019; Tare, 2017). Tool uses
Microsoft's ML.NET library, that allows developers
to build complex machine learning pipelines.
Pipelines are often composed of multiple
transformation steps that feature and transform the
raw input data (Ahmed et al., 2019). The task used to
train the model is binary classification. During the
model training process, the model generator trains
independent models with different options and binary
classification algorithms to find the best performing
model for the dataset (Sistema et al., 2019). Time
required for model training is proportional to the
amount of data. At the end of training the model the
output will contain the algorithm that uses the model
with the best performance on the input data. In our
case it is the L-BFGS (Limited Broydon-Fletcher-
Goldfarb-Shanno) algorithm which is a quasi-
Newton optimization method of functions with a
large number of parameters or of a high complexity
(Bollapragada et al., 2018). It is a method that makes
limited use of memory, using it optimally and in
fewer algorithms for the same problem. L-BFGS
allows obtaining the minimum of a function; it only
needs the function and its gradient, but not the
Hessian matrix, therefore, it is able to solve functions
without restrictions in its parameters (Berahas and
Takáč, 2020). The result of the model generated using
the L-BFGS algorithm is satisfactory with a
percentage rate of 78.03%.

3.2 Tool Used to Collect Data

Tool is a web application built for data extracted.
Figure 1, describes functionality of the tool that
integrates and extracts commit messages from the
GitHub Api which is the largest online platform and
contains more than 3.4 million users (Li et al., 2017)
and metrics from the SonarQube Api which is the
most widely used tool on the market for code quality
analysis (Lenarduzzi et al., 2020)). We use for its
development .Net Visual Studio, C#, HTML5 and the
ML.NET library that allows developers to build
complex machine learning and LNP artifacts (Ahmed
et al., 2019). First step is prepared dataset to be used

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

338

for sentiment analysis. It is important to understand
the dataset. The sentiment calculated from the
commit message consists of a toxicity index, the
numeric value of the sentiment provides a
quantification. It is important determine and
understand the words to understand the context of the
sentence. When using the different words, we must
differentiate the context from the software
engineering to extract the correct sentiment values
from the message. The tool uses different algorithms
and trains separate models to find best performing
model for dataset(Sistema et al., 2019). Tool extracts
sentiment toxic from commit messages from project
(GitHub) and metrics (SonarQube), result generates
graphs with statistical analysis, dashboard by project
and a dataset for each project.

Figure 1: Overview of tool functionality.

3.3 Dataset Schema and Production

Figure 2 presents the schema of the dataset entities. It
is made up of two linked databases, a relational
database (SqlServer) and a NoSql database
(MongoDB). By observing the tables of the first one,
it is possible to identify their respective relationships
and fields of each entity and normalisation.
Repository table contains the information referring to

the software projects with their respective repository
header fields. Commit table contains the different
data concerning the commit messages together with
their toxicity level. Metrics table contains the quality
values of SonarQube. UserRepository and User tables
correspond to the security module of the tool. As for
the second database (MongoDB), the collections are
not normalised by the amount of data that can be
repeated. CommitsByProject collection represents
the repository and the respective documents such as
commit, author, commiter, commitAuthor and
toxicity. AnalysesByProject collection represents the
information of each release extracted of repository.
IssuesByProject collection contains the data of issues
of extracted repository. MeasureHistoryByProject
collection represents the information about the
software quality metrics of each release of repository.
The dataset obtained from the data extraction and
cleaning can be consulted at the following link
https://zenodo.org/record/6012674#.YgKvE-rMLt8

4 PRELIMINARY EMPIRICAL
CASE STUDY

We conducted a preliminary study with a project
software of the extracted toxic comments and metrics
code quality dataset to validity check of tool. We
study the value toxic per commit message of each
release of the project, obtained the main quality
metrics from SonarQube and executed a correlational
analysis between the quality metrics and toxic
comments.

Figure 2: Diagram of database of tool.

Exploring the Impact of Toxic Comments in Code Quality

339

Toxic comments by release. We performed a
percentage ranking of toxicity per release from 0 to
100, i.e. for each release there is a total of commit
messages and in particular each comment has a
toxicity index. We found, the highest amount of toxic
comments are located in the range of 30 - 40 % per
commit message. The amount of toxicity relevant for
the following analysis is in the range of 90-100%
toxic per commit message. We observe that amount
of toxic comments increases with each project
release.

Code quality metrics. Tool automatically extracts
SonarQube's code quality metrics from the repository
for each project release. We analyze, process, and
clean the variables with information that significant
to the study.

Correlational analysis. We statistically analyzed
toxic comments and a possible relationship with
quality metrics in our research. We study the
relationship between variables, we performed a
Pearson correlation (r) on our dataset. Pearson is a
measure of linear association suitable for variables
measured on an interval scale (Thirumalai and
Member, 2017). Result obtained was thirty-two
variables indicating from a low to moderate
significant correlation ranging between values in
from r=0.28 to r= 0.69 as see in table 1.

Table 1: Correlation toxic comments and code quality
metrics.

Variable R value

functions 0.39052521

duplicated_lines 0.64677504

coverage 0.32066621

complexity 0.40119754

comment_lines 0.40327453

comment_lines_density 0.57982721

duplicated_lines_density 0.69194964

file_complexity 0.63888768

violations 0.5330704

duplicated_blocks -0.32833555

duplicated_files 0.56395605

statements 0.36686428

blocker_violations 0.52621986

major_violations 0.61798788

minor_violations 0.49356737

info_violations -0.27603837

lines_to_cover 0.63816548

line_coverage 0.32066621

sqale_index 0.43315924

last_commit_date 0.62599543

open_issues 0.53678944

reopened_issues 0.23631395

confirmed_issues -0.5486225

sqale_debt_ratio 0.31830114

new_sqale_debt_ratio 0.20616904

code_smells 0.51404113

bugs 0.28129013

reliability_remediation_effort 0.31833085

security_remediation_effort 0.52621986

security_rating 0.52621986

cognitive_complexity 0.40012998

new_development_cost -0.41797483

To choosing the most significant variables for our
study. We performed a processing of
normalisation/rescaling of data set (Chango et al.,
2021), achieve a CSV file. We then with Weka(Hutter
et al., 2019) proceeded to apply attribute selection
algorithms from the dataset to select the quality
variables most strongly correlated with toxic
comments. We obtained from data set two sets of 2
optimal variables (Table 2) for normalized data set
and 6 optimal variables for discrete data set.

Table 2: List of selected variables.

of
select
ed

selected variables
Selected
Features

Type
Data

2
*duplicated_lines_de

nsity
*lines_to_cover

1,12,25 Normalis
ed

6 *blocker_violations
 *reopened_issues
 *confirmed_issues
*new_sqale_debt_ratio
*security_remediation_
effort
 Security_rating

2,20,31,32,
34,39,40

Discretise
d

Our analyses suggest that exist a correlation between
the code quality variables (Table 2) and the toxicity
of commit messages, with the "duplicated lines
density" variable r=0.69 having the highest
correlation value and the "new sqale debt ratio"
variable r=0.21 having the lowest correlation value.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

340

These results imply that exist a relationship between
toxic comments and code quality that can affect the
quality of the software project in life cycle. Further
analysis will be addressed in future research to study
which dataset is more efficient in validation
experiments together with linear regression and
calculate the impact on code quality.

5 THREATS TO VALIDITY

The study has a scope on GitHub commit messages
and toxic comments that could affect code quality.
We do not consider other elements that are part of the
software repository such as pull requests, branches,
mailing lists or formal project documentation.
Moreover, the tool could improve toxic calculation if
we modify the training set. The next step of
improvement is to use a larger training set, which
allows us to increase the accuracy of obtaining
toxicity along with a larger number of projects.
Finally, the validation of our study could be improved
by using other data sources.

6 CONCLUSIONS

Software quality is measured to find bugs and
software problems in the development phase.
Therefore, lack of quality can have serious
consequences for the software product. In our
research we propose a dataset to correlate the toxic
comments from commit messages and software
quality during the development phase of a software
project. We analyze these possible correlations with a
preliminary case study. In the case study, statistical
analyses were applied to extract the significant
variables for our study and to test the correlation with
toxic comments. We found that there is a moderate
correlation between the toxic comments and software
quality metrics. Results obtained are in line with
related work, what motivates us research to
continued, how developer toxic sentiments might
affect the code quality of a software project. Pilot
study is small, so future work in this research will aim
to replicate it with more software projects and an
improved training set to obtain a broader and deeper
account of the factors that affect developers' emotions
and, in turn, code quality in the lifecycle of a software
project. Moreover, future research we will explore
how code quality can affect developers' emotions.
This paper allows us to expand our research

possibilities and areas involved in sentiment analysis
that we will explore in next future.

ACKNOWLEDGEMENTS

This study has been partially funded by the G3SOFT
(SBPLY/17/ 180501/ 000150) project funded by the
‘Dirección General de Universidades, Investigación e
Innovación – Consejería de Educación, Cultura y
Deportes; Gobierno de Castilla-La Mancha’. This
work is part of the SMOQUIN project (PID2019-
104791RB-I00) funded by Spanish MICINN. This
work is also part of the BIZDEVOPS-Global
(RTI2018-098309-B-C31) project, Ministerio de
Economía, Industria y Competitividad (MINECO) &
Fondo Europeo de Desarrollo Regional (FEDER).

REFERENCES

Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W.
S., Dekel, Y., … Zhu, Y. (2019). Machine learning at
microsoft with ML.NET. ArXiv, 2448–2458.

Ardito, L., Coppola, R., Barbato, L., & Verga, D. (2020). A
Tool-Based Perspective on Software Code
Maintainability Metrics: A Systematic Literature
Review. Scientific Programming, 2020. https://doi.org/
10.1155/2020/8840389

Asri, I. El, Kerzazi, N., Uddin, G., Khomh, F., & Janati
Idrissi, M. A. (2019). An empirical study of sentiments
in code reviews. Information and Software Technology,
114(June), 37–54. https://doi.org/10.1016/j.infsof.2019.
06.005

Berahas, A. S., & Takáč, M. (2020). A robust multi-batch
L-BFGS method for machine learning*. Optimization
Methods and Software, 35(1), 191–219. https://doi.org
/10.1080/10556788.2019.1658107

Boehm, B. W. (1988). A Spiral Model of Software
Development and Enhancement. Computer, 21(5), 61–
72. https://doi.org/10.1109/2.59

Bollapragada, R., Mudigere, D., Nocedal, J., Shi, H. J. M.,
& Tang, P. T. P. (2018). A Progressive Batching L-
BFGS Method for Machine Learning. 35th
International Conference on Machine Learning, ICML
2018, 2, 989–1013.

Carige, R. S., & de Figueiredo Carneiro, G. (2020). Impact
of developers sentiments on practices and artifacts in
open source software projects: A systematic literature
review. ICEIS 2020 - Proceedings of the 22nd
International Conference on Enterprise Information
Systems, 2(ICEIS), 31–42. https://doi.org/10.5220/
0009313200310042

Chango, W., Cerezo, R., & Romero, C. (2021). Multi-
source and multimodal data fusion for predicting
academic performance in blended learning university
courses. Computers and Electrical Engineering,

Exploring the Impact of Toxic Comments in Code Quality

341

89(November 2020). https://doi.org/10.1016/j.compe
leceng.2020.106908

Cheriyan, J., Savarimuthu, B. T. R., & Cranefield, S.
(2021). Norm Violation in Online Communities – A
Study of Stack Overflow Comments. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12298 LNAI, 20–34.
https://doi.org/10.1007/978-3-030-72376-7_2

Cheruvelil, J., and Da-Silva, B. C. (2019). Developers’
sentiment and issue reopening. Proceedings - 2019
IEEE/ACM 4th International Workshop on Emotion
Awareness in Software Engineering, SEmotion 2019,
29–33. https://doi.org/10.1109/SEmotion.2019.00013

Ding, J., Sun, H., Wang, X., & Liu, X. (2018). Entity-level
sentiment analysis of issue comments. Proceedings -
International Conference on Software Engineering, 7–
13. https://doi.org/10.1145/3194932.3194935

Erdemir, U., Tekin, U., & Buzluca, F. (2011). E-quality: A
graph based object oriented software quality
visualization tool. Proceedings of VISSOFT 2011 - 6th
IEEE International Workshop on Visualizing Software
for Understanding and Analysis. https://doi.org/
10.1109/VISSOF.2011.6069454

Gachechiladze, D., Lanubile, F., Novielli, N., &
Serebrenik, A. (2017). Anger and its direction in
collaborative software development. Proceedings -
2017 IEEE/ACM 39th International Conference on
Software Engineering: New Ideas and Emerging
Results Track, ICSE-NIER 2017, 11–14.
https://doi.org/10.1109/ICSE-NIER.2017.18

Geet, A., Illina, I., Fohr, D., Landscapes, T. N., Toxic, A.,
Sa, A. G. D., … Lorraine, U. De. (2020). Towards Non-
Toxic Landscapes : Automatic Toxic Comment
Detection Using DNN. In Second Workshop on
Trolling, Aggression and Cyber- bullying (LREC,
2020).

Georgakopoulos, S. V., Vrahatis, A. G., Tasoulis, S. K., &
Plagianakos, V. P. (2018). Convolutional neural
networks for toxic comment classification. ACM
International Conference Proceeding Series.
https://doi.org/10.1145/3200947.3208069

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson,
P. (2018). What happens when software developers are
(un)happy. Journal of Systems and Software, 140, 32–
47. https://doi.org/10.1016/j.jss.2018.02.041

Gunsel, A. (2014). The Effects of Emotional Labor on
Software Quality: the Moderating Role of Project
Complexity. Journal of Global Strategic Management,
2(8), 96–96. https://doi.org/10.20460/jgsm.20148 15645

Guzman, E., Azócar, D., & Li, Y. (2014). Sentiment
analysis of commit comments in GitHub: An empirical
study. 11th Working Conference on Mining Software
Repositories, MSR 2014 - Proceedings, 352–355.
https://doi.org/10.1145/2597073.2597118

Guzman, E., & Bruegge, B. (2013). Towards emotional
awareness in software development teams. 2013 9th
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013

- Proceedings, 671–674. https://doi.org/10.114
5/2491411.2494578

Hancock, P. A., & Szalma, J. L. (2008). Performance under
stress. Performance Under Stress, (January 2008), 1–
389. https://doi.org/10.21139/wej.2017.013

Horch, J. W. (1996). Metrics and models in software quality
engineering. Control Engineering Practice.
https://doi.org/10.1016/0967-0661(96)81493-6

Howard, M. J., Gupta, S., Pollock, L., & Vijay-Shanker, K.
(2013). Automatically mining software-based,
semantically-similar words from comment-code
mappings. IEEE International Working Conference on
Mining Software Repositories, 377–386. https://doi.
org/10.1109/MSR.2013.6624052

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019).
Automated Machine Learning. The Springer Series on
Challenges in Machine Learning. Automated Machine
Learning. The Springer Series on Challenges in
Machine Learning. Springer. https://doi.org/10
.1007/978-3-319-00960-5_6

ISO. (2011). ISO - ISO/IEC 25010:2011 - Systems and
software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and
software quality models. Retrieved November 24,
2021, from https://www.iso.org/standard/35733.html

Jongeling, R., Sarkar, P., Datta, S., & Serebrenik, A.
(2017). On negative results when using sentiment
analysis tools for software engineering research.
Empirical Software Engineering, 22(5), 2543–2584.
https://doi.org/10.1007/s10664-016-9493-x

Kaur, A., Singh, A. P., Dhillon, G. S., & Bisht, D. (2018).
Emotion Mining and Sentiment Analysis in Software
Engineering Domain. Proceedings of the 2nd
International Conference on Electronics,
Communication and Aerospace Technology, ICECA
2018, (Iceca), 1170–1173. https://doi.org/10.1109/
ICECA.2018.8474619

Kritikos, A., Venetis, T., & Stamelos, I. (2020). An
Empirical Investigation of Sentiment Analysis of the
Bug Tracking Process in Libre Office Open Source
Software. IFIP Advances in Information and
Communication Technology (Vol. 582 IFIP). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-47240-5_4

Lenarduzzi, V., Lomio, F., Huttunen, H., & Taibi, D.
(2020). Are SonarQube Rules Inducing Bugs? SANER
2020 - Proceedings of the 2020 IEEE 27th
International Conference on Software Analysis,
Evolution, and Reengineering, 501–511. https://doi.org
/10.1109/SANER48275.2020.9054821

Lenarduzzi, V., Saarimäki, N., & Taibi, D. (2019). The
technical debt dataset. ACM International Conference
Proceeding Series, (May), 2–11. https://doi.org
/10.1145/3345629.3345630

Lewis, W. E., Dobbs, D., & Veerapillai, G. (2017).
Software Testing and Continuous Quality Improvement
(3rd ed.). Auerbach Publications. https://doi.org/
https://doi.org/10.1201/9781439834367

Li, L., Goethals, F., Baesens, B., & Snoeck, M. (2017).
Predicting software revision outcomes on GitHub using

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

342

structural holes theory. Computer Networks, 114, 114–
124. https://doi.org/10.1016/j.comnet.2016.08.024

Lin, B., Zampetti, F., Bavota, G., Penta, M. Di, Lanza, M.,
Oliveto, R., & Di Penta, M. (2018). Sentiment Analysis
for Software Engineer-ing: How Far Can We Go.
Dl.Acm.Org, 94–104. Retrieved from https://doi.org/1
0.1145/3180155.3180195

Liu, X., & Woo, G. (2020). Applying Code Quality
Detection in Online Programming, 56–60.

Murgia, A., Tourani, P., Adams, B., & Ortu, M. (2014). Do
developers feel emotions? An exploratory analysis of
emotions in software artifacts. 11th Working
Conference on Mining Software Repositories, MSR
2014 - Proceedings, 262–271. https://doi.org/10.11
45/2597073.2597086

Novielli, N., Calefato, F., & Lanubile, F. (2014). Towards
discovering the role of emotions in stack overflow. 6th
International Workshop on Social Software
Engineering, SSE 2014 - Proceedings, (November),
33–36. https://doi.org/10.1145/2661685.2661689

Novielli, N., Calefato, F., & Lanubile, F. (2018). A gold
standard for emotion annotation in stack overflow.
Proceedings - International Conference on Software
Engineering, 14–17. https://doi.org/10.1145/3196398
.3196453

Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli,
R., Marchesi, M., & Adams, B. (2016). The emotional
side of software developers in JIRA. Proceedings - 13th
Working Conference on Mining Software Repositories,
MSR 2016, 480–483. https://doi.org/10.1145/
2901739.2903505

OWASP. (2021). Source Code Analysis Tools | OWASP.
Retrieved December 6, 2021, from https://owasp.
org/www-community/Source_Code_Analysis_Tools

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment
Analysis. Found. Trends Inf. Retr., 2(1–2), 1–135.
https://doi.org/10.1561/1500000011

Petersen, K., & Gencel, C. (2013). Worldviews, research
methods, and their relationship to validity in empirical
software engineering research. Proceedings - Joint
Conference of the 23rd International Workshop on
Software Measurement and the 8th International
Conference on Software Process and Product
Measurement, IWSM-MENSURA 2013, 81–89.
https://doi.org/10.1109/IWSM-Mensura.2013.22

Pletea, D., Vasilescu, B., & Serebrenik, A. (2014). Security
and emotion: Sentiment analysis of security discussions
on GitHub. 11th Working Conference on Mining
Software Repositories, MSR 2014 - Proceedings, 348–
351. https://doi.org/10.1145/2597073.2597117

Rezvani, A., & Khosravi, P. (2019). Emotional intelligence:
The key to mitigating stress and fostering trust among
software developers working on information system
projects. International Journal of Information
Management, 48(January), 139–150. https://doi.org/
10.1016/j.ijinfomgt.2019.02.007

Risch, J., Schmidt, P., & Krestel, R. (2021). Data
Integration for Toxic Comment Classification : Making
More Than 40 Datasets Easily Accessible in One
Unified Format.

Rousinopoulos, A.-I., Robles, G., & González-Barahona, J.
M. (2014). Sentiment Analysis of Free/Open Source
Developers: Preliminary Findings From a Case Study.
Revista Eletrônica de Sistemas de Informação, 13(2).
https://doi.org/10.5329/resi.2014.1302006

Saeed, H. H., Shahzad, K., & Kamiran, F. (2019).
Overlapping toxic sentiment classification using deep
neural architectures. IEEE International Conference on
Data Mining Workshops, ICDMW, 2018–Novem, 1361–
1366. https://doi.org/10.1109/ICDMW.2018.00193

Sarker, J., Turzo, A. K., & Bosu, A. (2020). A benchmark
study of the contemporary toxicity detectors on
software engineering interactions. Proceedings - Asia-
Pacific Software Engineering Conference, APSEC,
2020–Decem, 218–227. https://doi.org/10.1109/APSE
C51365.2020.00030

Singh, N., & Singh, P. (2018). How Do Code Refactoring
Activities Impact Software Developers’ Sentiments? -
An Empirical Investigation into GitHub Commits.
Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, 2017–Decem, 648–653.
https://doi.org/10.1109/APSEC.2017.79

Sinha, V., Lazar, A., & Sharif, B. (2016). Analyzing
developer sentiment in commit logs. Proceedings - 13th
Working Conference on Mining Software Repositories,
MSR 2016, 520–523. https://doi.org/10.1145/2
901739.2903501

Sistema, I., Pomoću, P., & Net, M. L. (2019).
DEVELOPMENT OF RECOMMENDER SYSTEMS
USING ML . NET, (September).

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning,
C. D., Ng, A. Y., & Potts, C. (2013). Recursive deep
models for semantic compositionality over a sentiment
treebank. EMNLP 2013 - 2013 Conference on
Empirical Methods in Natural Language Processing,
Proceedings of the Conference, 1631–1642.

Sun, K. (2021). Exploiting the Unique Expression for
Improved Sentiment Analysis in Software Engineering
Text.

Tare, P. (2017). Toxic Comment Detection and
Classification. In 31st Conf. on Neural Information
Processing Systems (NIPS 2017), (pp. 1–6).

Thakur, V., Kessentini, M., & Sharma, T. (2020). QScored:
An Open Platform for Code Quality Ranking and
Visualization. Proceedings - 2020 IEEE International
Conference on Software Maintenance and Evolution,
ICSME 2020, 818–821. https://doi.org/10.1109/
ICSME46990.2020.00101

Thirumalai, C., & Member, I. (2017). Analysing the
Concrete Compressive Strength using Pearson and
Spearman. International Conference on Electronics,
Communication and Aerospace Technology, 215–218.

Wilson, J., & Hernández-Hall, C. (2014). VADER: A
Parsimonious Rule-based Model for Sentiment
Analysis of Social Media Text. Eighth International
AAAI Conference on Weblogs and Social Media, 18.
Retrieved from https://www.aaai.org/ocs/index. php/I
CWSM/ICWSM14/paper/viewPaper/8109

Exploring the Impact of Toxic Comments in Code Quality

343

