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Abstract: In healthcare supply chain, centralised warehouses are used to store large amounts of products close to hos-
pitals and pharmacies in order to avoid shortages and reduce storage costs. To reach these objectives, the
warehouses need to have efficient order retrieval and dispatch procedures, as well as a storage allocation pol-
icy able to guarantee the safe keeping of items. Considering this scenario, we present a Storage Location
Assignment Problem with Product-Cell Incompatibility and Isolation Constraints, that models the targets and
restrictions of a storage policy in a pharmaceutical product warehouse. In this problem, we aim to minimise the
total distance travelled by the order pickers to recover all products required in a set of orders. We propose an
Iterated Local Search algorithm to solve the problem, and present numerical experiments based on simulated
data. The results show a relevant improvement with respect to a greedy full turnover procedure commonly
adopted in real life operations.

1 INTRODUCTION

Healthcare services are strongly sensible to equip-
ment or medicine shortages, as they could cause atten-
dance delays and interruptions and consequently put
patient lives at risk. Traditionally, the main approach
to avoid this problem was the use of high inventory
levels and constant item replenishment (Uthayakumar
and Priyan, 2013) (Aldrighetti et al., 2019). How-
ever, this solution has been often considered expen-
sive and hard to be managed, as it requires large dedi-
cated spaces into facilities and workload of healthcare
personnel (Volland et al., 2017).

Nowadays, more efficient approaches have been
adopted, as acquisitions through Group Purchasing
Organisations (GPO) and wholesalers. One of the
most successful approaches is the sharing of cen-
tralised warehouses to store together products to be
distributed to different customers located in the same
geographical area. Centralised warehouses are par-
ticularly useful because they allow healthcare facili-
ties to share a common structure to store a large vol-
ume of products and receive them quickly when they

a https://orcid.org/0000-0002-4924-7341
b https://orcid.org/0000-0002-6968-8689
c https://orcid.org/0000-0003-2097-6572

are needed. This enables a constant material flow,
a reduction in the personnel costs, a reduced storage
space in the customer facility and a lower work bur-
den over healthcare workers.

These advantages are highly dependent on the
warehouse reliability and capability of delivering the
ordered products in the short terms defined by the
customers. This reliability is, in turn, a direct result
of an efficient warehouse internal organisation, which
requires a good storage location policy.

A storage location policy is a general strategy to
assign Stock Keeping Units (SKU) to storage posi-
tions inside a warehouse. It aims at optimising a met-
ric (e.g. total time or distance travelled to store and
retrieve SKUs, congestion, space utilisation, pickers
ergonomic), while considering issues like product re-
allocations efforts, demand oscillation, picking prece-
dence and storage restrictions.

The metric commonly adopted to evaluate the
quality of these policies is the distance travelled by
the pickers to retrieve all products in a list of orders.
This metric is particularly relevant because picking
operations accounts for around 35% of the total ware-
house operational costs (Wang et al., 2020) and the
time/energy spent to reach a product is a waste of re-
sources that must be minimised. In other contexts, the
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evaluation may also consider issues like congestion,
picker ergonomic, product storage conditions and to-
tal space utilisation, that can also lower the warehouse
operation efficiency.

In this paper, we describe a problem originated
from a real life operation of a pharmaceutical prod-
uct distributor. It consists in the optimisation of
a dedicated storage allocation policy in a picker-to-
parts warehouse, i.e., a warehouse where each prod-
uct has a fixed/dedicated position and pickers travel
until product location to retrieve order items. Most
specifically, we deal with a Storage Location Assign-
ment Problem with Product-Cell Incompatibility and
Isolation Constraints (SLAP-PCIIC). In this prob-
lem, some products cannot be assigned to some lo-
cations due to reasons like refrigeration or ventilation
(product-cell incompatibility), and some other prod-
ucts need to be isolated from the unconstrained ones
due to toxicity or contamination concerns (isolation).
Furthermore, the problem considers a flexible ware-
house layout configuration, with shelves not neces-
sarily grouped on blocks or in a unique pavilion.

This study provides as main contribution an Iter-
ated Local Search (ILS) algorithm, that takes a set of
orders and a warehouse layout in input and returns a
list of assignments of products to locations that min-
imises the total distance travelled to fulfill the orders.

The remainder of the paper is organised as fol-
lows: in Section 2, a concise literature review is pre-
sented; Section 3 provides a detailed problem descrip-
tion; Section 4 describes the ILS algorithm and the
data processing done before starting the optimisation
algorithm; Section 6 describes the numeric experi-
ments carried out, results are presented and then the
conclusions are drawn in Section 7.

2 LITERATURE REVIEW

The Storage Location Assignment Problem (SLAP) is
a generalisation of the well known Assignment Prob-
lem in which the objective function is a complex func-
tion that usually depends on several factors, like ware-
house layout, picking policy, picker routing policy
and order batching (Dijkstra and Roodbergen, 2017).
It aims at optimising some warehouse metrics like
shipping time, equipment downtime, on time deliv-
ery, delivery accuracy, product damage, storage cost,
labour costs, throughput, turnover and picking pro-
ductivity (Staudt et al., 2015)(Reyes et al., 2019). The
two most common metrics in the literature are picking
travel time and travel distance (Reyes et al., 2019),
which both require to solve special cases of either
the Travelling Salesman Problem (TSP) or the Vehicle

Routing Problem (VRP), according to the presence of
picker capacity constraints or to the simultaneous use
of multiple pickers. Using the picker travel distance
has as advantage an easier evaluation, as it does not
requires to deal with issues like congestion and items
handling/sorting. Additionally, there are no concerns
about picker average speed or searching and handling
delays.

In this context, several methods to optimise or-
der picking routes have been proposed, both inside
SLAP variants studies or in independent researches.
As pointed out in (Dijkstra and Roodbergen, 2017),
routing problems in warehouses can be seen as spe-
cial case of the Steiner Travelling Salesman Prob-
lem, that in some layouts can be solved to optimal-
ity ((Ratliff and Rosenthal, 1983), (Lu et al., 2016)
and (Scholz et al., 2016), (Cambazard and Catusse,
2018)) but in general layouts is mostly solved us-
ing heuristics ((De Santis et al., 2018), (Chen et al.,
2019), (Roodbergen and Koster, 2001), (Theys et al.,
2010)). The exact methods cited, however, are used
to solve problems with already defined warehouse al-
locations (as can be seen also in (Gu et al., 2007) and
(Reyes et al., 2019)) and they are mostly algorithms
based on a graph theoretic algorithm for single-block
warehouses (Lu et al., 2016). A noticeable exception
for a joint storage assignment and routing exact op-
timisation strategy is presented in (Bolaños Zuñiga
et al., 2020), but the proposed model reaches optimal-
ity only on small instances.

It is important to notice that the routing method
efficiency is influenced by the warehouse layout. In
both SLAP and picker routing problems, the ware-
houses can have a single block or multiple blocks. A
block is defined as a set of parallel shelves with tight
corridors among them (aisles), from where it is pos-
sible to pick products located in the two shelves at
their borders. The connection between these corridors
(and consequently between different pairs of shelves)
is called cross-aisle.

In the same sense, SLAP literature cites frequently
two types of picking policies: picker-to-parts and
parts-to-picker. In a picker-to-parts warehouse, as
those considered in SLAP-PCIIC, the picker receives
an item list and visits each item position and transport
the items to an accumulation/expedition point.

Once the evaluation method is defined and the pa-
rameters above are set, the main decision in SLAP is
the storage policy. Among the most relevant policies,
we can cite: random storage, dedicated storage and
group based storage (Wang et al., 2020)(Žulj et al.,
2018).

A random storage policy allocates products in
empty positions inside the warehouse using a random
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criteria (e.g. closest open location), without includ-
ing any further complexity in the decision process.
In opposite way, dedicated storage ranks the prod-
ucts according to some criteria - popularity, turnorver,
Cube per Order Index (COI) - putting the best ranked
products close to the accumulation/expedition loca-
tions. Finally, class based storage separates products
in groups and assigns the most interesting groups to
places close to the accumulation/expedition positions,
without fixing a specific position for each product in
the set. The SLAP-PCIIC uses a dedicated storage
policy where the metric is the total travelled distance.

Several studies report that random storage policies
lead to a better space utilisation, due to frequent reuse
of storage positions, but raise the travelled distances
to pick the products (Muppani and Adil, 2008b) and
require higher searching times or control over product
locations (Quintanilla et al., 2015). The distance, on
other hand, is successfully reduced in dedicated stor-
age policy, but this policy raises re-allocations costs
(because of demand fluctuations) and space utilisa-
tion, as empty spaces can be reserved to products not
currently available. It is stated that class based poli-
cies (or zoning) is a balance between random and ded-
icated storage strategies, but it requires more strategic
efforts to define the number of groups and their posi-
tions on the warehouse.

A dedicated storage policy is considered in (Dijk-
stra and Roodbergen, 2017), in which exact distance
evaluations are used to define the product assignment.
(Guerriero et al., 2013) proposes a non-linear model
and an ILS to address a storage allocation problem in
a multi-level warehouse considering the compatibil-
ity between product classes. (Wang et al., 2020) de-
parts from an S-shape routing policy and multi-level
storage to create a two-phase algorithm to assign the
items to locations, and use a multi-criteria approxima-
tion to evaluate the solutions.

Class based policies are studied in (Rao and Adil,
2013), (Muppani and Adil, 2008b) and (Muppani and
Adil, 2008a). In (Rao and Adil, 2013), class bound-
aries are defined based on the picking travel distance
in a two-block and low-level warehouse where return-
ing routing policy is used. The second uses a Simu-
lated Annealing algorithm to define classes and assign
locations to them inside a warehouse considering si-
multaneously space and picking costs.

3 PROBLEM DESCRIPTION

The SLAP can be shortly described as follows: given
a set P of products to be stored, a tuple ω =
(O1, . . . ,On) of (non necessarily distinct) orders, in

which an order Oi ⊆ P is the subset of products to
be picked up by a picker in a single route, and a set
L of locations in a warehouse, define an assignment
(i.e., an injective function) g : P→ L in which an eval-
uation function z = v(g,ω), to be described next, is
minimised. The warehouse is received in input in the
form of a graph, and the travel distance di j between
any pair of locations i, j ∈ L is computed by invoking
the Dijkstra algorithm.

In the SLAP-PCIIC, the SLAP variant described
here, due to incompatibility and isolation constraints,
g is, on the one hand, relaxed to a possible partial
assignment, but on the other hand it is subjected to
the constraints of the location-product eligibility, i.e.,
each product is assigned to at most a single location
and each location receives at most a single product
while respecting the incompatibility and (strong) iso-
lation constraints. In this framework, v(g,ω) is de-
fined as the sum of minimum travelled distance to
pick all the products in each order (designated by
D(g,ω)), plus the non negative penalties for non de-
sirable or missing allocations, (designated by Φ(g)).
Notice that if all products are allocated, then we have
no contribution in the penalty Φ caused by missing
allocations, meaning that the lack of product assign-
ment to locations is highly deprecated. Following
the company operational rules, it is assumed that the
warehouse uses a picker-to-parts picking policy (the
picker visits the products locations) and orders split-
ting/batching are not allowed, making each order an
individual and independent route. These assumptions
make it possible to decompose the distance D(g,ω) as
the sum of the minimal travelling distances to pick the
products in each order O in the ω tuple, designated
by d(g,O). With these considerations, and indicat-
ing with G the set of relaxed admissible assignments
g : P→ L, the SLAP-PCIIC objective function can be
described as:

z = min
g∈G

n

∑
i=1

d(g,Oi)+Φ(g) (1)

It can be noticed that to evaluate each one of the
d(g,Oi) it is necessary to solve another optimisation
problem, more specifically a variant of the TSP that
calls for the minimization of the travelled distance.
Namely, if there is a single accumulation/expedition
point, each product is assigned to (at most) a unique
location and O′ = {p1, ..., p|O′|} ⊆ O ⊆ P is the re-
quested order deprived of those products lacking of
location, then d(g,O) is the minimum distance to de-
part from the accumulation/expedition point, visit all
the locations (g(p1), ...,g(p|O′|)) in the best possible
sequence and then come back. Conversely, in the
SLAP-PCIIC we allow the presence of more than one
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accumulation/expedition point, so the picker can de-
part from any of these points and return to another
if this operation reduces the total distance travelled
D(g,ω). The algorithms can be easily adapted to deal
with the case in which the expedition points are, in-
stead, fixed.

Defining an optimal picker routing in the scenario
above is relatively simple if the warehouse is organ-
ised in blocks of identical and parallel shelves. How-
ever, in the SLAP-PCIIC, the shelves can have dif-
ferent sizes, cell quantities, orientations and position-
ing and also be located in different pavilions. To deal
with this setting, a regular distance matrix containing
the distances between each pair of locations is consid-
ered as the input of the distance minimisation method,
disregarding any further information about the ware-
house organisation.

The second part of the objective function, the
penalty value Φ(g), is the sum of two terms: the num-
ber of products not assigned to any location Φ1(g)
and the number of undesired allocations Φ2(g). In
this sense, the possible configurations of the function
g are limited by a set F of assignment incompatibil-
ities and a set I of isolation constraints. Each as-
signment incompatibility f ∈ F is a hard constraint
(i.e., it must be strictly respected) composed by a tu-
ple of three values (p,n,c) representing a product p,
the nature n of the incompatible location (cell, shelf
or pavilion) and the code c of the incompatible loca-
tion, respectively. For instance, the incompatibility
(p1,“shel f ”,k1) defines that product p1 cannot be al-
located on shelf k1.

An isolation constraint is based on the product
classification. Given a set T of types, representing
the most relevant product characteristic to the storage
(toxic, radioactive, humid, etc...), an isolation con-
straint ι ∈ I is a tuple of three values (t,n,s) speci-
fying that products of type t ∈ T should be allocated
in an isolated n ∈ {“cell”,“shel f ”,“pavilion”} with
an enforcement s ∈ {“weak”,“strong”}. The enforce-
ment s defines if the isolation is a hard constraint or
can be relaxed with a penalty.

4 ITERATED LOCAL SEARCH

In this section, we describe the ILS algorithm that we
developed to solve the SLAP-PCIIC. The ILS first in-
vokes a constructive algorithm to generate an initial
solution, and then attempts improving the solution by
means of three different neighbourhood structures.

The constructive algorithm is divided into two
phases (see Algorithm 1). In the first phase (lines
from 6 to 23), it assigns locations to products with-

out isolation constraints (i.e., products that are not
present in any tuple ι∈ I) or with isolation constraints
containing an enforcement s = “weak”. In the sec-
ond phase (lines from 25 to 40), it assigns locations
to isolated products, according to their types. This
procedure favors the allocation of a greater number of
products (i.e., it helps controlling Φ(g) value), since
the constrained products are fewer and could give rise
to a large number of unusable locations.

Initially, all the products are sorted by descending
order of popularity, i.e., the products more frequently
required are put first, and those less frequently af-
ter, where popularity is calculated from the tuple of
orders ω. Similarly, the storage locations are sorted
by distance from the closest accumulation/expedition
point. Then, the most popular product is assigned to
the closest empty location, if this assignment is al-
lowed. When, instead, an assignment is forbidden,
the algorithm tries iteratively the next location, until
an allowed position is found or the loop reaches the
last position. If a product belongs to a strongly iso-
lated type, it is not assigned during this phase.

In the second phase of the constructive algorithm,
all the products belonging to a strongly isolated type
are divided by type (line 25 in Algorithm 1) and,
similarly, the warehouse locations that are isolated
are grouped by level (block, shelf or cell), in line
26. The allocation is done according to the struc-
ture size, starting from the isolated blocks and finish-
ing with the isolated cells. At each step, the product
types that have the corresponding isolation level are
selected and sorted by decreasing order of frequency.
Then, each type is assigned to the isolated area where
it is possible to maximise the total frequency, with-
out worrying with the internal assignment optimisa-
tion. After each step, the list of available positions
and products is updated. When all the available iso-
lated spaces are occupied or all the products are as-
signed, the algorithm ends.

It is important to notice that it may be impossible
to assign all the products to the locations in the ware-
house due to incompatibility and isolation constraints.
This can happen even when the number of available
locations is higher than the number of products. Fur-
thermore, the constructive algorithm, as a heuristic
method, may be not able to find an initial valid assign-
ment even when it exists. In both the cases mentioned,
the solution evaluation procedure penalises the objec-
tive function according to the number of products not
assigned (i.e., the value of Φ1(g)).

A valid solution, however, can still present one of
the side effects of allocating groups of isolated prod-
ucts together in the warehouse. The first is assigning
relatively good positions to several products with a
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Algorithm 1: Greedy algorithm.

1: g← /0 . Start with an empty assignment
2: L∗← distanceSort(L) . Locations are ordered by distance
3: A← L∗ . Available locations
4: P← sortByFrequence(P)
5: . First part of greedy algorithm
6: for each p ∈ P do . For each product in P
7: if isStronglyIsolated(p) then
8: continue
9: end if
10: l← f irstAvailable(A)
11: while true do
12: if l == null then
13: break
14: end if
15: if isForbidden(l, p) then
16: l← nextAvailable(A)
17: continue
18: end if
19: g← g∪ (p, l)
20: A← A\{l}
21: break
22: end while
23: end for
24: . Second part of greedy algorithm
25: Λ← stronglyIsolatedProductsByType(P)
26: Ψ← availableIsolatedStructures(A)
27: µ← allocateOnIsolatedBlock(Y,Ψ)

28: . First allocation. Assigns products isolated by block
29: g← g∪µ
30: Ψ← updateAvailableIsolateStructures(Ψ,µ)
31: Λ← updatestronglyIsolatedProductsByType(µ,P)
32: . Second allocation. Assigns products isolated by shelf
33: µ← allocateOnIsolatedShel f (Y,Ψ)

34: g← g∪µ
35: Ψ← updateAvailableIsolateStructures(Ψ,µ)
36: Λ← updatestronglyIsolatedProductsByType(µ,P)
37: . Third allocation. Assigns products isolated by cells
38: µ← allocateOnIsolatedCell(Y,Ψ)

39: g← g∪µ
40: Ψ← updateAvailableIsolateStructures(Ψ,µ)

low number of requests due to the existence of some
very popular products in the set, that are responsible
of a skewed popularity of that group. The second ef-
fect is approximately the opposite, i.e., very popular
products can be allocated in bad positions due to the
fact that average popularity is low for their set. Both
these problems are similar to those that are reported
in class or zone based storage location problems (Rao
and Adil, 2013) (Muppani and Adil, 2008b).

After the greedy algorithm creates an initial solu-
tion, its objective function value is calculated accord-
ing to the procedure described in Section 4.1. The ILS
heuristic enters then in a loop that explores the solu-
tion space (lines 4 to 25 of Algorithm 2). This loop is
composed by three neighbourhood structures that are
combined as a single local search, and a perturbation
method.

In a loop iteration, each neighbourhood structure
evaluates a small set of neighbours of the current so-
lution (denoted by g) and picks the one with lowest
objective function value (thus using a best improve-
ment criteria). The best solution in the loop, denoted
by gw, is then compared with the best global solu-
tion, g∗, and every time gw is better, it is assigned to
g∗ and the number of iterations without improvement
(line 22) is reset. Finally, the iteration closes with a
perturbation of g∗. The loop stops if the number of
iterations without improvement reaches the value of
the input parameter iterations without improvements
(IWI).

To avoid non significant improvements, we as-
sume that an assignment g1 is better than an assign-
ment g2 if and only if the objective function value of
g1 is at least 0.1% lower than that of g2 (i.e., the ratio
of between difference of solution values, v(g1,O)−
v(g2,O), and the old solution value v(g2,O) must be
smaller than δ =−0.001).

Algorithm 2: ILS algorithm.

1: g∗← initialSolution(L,P) . Get greedy assignment
2: g← g∗

3: nonImprovingIter← 0
4: while nonImprovingIterations < IWI do
5: gw← g . Initialize the best solution on loop
6: g′← mostFrequentLocalNeighbourhood(g)
7: if v(gw ,O)−v(g′ ,O)

v(gw ,O) ≥ δ then
8: gw← g′

9: end if
10: g′← insideShel f LocalNeighbourhood(g)
11: if v(gw ,O)−v(g′ ,O)

v(gw ,O) ≥ δ then
12: gw← g′

13: end if
14: g′← insidePavilionNeighbourhood(g)
15: if v(gw ,O)−v(g′ ,O)

v(gw ,O) ≥ δ then
16: gw← g′

17: end if
18: . Update best global solution
19: nonImprovingIter← nonImprovingIter+1
20: if v(g∗ ,O)−v(gw ,O)

v(g∗ ,O) ≥ δ then
21: g∗← gw

22: nonImprovingIter← 0
23: end if
24: g← perturbation(g∗)
25: end while

All the neighbourhood structures used in the lo-
cal search are simple location swaps between two
products. The first neighbourhood (mostFrequent-
LocalNeighbourhood) consists in swapping the as-
signments of two products belonging to the subset
of 20% most required products. The second (in-
sideShelfNeighbourhood) consists of swapping the
assignments of two products assigned to locations
in the same shelf, working as an intensification of
the search. The third neighbourhood (insidePavilion-
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Neighbourhood) is a wider search, in which pairs of
products assigned to the same pavilion have their lo-
cations swapped.

The neighbourhood structures work following the
same steps: randomly choose two products, check if
the swap between these products is valid, evaluate the
change in objective function and store the best solu-
tion found.

To check the swap validity, three rules are used:
(1) all swaps that assign a product to a forbidden
position are not allowed; (2) no swaps are allowed
between a product belonging to a strongly isolated
type and a product not belonging to a strongly iso-
lated type; (3) no swaps between products of differ-
ent types are allowed. It is important to notice that
validity does not mean feasibility. In fact, while the
two first rules were created to avoid infeasible solu-
tions in the search, the third was created to filter the
moves in order to avoid recalculating the penalties re-
lated to weak isolated types. It can be noticed that the
second and third rules are complementary (the third
makes the second redundant). In the numeric tests we
tested two algorithm versions, one with rules (1) and
(2) (type-free swap policy), and the other with rules
(1) and (3) (same-type swap policy).

To evaluate the solution after a swap, we reevalu-
ate the distances of the routes affected by that swap
and the total of products with weak isolation con-
straints allocated in altered areas. As the number of
swaps performed during the algorithm execution is
huge and the number of orders can easily reach some
thousands, the procedures to evaluate them must have
a strong performance.

After all neighbourhoods have been explored and
the global best solution has possibly been updated,
a perturbation is performed over the best global so-
lution. It consists in |P|/20 unconstrained and valid
swaps, chosen randomly and applied in a loop. The
resulting solution is then used as the initial solution in
the next ILS iteration.

4.1 Solution Evaluation

To evaluate the routing distance, we propose a combi-
nation of two ideas: the former is using different TSP
algorithms according to the size of the instance and
the latter is to keep a mapping of routes that passes
from each position to recalculate only picking dis-
tances of routes containing products involved in the
swap. In the latter case, initially the algorithm re-
trieves all the routes affected and controls if a route
passes from both locations where the products are cur-
rently allocated. If the route has both locations on it,
the reevaluation is useless (because the set of loca-

tions to be visited does not change), otherwise it is
evaluated with the new location replacing the old one.

The evaluation is controlled by the parameter
T SP(α,β). In this parameter, the constants α and β

are two integers representing the order size thresh-
olds used to choose each algorithm method for esti-
mating the minimum distance to visit the product lo-
cations in a route. Let |O| be the number of items
in an order O in the tuple ω, if |O| ≤ α an exhaus-
tive search is run (i.e., all the possibilities are tested
and then the distance found is optimal). Otherwise, if
α < |O| ≤ β, a closest neighbour algorithm is used
to initialise the route and a subsequent quick local
search is performed. In this local search, (|O| − 1)
swaps among two consecutive locations are tested in
(|O|−1) iterations (always departing from the first to
the last product) and the current solution is updated
when the swap reduces the smaller distance. Finally,
if |O|> β, just the closest neighbour heuristic is used.

The route evaluation method described above
presents a quadratic complexity, as the exponential
time approach is limited according to the number of
visited points. Although it does not guarantee an op-
timal route, it is better suited to our purpose of using
non block-based warehouse layouts than algorithms
based on the method proposed in (Ratliff and Rosen-
thal, 1983).

In order to explain how the evaluation of penalties
is done by breaking weak isolation constraints, we use
Algorithm 3 below. This pseudo code shows the pro-
cess for shelves, but it is practically identical for cells
and pavilions.

Algorithm 3: Isolation penalty evaluation after a swap.

1: totalPenalty← 0
2: S← allShelves(L)
3: T w←WeakIsolationTypes()
4: Ps← productsAllocated(g,s) ∀s ∈ S
5: for each s ∈ S do
6: Pi←{p | p ∈ Ps, type(p) ∈ T w}
7: Pf ←{p | p ∈ Ps, type(p) /∈ T w}
8: Ts←{type(p) | p ∈ Ps}
9: . Group products with isolation constraints by type
10: Ht ←{p ∈ Pi|type(p) = t} ∀t ∈ T w

11: if |Pi|= 0 or |distinct(Ts)|= 1 then
12: continue
13: end if
14: penalty← 0
15: x← maxt∈T w (|Ht |) . Type with max cardinality
16: r← x
17: if |Pf | ≥ |Pi| then
18: penalty←Wpen ∗ |Pi|2/|Ps|
19: else
20: penalty←Wpen ∗ (|Pf |2 + r)/|Ps|
21: end if
22: totalPenalty← totalPenalty+ penalty
23: end for
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First of all, the algorithm gets all products allo-
cated and groups them by shelves (line 4). For each
shelf, products are grouped by type (line 9) and then
the algorithm counts the number of different product
types assigned to the shelf. If there is only one type
assigned to the shelf or if no assigned product has
an isolation constraint ι ∈ I|n = “shel f ” (see isola-
tion constraint definition on Section 3), no penalty is
applied (lines 11 to 13). Otherwise, the actual penalty
evaluation is performed (lines 14 to 22).

The penalty strategy is based on the division of the
products assigned to a structure (which can be a shelf,
a cell or a pavilion) into two groups, one with iso-
lation constraints and another without. One of these
groups is defined as the minority (resp. majority) if it
is the group with less (resp. more) assignments in a
structure.

Departing from the minority (majority) defini-
tion, the method tries to push the search through
the predominant configuration by penalising minority
groups. For example, if the shelf is mostly occupied
by products belonging to types without isolation con-
straints, it penalises the products with isolation con-
straints (lines 17 and 18) that are the minority. Sim-
ilarly, it penalises products belonging to types with-
out isolation constraints if they are the minority in the
shelf (lines 19 and 20). Furthermore, to differentiate
among similar assignments, we consider the propor-
tion of products belonging to the minority/majority
over the total number of products, instead of simply
counting the number of products. This decision was
taken due to the fact that only counting the products
was causing no changes in the total penalty after a
swap.

5 INSTANCE SETS

In this section, we describe the instance sets built up
to test the algorithm performances. We created three
warehouse layouts W1,W2 and W3 with several differ-
ences between them, not only regarding the number
of positions, but also regarding how these positions
are distributed in the area. A short description of the
warehouses is provided in Table 1.

Table 1: Warehouse layout overview.

ID pavilions shelves cells accum/exp points
W1 1 10 200 3
W2 1 10 240 3
W3 2 12 260 3

The experiments were divided into two parts. The
first part was aimed at analysing the algorithm per-

formance considering only the travelled distance and
thus its suitability at dealing with directly calculated
distances. The second part tested the performance
when considering the incompatibility and isolation
constraints, in order to check if these constraints were
well handled in the algorithm.

By using the instance set I1, we tested both the in-
sertion of products and the algorithm parameters. We
experimented the insertion of two sets of products in
the warehouses, one with 100 and the other with 200
products. For each product set, we tested scenarios
with |ω|= 500, 1000 and 5000 orders. For each com-
bination of warehouse, number of products and num-
ber of orders, five realistic instances were created, for
a total of |I1|= 3 ·2 ·3 ·5 = 90 instances. In all these
instances, we used cells with only one position/level,
as showed in Table 1.

Regarding the algorithm parameters, we investi-
gated two values: the maximum number of IWI, used
as stopping criteria, and the TSP thresholds described
in Section 4. Three values of maximum number
of IWI were tested, and three different combination
of the two TSP thresholds. Additionally, we tested
the local search with and without incompatibility of
swaps between products of different types. In this
way, 3 · 3 · 2 = 18 algorithm parameter combinations
were experimented.

To test the algorithm capabilities in managing in-
compatibility and isolation constraints, we used a sub-
set of the initial instances, using 3 variations to each
combination of warehouse, number of products and
number of orders, for a total of 3 · 2 · 3 · 3 = 54 in-
stances. For each of these 54 instances, we tested 5
incompatibility and isolation constraints, leading to a
new instance set I2, with |I2|= 5 ·54 = 270.

In all the instances mentioned above, the number
of products by order was determined following a Pois-
son distribution with average number of events equal
to 6. The products inside each order were defined
following a uniform distribution, but preventing the
same product from being requested twice in the same
order.

6 COMPUTATIONAL
EVALUATION

In this section, we describe the numeric experiments
performed to test the efficiency of the proposed ILS
algorithm. In these experiments, we observed the al-
gorithm performance on different instances, the aver-
age run time, the local search capacity of improving
the initial solution, the influence of the parameters on
the final solution, and the solution quality.
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The algorithm was implemented in C++17 lan-
guage, with source code being compiled with -O3
flag. The tests were performed on a Dell Precision
Tower 3620 computer with a 3.50GHz Intel Xeon E3-
1245 processor and 32GB of RAM memory, running
the Ubuntu 16.04 LTS operational system. All the ex-
ecutions were performed on a single thread, without
any significant concurrent process.

The results obtained for the I1 instance set are pre-
sented in Table 2, grouped by the TSP evaluation pa-
rameters. Each line in this table represents the aver-
age over five instances of the computational results
with a specific algorithm parameter setting. Column
z0 gives the average initial solution value produced by
the greedy algorithm, column zbest gives the average
solution value produced by the ILS, column time(s)
reports the average run time of the ILS in seconds,
and column %G shows the average percentage gain
of zbest with respect to z0.

We start our analysis from the effect of the TSP
evaluation parameters on the solution value. As the
constructive algorithm is not affected by these param-
eters, it provides always the same initial solution to a
given instance, but with a different objective function
value, due to the difference in the solution evaluation.

As expected, using exact evaluations (and better
heuristics) in more routes leads to a decrease in the
objective function values, but considering the initial
solution value, this variation is inferior to 5% in total
from the most precise to the less precise evaluation,
which suggests that simple heuristics are sufficiently
efficient to check the quality of a storage assignment.
This evidence is in accordance with what is stated in
the literature and practised in real scenarios, mainly
by the pickers, that tend to follow the most intuitive
and sub-optimal routes (De Santis et al., 2018) (Elbert
et al., 2017). On the other hand, the improvement
on evaluation precision is unequivocally counterbal-
anced by a significant run time increase if the whole
algorithm is considered. The total run time using the
T SP(7,11) configuration is over the double of the to-
tal run time using the T SP(5,9) configuration.

An interesting effect of the TSP evaluation pa-
rameter in the solution is the negative correlation be-
tween the evaluation precision and the improvement
obtained by the local search. In other words, if we
increase the number of routes that are evaluated by
an exact method (or better heuristics), we get less im-
provement over the greedy solution. A possible cause
of this result is the higher probability of a travel dis-
tance over-estimation when evaluating good-quality
solutions if the evaluation precision is low. This could
guide the search to a region with low-quality solu-
tions, increasing the convergence time without im-

proving the solution quality.
In the same sense, it is noticeable that an increase

in the number of products and orders in the instances
also reduces the gains over the initial solution. This is
an expected result, as it is harder to balance all picker
route distances if there are more routes to balance and
more points to visit among the different routes.

When comparing the results of scenarios with the
same evaluation parameters but different IWI val-
ues, it is possible to notice that a higher IWI only
slightly improves the average gains over the initial
solution (on average less than 0.7 percentage points
increase for each two more IWI), even with signif-
icantly higher run times. Among the hypotheses to
explain this behaviour, we can cite a bad performance
of the perturbation method to escape from local op-
tima, a too quick convergence of the method to val-
ues close to an average local optimum, the existence
of too many local optima, or the existence of several
regions of the solution space with very similar char-
acteristics causing repetitive searches.

It is interesting to notice that when comparing
“type-free swap” with “same-type swap” results, the
latter on average gets better solutions with a higher
run time. We expect that a more restricted swap could
lead to a quick conversion and thus a worse solu-
tion. As the differences between solutions are rel-
atively small, while between run times are relevant,
we can suppose that the method, when using a more
restricted local search, performs more but smaller im-
provements. This explanation is compatible with con-
cerns about meta-heuristic parameter calibration, in
which a developer tries to balance the size of inten-
sification and diversification steps in order to find a
better algorithm performance.

In Table 3, we show the algorithm results for in-
stances with isolation and allocation incompatibility
constraints. In the table, Φ0 gives the average value
of the initial penalties, Φbest the average value of the
penalties in the best solutions produced by the ILS,
%Gz the average percentage gain over the initial ob-
jective function values, and %GΦ the average percent-
age gain over the initial penalties. In Table 3, the
block Isolation 1 refers to instances containing one
type of weak isolation constraints, the block Isolation
2 refers to instances containing one type of weak iso-
lation and one type of strong isolation constraints. Be-
sides that, both the blocks Isolation 1 and Isolation 2
in the table are subjected to allocation incompatibili-
ties.

We can first observe a satisfactory improvement
over the initial solution obtained by the local search,
although smaller than that observed in the previous
results. Nevertheless, in instances without hard iso-
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Table 2: Computational results on instance set I1. Each line is an average on 90 instances.

Swap policy IWI T SP(5,9) T SP(6,10) T SP(7,11)

z0 zbest time(s) %G z0 zbest time(s) %G z0 zbest time(s) %G

Same-type
6 1675434.0 1025435.0 683.0 41.88 1644702.6 1059339.3 788.0 38.27 1604009.9 1149117.5 1519.7 30.85
8 1675434.0 1016371.8 830.8 42.70 1644702.6 1047753.8 991.4 39.19 1604009.9 1137799.8 1709.8 31.47

10 1675434.0 1007464.1 1038.8 43.34 1644702.6 1042574.2 1126.9 39.70 1604009.9 1130933.5 2078.8 32.10

Type-free
6 1675434.0 1035816.2 589.0 41.39 1644702.6 1065611.6 722.7 37.59 1604009.9 1153347.8 1224.9 30.18
8 1675434.0 1030057.3 709.2 41.85 1644702.6 1059577.0 893.1 38.21 1604009.9 1144094.8 1525.9 30.75

10 1675434.0 1024599.0 866.0 42.26 1644702.6 1055123.4 1090.6 38.56 1604009.9 1143325.2 1858.5 31.20

Table 3: Computational results for instances with isolation and incompatibility constraints on instance set I2. Each line is an
average on 3 instances. Parameters used: 8 IWI, T SP(7,11). Swap policy: type-free.

Id |P| W |ω|
Isolation 1 Isolation 2

z0 Φ0 zbest Φbest %Gz %GΦ time(s) z0 Φ0 zbest Φbest %Gz %GΦ time(s)

1

100

W1

500 405287.9 51048.9 225120.3 37610.6 44.32 25.38 276.5 632041.1 344081.8 503372.6 317109.3 20.36 7.84 288.2
2 1000 749806.0 49873.4 430050.9 31858.6 42.63 35.43 713.7 1187816.0 621282.7 977614.8 590412.1 17.64 4.96 499.6
3 5000 3558644.9 49217.2 2193491.7 52373.3 38.36 -6.53 2839.9 5659723.9 2795037.9 4846198.5 2786653.8 14.37 0.30 2119.7

4
W2

500 383964.6 54282.0 240575.6 42760.2 37.33 20.93 261.0 613230.2 353249.2 534527.6 341856.0 12.82 3.15 203.0
5 1000 704103.1 51699.1 469837.4 42271.7 33.28 17.90 680.6 1162098.5 644019.8 1025637.5 619162.5 11.77 3.90 489.7
6 5000 3332955.4 54780.4 2276342.0 52617.7 31.70 2.89 3005.5 5555117.6 2933844.9 4960398.8 2911717.1 10.71 0.76 2388.9

7
W3

500 371185.3 58468.7 251748.4 36607.4 32.19 36.99 334.2 575261.8 346403.8 518039.3 334616.3 9.94 3.39 402.6
8 1000 673638.7 49932.3 504716.8 38462.8 25.07 21.97 611.3 1096946.6 632364.3 1001514.8 621692.1 8.70 1.73 519.2
9 5000 3221278.3 58714.3 2444756.2 46692.6 24.10 19.00 3519.7 5296059.8 2928326.8 4907968.1 2915739.4 7.32 0.43 2897.5

10

200

W1

500 438229.7 27666.7 326534.0 26333.3 25.48 4.87 281.8 728354.9 363274.5 576015.8 297922.2 20.98 18.17 278.5
11 1000 854100.0 32666.7 633261.7 24000.0 25.83 26.33 766.9 1223601.2 503051.5 1022193.0 412985.7 16.44 17.91 622.5
12 5000 4208520.8 51535.1 3145456.1 59535.1 25.26 -25.94 2824.4 5413919.5 1718497.8 4499844.1 1673331.1 16.88 2.62 3092.1

13
W2

500 425402.5 30307.5 306401.6 25061.0 27.97 14.48 254.7 711924.2 362643.5 546403.6 277711.3 23.24 23.43 282.3
14 1000 814109.8 28141.2 622948.2 23876.2 23.47 15.01 760.5 1210574.2 515456.9 993881.1 447135.4 17.88 13.18 678.9
15 5000 4046685.1 32227.3 2971407.6 30121.8 26.57 6.28 3593.7 5265289.3 1724671.7 4412597.4 1637695.8 16.19 5.02 3621.2

16
W3

500 431234.1 32694.1 356368.3 23407.3 17.36 28.40 441.0 711317.5 360032.5 611663.2 297630.6 13.98 17.25 229.6
17 1000 833826.9 31042.3 689633.4 24334.8 17.29 21.15 775.5 1208464.6 504536.9 1055921.7 426959.7 12.61 15.21 532.4
18 5000 4165773.8 30477.8 3403163.1 31035.4 18.31 -2.27 3409.6 5349024.8 1733807.5 4761622.8 1645191.5 10.98 5.11 3864.5

Totals 1731243.0 42656.8 1257468.8 42760.2 37.33 20.93 1486.4 2523801.4 1100055.3 2180204.3 341856.0 12.82 3.15 1362.0

lation constraints, this metric raises to 19.4% and
15.1% in blocks Isolation 1 and Isolation 2, respec-
tively. These results may suggest that if the construc-
tive algorithm does not handle well isolation con-
straints, then local search has troubles in improving
the solution.

We notice that the local search reduces proportion-
ally less the penalty value than the overall objective
function value, except in instances with 200 products
in warehouse W3 (lines 16 to 18 of Table 3), suggest-
ing that the method could be giving more relevance to
travel distance.

The average run time is smaller than one hour for
almost all instance settings, except on instances on
lines 15 and 18 and Isolation 2. It suggests that the
method converges in an acceptable time even in more
realistic and complex mid-size instances.

7 CONCLUSION

In this paper, we study the Storage Location Assign-
ment Problem with Product-Cell Incompatibility and
Isolation Constraints, a generalisation of the classic
Storage Location Problem in which some products
may need to be allocated in reserved positions and
some other products can not be assigned to specific

locations. This problem lies in the context of a phar-
maceutical logistic operator aiming at more flexibil-
ity in defining warehouse layouts, while improving its
performance.

We propose an ILS method to solve the problem
and we test it on a large set of instances to demon-
strate its suitability in providing good solutions within
an acceptable run time. We could notice that varia-
tions on the stopping criteria cause relevant changes
in the run time, but just slight changes in the solu-
tion quality. On the other hand, the variations in the
parameters related to the TSP solutions (to determine
the pickers’ routes) prove to be very influential in both
run time and solution quality. Large instances are well
handled by the ILS algorithm, though with higher run
times, with this raise strongly related to the number of
products to be allocated and less to the number of or-
ders considered. Instances with isolation and incom-
patibility constraints present lower improvements in
the local search phase, but still relevant for commer-
cial purposes.

For future researches, we suggest to investigate
more deeply the influence of initial allocation of
strongly isolated types on the overall performance of
the optimization method. General weighting of the
different terms in the objective function 1 should be
addressed, after an extensive analysis of several fac-
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tors, e.g. incidence of the ratio between warehouse
dimensions and the number of orders, or the distribu-
tion of the various types of penalties among products.
This could also lead to the development of interesting
multi-objective optimization algorithms. Investigat-
ing the suitability of the method to more dynamic sit-
uations is also relevant, mainly when different sources
of information are available for the orders.
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Bolaños Zuñiga, J., Saucedo Martı́nez, J. A., Salais Fierro,
T. E., and Marmolejo Saucedo, J. A. (2020). Opti-
mization of the storage location assignment and the
picker-routing problem by using mathematical pro-
gramming. Applied Sciences, 10(2):534.

Cambazard, H. and Catusse, N. (2018). Fixed-parameter
algorithms for rectilinear steiner tree and rectilinear
traveling salesman problem in the plane. European
Journal of Operational Research, 270(2):419–429.

Chen, F., Xu, G., and Wei, Y. (2019). Heuristic rout-
ing methods in multiple-block warehouses with ultra-
narrow aisles and access restriction. International
Journal of Production Research, 57(1):228–249.

De Santis, R., Montanari, R., Vignali, G., and Bottani, E.
(2018). An adapted ant colony optimization algorithm
for the minimization of the travel distance of pickers
in manual warehouses. European Journal of Opera-
tional Research, 267(1):120–137.

Dijkstra, A. S. and Roodbergen, K. J. (2017). Exact route-
length formulas and a storage location assignment
heuristic for picker-to-parts warehouses. Transporta-
tion Research Part E: Logistics and Transportation
Review, 102:38–59.

Elbert, R. M., Franzke, T., Glock, C. H., and Grosse, E. H.
(2017). The effects of human behavior on the effi-
ciency of routing policies in order picking: The case
of route deviations. Computers & Industrial Engineer-
ing, 111:537–551.

Gu, J., Goetschalckx, M., and McGinnis, L. F. (2007). Re-
search on warehouse operation: A comprehensive re-
view. European Journal of Operational Research,
177(1):1–21.

Guerriero, F., Musmanno, R., Pisacane, O., and Rende, F.
(2013). A mathematical model for the multi-levels
product allocation problem in a warehouse with com-
patibility constraints. Applied Mathematical Mod-
elling, 37(6):4385–4398.

Lu, W., McFarlane, D., Giannikas, V., and Zhang, Q.
(2016). An algorithm for dynamic order-picking in
warehouse operations. European Journal of Opera-
tional Research, 248(1):107–122.

Muppani, V. R. and Adil, G. K. (2008a). A branch and
bound algorithm for class based storage location as-
signment. European Journal of Operational Research,
189(2):492–507.

Muppani, V. R. and Adil, G. K. (2008b). Efficient forma-
tion of storage classes for warehouse storage location
assignment: a simulated annealing approach. Omega,
36(4):609–618.
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