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Abstract: This study implements and tests an Eco-Cooperative Adaptive Cruise Control at Intersections (Eco-CACC-I) 
system in a large-scale metropolitan network to quantify the system-level performance considering different 
vehicle powertrains, connected automated vehicle (CAV) market penetration rates, and congestion levels. 
Specifically, three vehicle powertrains are considered in this study, including internal combustion engine 
vehicles (ICEVs), battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). This study integrates 
the Eco-CACC-I controller with different fuel/energy consumption models, so that the controller can compute 
energy-optimized solutions to assist ICEVs, BEVs and HEVs traverse signalized intersections. A simulated 
traffic network in the Greater Los Angeles Area including the downtown LA and the immediate vicinity is 
used to implement and test the Eco-CACC-I controller. The test results demonstrate that the controller 
produces positive impacts on saving fuel/energy consumption, reducing travel time and delays on urban 
networks for different combinations of CAV market penetration and congestion levels. 

1 INTRODUCTION 

Studies have showed that vehicle acceleration, 
deceleration maneuvers and idling events near 
signalized intersections increase vehicle energy 
consumption and emission levels on arterial road, 
since vehicle are forced to stop ahead of traffic signals 
when encountering red indications, producing shock 
waves within the traffic stream (Barth & 
Boriboonsomsin, 2008). The communications 
between vehicles (V2V) and between vehicles and 
infrastructure (V2I) provide additional data for 
researchers to develop control strategies such as eco-
driving systems to optimize vehicle trajectories in the 
vicinity of signalized intersections to enhance 
mobility and reduce vehicle fuel consumption and 
emissions (Saboohi & Farzaneh, 2008). 

Most of the studies in this area have focused on 
developing eco-driving strategies for ICEVs, since 
the current car market is dominated by fuel-powered 
vehicles. For example, a cooperative adaptive cruise 
control system using SPaT information was proposed 

 
a  https://orcid.org/0000-0001-8272-734X 
b  https://orcid.org/ 0000-0002-5845-2929 

to minimize the absolute acceleration levels of 
vehicles and reduce vehicle fuel consumption levels 
(Malakorn & Park, 2010). A dynamic programming-
based fuel-optimization strategy was developed using 
recursive path-finding principles, and evaluated the 
developed strategy using an agent-based modeling 
approach (Kamalanathsharma & Rakha, 2014). 
Moreover, an eco-driving system entitled Eco-CACC 
for fuel-powered vehicles was developed, and field 
tests were conducted to demonstrate that the 
developed system can efficiently reduce stop-and-go 
traffic and produce significant fuel and delay savings 
of 31% and 9%, respectively (Almannaa, Chen, 
Rakha, Loulizi, & El-Shawarby, 2019). 

With the rapid growth of electric vehicles in the 
past decade, recently some researchers have started to 
develop speed control strategies for electric vehicles, 
including BEVs and HEVs. For instance, an eco-
driving technique for BEVs was developed in 
(Miyatake, Kuriyama, & Takeda, 2011), and the 
vehicle trajectory control problem was formulated as 
an optimization problem to minimize the summation 
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of vehicle power. However, a simple energy model 
was used by assuming that the recharge efficiency is 
a constant value. Another BEV eco-driving algorithm 
was proposed in (Zhang & Yao, 2015), in which an 
energy consumption model based on the VT-Micro 
model was developed for different operation modes 
of BEVs, then an eco-driving model for a single 
signalized intersection was proposed using the 
developed energy model. However, the proposed 
energy consumption model was a statistical model 
based on limited collected data, thus the accuracy 
may not be good enough for the purpose of 
developing an optimal control strategy for dynamic 
vehicle maneuvers. The same energy consumption 
model was used in (Qi, Barth, Wu, Boriboonsomsin, 
& Wang, 2018) to develop a connected eco-driving 
system for BEVs. However, the case study used a 
2012 Ford Escape with a hybrid engine to represent 
the performance of an actual BEV. A more robust 
algorithm which uses a realistic energy consumption 
model for BEV was developed in (Chen & Rakha, 
2020) and the simulated test results demonstrated the 
benefits of the developed controller to save energy 
consumption and delays. An extension work further 
expanded the controller to HEVs, and the test results 
from an arterial corridor with three signalized 
intersections demonstrated that the proposed system 
can effectively reduce stop-and-go traffic in the 
vicinity of signalized intersections (Chen & Rakha, 
2021). 

Most of existing studies investigated the eco-
driving strategies for a single vehicle engine type. 
Moreover, the developed algorithms were generally 
tested using simplified or small traffic networks, and 
none of these studies investigated the performance on 
large-scale traffic networks calibrated to real traffic 
conditions. Considering the abovementioned 
problems, this study implements and tests an Eco-
CACC-I system using a large-scale metropolitan 
network to investigate the system-level performances 
for different vehicle powertrains (ICEV, BEV and 
HEV), CAV market penetration rates and congestion 
levels. Based on the previous work, the optimal speed 
profiles for different vehicle powertrains are 
generally very different under certain conditions, 
such as different speed limits and roadway grades. 
This study integrates the Eco-CACC-I controller with 
different fuel/energy consumption models, so that the 
controller can compute energy-optimized solutions to 
assist ICEVs, BEVs and HEVs traverse signalized 
intersections. A simulated traffic network in the 
Greater Los Angeles Area including the downtown 
LA and the immediate vicinity is used to implement 
and test the Eco-CACC-I controller. The test results 

demonstrate the controller can effectively reduce 
stopped delay and energy consumption for ICEV, 
BEV and HEV in the LA network. 

2 Eco-CACC-I CONTROLLER 

In this study, the Eco-CACC-I controller uses eco-
driving strategy to compute real-time fuel/energy-
optimized speed profile for assist vehicles pass 
signalized intersections. Our previous work 
developed various Eco-CACC-I systems for vehicles 
with different engine types, including ICEV, BEV 
and HEV. In this study, we use the same Eco-CACC-
I framework we developed in previous work, and 
incorporate the energy models of ICEV, BEV and 
HEV so that the controller can work with different 
vehicle types in large-scale traffic network.  

2.1 Eco-CACC-I Algorithm 

The control region is defined as vehicles follow the 
recommended speed by Eco-CACC-I from a distance 
upstream of the signalized intersection (defined as 
dup) to a distance downstream of the intersection 
(defined as ddown), as the Eco-CACC-I algorithm 
optimizes speed profile for vehicle approaching and 
leaving signalized intersections. Upon approaching a 
signalized intersection, the vehicle may accelerate, 
decelerate, or cruise (maintain a constant speed) 
based on a number of factors, such as vehicle speed, 
signal timing and phase, distance to the intersection, 
road grade, headway distance, etc. Considering that 
the vehicle may or may not need to decelerate when 
approaching the traffic signal, two cases are 
considered to develop the Eco-CACC-I strategies. 

Case 1 doesn’t require the vehicle to decelerate to 
pass the signalized intersection. In this case, the 
cruise speed for the vehicle to approach the 
intersection during the red indication can be 
calculated by Equation (1) to maximize the average 
vehicle speed during the control region. 

𝑢௖ ൌ 𝑚𝑖𝑛 ൬
𝑑௨௣

𝑡௥
, 𝑢௙൰ (1)

In case 2, the vehicle’s energy-optimized speed 
profile is illustrated in Figure 1. After entering the 
control region, the vehicle with the initial speed of 
u(t0) needs to brake at deceleration level denoted by 
a, then cruise at a constant speed of uc to approach the 
signalized intersection. After passing the stop bar, the 
vehicle should increase speed to uf per the vehicle 
dynamics model, and then cruise at uf until the vehicle 
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leaves the control region. In this case, The following 
optimization problem is formulated to compute the 
optimum vehicle speed profile, and the only unknown 
variables are the upstream deceleration rate a and the 
downstream throttle fp.  

 
Figure 1: Vehicle optimum speed profile. 

Assuming a vehicle enters the Eco-CACC-I 
control region at time t0 and leaves the control region 
at time t0+T, the objective function entails 
minimizing the total energy consumption as 

𝑚𝑖𝑛 න 𝐸𝐶൫𝑢ሺ𝑡ሻ൯
௧బା்

௧బ

൉ 𝑑𝑡 (2)

where EC denotes the energy consumption at instant 
t. The energy models for ICEVs, BEVs and HEVs are 
presented in Equations (5) ~ (10). The constraints to 
solve the optimization problem can be built according 
to the relationships between vehicle speed, location, 
acceleration/deceleration as presented below: 

𝑢ሺ𝑡ሻ:
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In Equation (3), u(t) is the velocity at instant t; m is 
the vehicle mass; 𝑎ሺ𝑡ሻ ൌ 𝑑𝑣ሺ𝑡ሻ 𝑑𝑡⁄  is the 
acceleration of the vehicle in [m/s2] ( 𝑎ሺ𝑡ሻ  takes 
negative values when the vehicle decelerates); 
function F denotes vehicle tractive force and function 
R represents all the resistance forces (aerodynamic, 
rolling, and grade resistance forces). Note that the 
maximum deceleration is limited by the comfortable 
threshold felt by average drivers. The throttle value fp 
ranges between fmin and fmax. Dynamic programming 

(DP) is used to solve the problem by constructing a 
graph of the solution space by discretizing the 
combinations of deceleration and throttle values and 
calculating the corresponding energy consumption 
levels; the minimum path through the graph computes 
the energy-efficient trajectory and optimum 
parameters (Guan & Frey, 2013). 

2.2 Energy Consumption Models 

The energy consumption models for ICEVs, BEVs 
and HEVs are the key inputs to the abovementioned 
objective function to solve the optimization problem. 
In this study, the fuel/energy consumption models for 
various vehicle powertrains are selected by 
considering: (1) speed and grade data are the only 
required input for the energy models, and vehicle 
engine data are not required so that the optimization 
problem can be easily solved; (2) the energy models 
have been validated and demonstrated to produce 
good accuracy compared to empirical data; (3) 
models can be easily calibrated to a specific vehicle 
type using public data and/or the EPA combined fuel 
economy data. By considering those factors, the 
following fuel/energy models for ICEV, BEV and 
HEV are selected in this study. 

The Virginia Tech Comprehensive Power-based 
Fuel Consumption Model (VT-CPFM) type 1 is 
selected to estimate the instantaneous fuel 
consumption rate for ICEV (Park, Rakha, Ahn, & 
Moran, 2013). The VT-CPFM utilizes instantaneous 
power as an input variable and can be easily 
calibrated using publicly available fuel economy data 
(e.g., Environmental Protection Agency [EPA]-
published city and highway gas mileage). The VT-
CPFM is formulated as below. 

𝐹𝐶ூ஼ா௏ሺ𝑡ሻ

ൌ ൜
𝑎଴ ൅ 𝑎ଵ𝑃ሺ𝑡ሻ ൅ 𝑎ଶ𝑃ሺ𝑡ሻଶ ∀ 𝑃ሺ𝑡ሻ ൒ 0

𝑎଴ ∀ 𝑃ሺ𝑡ሻ ൏ 0
 (5)

𝑃ሺ𝑡ሻ ൌ ሺ𝑚𝑎ሺ𝑡ሻ ൅ 𝑚𝑔 ∙
𝐶௥

1000
ሺ𝑐ଵ𝑢ሺ𝑡ሻ ൅ 𝑐ଶሻ 

൅
1
2

𝜌஺௜௥𝐴௙𝐶஽𝑢ଶሺ𝑡ሻ ൅ 𝑚𝑔 𝜃ሻ𝑢ሺ𝑡ሻ 
(6)

Where FCICEV(t) is the fuel consumption rate for 
ICEV; α଴, αଵ and αଶ are the model parameters that 
can be calibrated for a particular vehicle using public 
available vehicle specification information from 
manufacturer; P(t) is the instantaneous total power 
(kW); 𝑔 [m/s2] is the gravitational acceleration; 𝜃 is 
the road grade; 𝐶௥, 𝑐ଵ and 𝑐ଶ are the rolling resistance 
parameters that vary as a function of the road surface 
type, road condition, and vehicle tire type; 𝜌஺௜௥ 
[kg/m3] is the air mass density; 𝐴௙[m2] is the frontal 

Testing an Eco-Cooperative Adaptive Cruise Control System in a Large-scale Metropolitan Network

267



area of the vehicle, and 𝐶஽ is the aerodynamic drag 
coefficient of the vehicle. 

This study uses the Virginia Tech Comprehensive 
Power-based EV Energy consumption Model (VT-
CPEM) compute instantaneous energy consumption 
levels for BEV (Fiori, Ahn, & Rakha, 2016). The VT-
CPEM only requires the instantaneous speed and the 
EV characteristics as input to compute the 
instantaneous power consumed. One of the major 
advantages of VT-CPEM is that it captures 
instantaneous braking energy regeneration, which is 
not available in most BEV energy models. The VT-
CPEM model is summarized as below. 

𝐸𝐶஻ா௏ሺ𝑡ሻ ൌ න 𝑃஻ሺ𝑡ሻ ∙ 𝑑𝑡 (7)
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൅  𝑃஺௨௫ ∀ 𝑃ௐሺ𝑡ሻ ൒ 0

 𝑃ௐሺ𝑡ሻ ∙ 𝜂஽ ∙ 𝜂ெ ∙ 𝜂஻ ∙ 𝜂௥௕ ∀ 𝑃ௐሺ𝑡ሻ ൏ 0
൅ 𝑃஺௨௫

(8)

𝜂௥௕ሺ𝑡ሻ ൌ ቈ𝑒
൬

଴.଴ସଵଵ
|௔ሺ௧ሻ| ൰

቉
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 (9)

where ECBEV represents the energy consumption for 
BEV; PB is the power consumed by (regenerated to) 
the electric motor; Pw denotes the power at the 
wheels computed in Equation (6); PAux is the power 
consumed by the auxiliary systems; ηD and ηM are the 
driveline efficiency and the efficiency of the electric 
motor, respectively; ηB denotes the efficiency from 
battery to electric motor; ηrb represents the 
regenerative braking energy efficiency, which can be 
computed using Equation (9). 

An HEV energy consumption model developed in 
(Ahn & Rakha, 2019) is selected to compute 
instantaneous energy consumption levels for HEVs. 
The model was developed after analyzing field data 
and HEV energy consumption behaviors. First, the 
amount of fuel consumed is proportionally related to 
both the vehicle power and speed; second, the HEV 
operates in EV mode when the power is less than 0; 
third, the HEV utilizes only an electric mode when 
the speed is lower than an EV mode speed (ua) and 
the required power is lower than a specific power 
(Pa). This model only requires instantaneous speed as 
input and can be easily calibrated with high accuracy 
to match field data. The HEV energy consumption 
model is formulated as below. 

 
 
 
 
 
 

𝐹𝐶ுா௏ሺ𝑡ሻ ൌ 

⎩
⎪
⎨

⎪
⎧ 𝐹𝐶ா௏೘೚೏೐ for ൜

𝑃 ൑ 0
𝑢 ൏ 𝑢௔ and 𝑃 ൏ 𝑃௔

𝑎 ൅ 𝑏 ∗ 𝑢ሺ𝑡ሻ ൅
𝑐 ∗ 𝑃ሺ𝑡ሻ ൅ 𝑑 ∗ 𝑃ሺ𝑡ሻଶ for ൜

𝑃 ൐ 0 and 𝑢 ൒ 𝑢௔
𝑢 ൏ 𝑢௔ and 𝑃 ൒ 𝑃௔

 (10)

where FCHEV(t) is the fuel consumption rate for HEV, 
and FCEV_mode is the fuel consumption rate in EV 
mode and estimated as average fuel consumption in 
EV mode; P(t) is the instantaneous total power and 
can be computed using Equation (6); and u is the 
instantaneous vehicle speed. Statistical analysis of the 
empirical data found that the optimum values for va 
and Pa are 32 km/h, and 10 kW, respectively (Ahn & 
Rakha, 2019). 

3 CASE STUDY 

3.1 The Simulated Traffic Network 

In this study, INTEGRATION was used as the 
simulation tool to simulate the traffic network in the 
Greater Los Angeles Area including the downtown 
LA and the immediate vicinity. INTEGRATION is an 
integrated simulation and traffic assignment model 
that creates individual vehicle trip departures based 
on an aggregated time-varying O-D matrix. In 
consideration of traffic control devices and gap 
acceptance, INTEGRATION moves vehicles along the 
network in accordance with embedded preset traffic 
assignment models and the Rakha-Pasumarthy-
Adjerid (RPA) car-following model. A more-detailed 
description of INTEGRATION is provided in the 
literature (Aerde & Rakha, 2007a, 2007b). 

Different data sources are used to build the 
microscopic network, including NavTeq for 
generating nodes and links, OpenStreetMap for 
creating intersection traffic control information, and 
Google Maps for validating road attributes – the 
number of lanes, one-way streets, speed limits, bus 
lane locations, etc. The simulated traffic network in 
LA includes 1625 nodes, 3561 links and 457 signals. 
A static O-D demand file was generated using 
QueensOD (Rakha & Lucic, 2002), a software 
application developed by VTTI researchers. 
QueensOD estimates the most-likely time-dependent 
static O-D using observed link traffic flows, observed 
link turning movement counts, link travel times, and 
a seed matrix. QueensOD iteratively minimizes the 
error between the observed link volumes and 
estimated link flow to generate a most-likely O-D 
matrix that is as close as possible to the seed matrix. 
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In this study, the median of the traffic count data for 
ten randomly selected Tuesdays and Wednesdays in 
2014, which were provided by the Caltrans 
Performance Measurement System (PEMS), were 
used as the input observed link flow data for 
QueensOD. 

The simulation results were compared against the 
traffic count data from PEMS and the corresponding 
R values were computed. The statistical analysis 
demonstrated that the simulated network is highly 
accurate by comparing to the field data collected in 
LA. More detailed information of the simulated LA 
traffic network can be found in (Du, Rakha, Elbery, 
& Klenk, 2018; Elbery, Devorak, Du, Rakha, & 
Klenk, 2019). 

3.2 Test the Eco-CACC-I Controller 

The Eco-CACC-I controller was implemented into 
the simulated LA network using the INTEGRATION 
software. The Eco-CACC-I controller was enabled on 
all the 457 signalized intersections in the LA network. 
In particular, 1,606 arterial links (including both 

upstream and downstream links) that are controlled 
by traffic signals for vehicle entering or existing are 
selected to implement the Eco-CACC-I controller. An 
experiment design was conducted to test the 
performances of the LA network in two scenarios 
(base case, Eco-CACC-I), under the combinations of 
vehicle type (ICEV, BEV and HEV), traffic demand 
(no congestion - 25% demand, mild congestion - 50% 
demand and heavy congestion - 100% demand), and 
level of market penetration (LMP) rate of the 
controlled vehicles (1%, 2%, 5%, 10%, 20%, 25%, 
50%, 75% and 100%). It should be noted that 100% 
demand was calibrated by one-hour real traffic data 
under weekday morning peak traffic conditions, 
which represents heavy traffic congestion. Note that 
the Eco-CACC-I controllers are disabled in the base 
case, and the controllers are enabled on the selected 
1,606 arterial links in the Eco-CACC-I case. Each 
scenario was simulated using 10 different random 
number seeds to address the stochastic characteristics 
of real-world traffic conditions, we should point out 
that all results reported below are averages across the 
10 runs. The comparisons of the test results in two 
scenarios are presented as below. 

 

Figure 2: The savings of Eco-CACC-I vs. base for BEV under different CAV market penetration and congestion levels. 

Testing an Eco-Cooperative Adaptive Cruise Control System in a Large-scale Metropolitan Network

269



 

Figure 3: The savings of Eco-CACC-I vs. base for BEV under different CAV market penetration and congestion levels. 

Figure 2 illustrates the savings in fuel, travel time, 
total delay and stopped delay associated with the 
application of the Eco-CACC-I controller for ICEV. 
The test results indicate that the Eco-CACC-I 
controller reduced the fuel consumption of ICEVs by 
up to 6.4%, travel time by up to 8.7%, total delay by 
up to 21.5%, stopped delay by up to 68.5%. We 
performed t-tests and found the results to be 
statistically significant. Figure 2 also demonstrates 
that the Eco-CACC-I controller effectively improves 
the fuel efficiency of ICEVs in heavily congested 
conditions, but the controller increases fuel 
consumption by up to 4% when the congestion levels 
are low. This is due to the fact that the entire network 
uses dynamic vehicle routing and an adaptive traffic 
signal controller that continuously changes the traffic 
signal timings, which makes the control of the vehicle 
very challenging given the continuous stochastic 
changes in the system. In addition, the study found 
that the Eco-CACC-I controller is most effective for 
ICEVs on fuel consumption, travel time, and total 
delay when the CAV MPR is 25% and the roads are 
heavily congested. The results also indicate that the 
Eco-CACC-I controller can effectively reduce ICEV 

stopped delay in various congestion levels. The 
savings of stopped delay are generally increased with 
higher MPRs when the congestion levels are low. The 
maximal savings of stopped delay are 68% and 41% 
for no congestion and mild congestion levels for a 
100% MPR. 

Figure 3 illustrates the savings in energy, travel 
time, total delay and stopped delay associated with 
using the Eco-CACC-I controller for BEV. The 
simulation results demonstrate that the Eco-CACC-I 
controller produces energy savings of BEVs up to 
5.05% (p-value < 0.01) on the LA network. The 
energy consumption savings increase as the CAV 
MPR increases for all congestion levels. The study 
found that the BEV energy savings for no congestion 
and mild congestion cases are greater than those of 
heavy congestion cases when the CAV MPR is 100%. 
Figure 3 also demonstrates that the Eco-CACC-I 
controller reduces BEV travel times and the total 
delays in the heavily congested cases. In particular, 
the controller produces savings in travel time by up to 
6.8% (p-value < 0.01) and total delay by up to 17.9% 
(p-value < 0.01) at a 25% CAV MPR in heavily 
congested conditions. However, Figure 3 also
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Figure 4: The savings of Eco-CACC-I vs. base for HEV under different CAV market penetration and congestion levels. 

demonstrates that the Eco-CACC-I increases both 
travel time and total delay in the no congestion and 
mild congestion cases when BEV powertrains are 
considered. The simulation results indicate that the 
BEV Eco-CACC-I controller can effectively reduce 
stopped delay under various congestion levels. The 
savings in stopped delay generally increase with 
higher CAV MPRs for no and mild congestion 
conditions. The study found that the Eco-CACC-I 
produced savings in BEV stopped delay by up to 
68.2% (p-value < 0.01) with a 100% CAV MPR and 
no congested conditions. 

Figure 4 illustrates the savings in fuel, travel time, 
total delay and stopped delay by using the Eco-
CACC-I controller for HEV. The simulation study 
found that the Eco-CACC-I controller reduced the 
fuel consumption of HEVs by up to 4.5% (p-value < 
0.01) when the CAV MPR is 100% with no 
congestion in the LA network. The study found that 
Eco-CACC-I increased the fuel consumption of 
HEVs for most cases. However, Eco-CACC-I 
reduced the fuel consumption of HEVs for high CAV 
MPR cases (75% and 100%) in no congestion and 
mild congestion cases. Figure 4 also demonstrates 

that the Eco-CACC-I reduces the travel time by up to 
7.1% (p-value < 0.01) and total delay by up to 17.8% 
(p-value < 0.01), and stopped delay by up to 32.8% 
(p-value < 0.01). The study found that Eco-CACC-I 
is most effective on travel time, total delay, and 
stopped delay for HEVs when CAV MPRs are 
between 20% and 50% and when roadways are 
heavily congested. However, Eco-CACC-I is not 
effective when the roads are not congested or are 
mildly congested. The results also indicate that the 
Eco-CACC-I controller can effectively reduce 
stopped delay under various congestion levels. The 
savings in stopped delay generally increase with 
higher CAV MPRs in low to mild traffic congestion.  

4 CONCLUSIONS 

This study implements and tests an Eco-CACC-I 
system on a large-scale metropolitan network to 
quantify the system-level impact considering 
different vehicle powertrains, CAV market 
penetration rates and congestion levels. Specifically, 
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three powertrains are considered in this study, 
including ICEVs, BEVs and HEVs. This study 
integrates the Eco-CACC-I controller with different 
fuel/energy consumption models, so that the 
controller can compute energy-optimized solutions to 
assist ICEVs, BEVs and HEVs traverse signalized 
intersections. A simulated traffic network in the 
Greater Los Angeles Area including the downtown 
LA and the immediate vicinity is used to implement 
and test the Eco-CACC-I controller. The test results 
demonstrate that the controller has positive impacts 
on reducing fuel/energy consumption, travel time, 
total and stopped delay, for ICEVs, BEVs and HEVs 
for different combinations of CAV market 
penetration and congestion levels. More data analysis 
on links with or without Eco-CACC-I controllers, and 
the further tests to combine Eco-CACC-I with other 
controllers (such as freeway speed harmonization, 
platooning, eco-routing, etc.) will be considered in 
the future work. 
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