

Automated Summarization of Service Workflows to Facilitate
Discovery and Composition

Panagiotis Kotsikoris, Theodore Chaikalis a, Apostolos Ampatzoglou b
and Alexander Chatzigeorgiou c

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Keywords: BPMN, Business Processes, Service Discovery, Workflow Composition, Cloud Software Development.

Abstract: The last decade marked undeniably the leading role of web services and the establishment of service-oriented
architectures. Indeed, it is nowadays hard to find a contemporary software application that does not use at
least one third-party web service. The main driver for this paradigm shift, lies in the benefits that decoupled,
cloud-based services bring to software development, operation and maintenance as well as at the seamless
deployment, integration and scalability features those modern public clouds provide. Furthermore, the
widespread adoption of services has led to the consequent demand for a structured and accessible method for
automatic service categorization, documentation, and identification, so that all available web services can be
easily identified and used from possible clients. In the realm of web services, service compositions known as
workflows provide a natural way to automate existing business processes and bridge the gap between technical
and non-technical stakeholders. This work proposes an automatic documentation generator for business
processes which facilitates service discovery, based on automatic summarization of business processes
created through Business Process Model and Notation (BPMN)

1 INTRODUCTION

Rendering software functionality available on the
Internet through standardized messaging protocols
has become the primary method for developing
enterprise software systems. Web services are defined
as self-contained, modular and distributed
applications that can be deployed and invoked over
the network. More specifically, RESTful web
services are scalable and light-weight and are
commonly used to create APIs for web-based
applications (Richardson & Ruby, 2007). In the
REST architectural style, both data and functionality
are considered resources and are accessed
using Uniform Resource Identifiers (URIs). Services
can be composed to form workflows abstracting
existing business processes.

Business Process Model and Notation (BPMN) is
a widely established industry standard, capable of
graphically modelling business flows, whose

a https://orcid.org/0000-0003-0501-3671
b https://orcid.org/0000-0002-5764-7302
c https://orcid.org/0000-0002-5381-8418

execution provides value to business stakeholders.
Through well-defined and intuitive semantics, BPMN
provides powerful capabilities that cover numerous
different business scenarios. Each process is divided
in multiple atomic and strictly defined steps which
occur between start and end nodes. For the visual
representation, BPMN uses nodes for modelling
actions and edges for connecting actions and thus
denoting the direction of the data and control flow.
The resulting process graph reflects also the
chronological order of execution.

BPMN has been initially released on 2007 and the
current official release is version 2.0.2 that has been
published in January 2014 (Geiger et al., 2016; OMG,
2007). The officially stated goal of the standard is to
provide a method for visualizing in a strict and
formal, yet intuitive and approachable way business
processes so that they can be developed from both
technical and non-technical stakeholders.

Kotsikoris, P., Chaikalis, T., Ampatzoglou, A. and Chatzigeorgiou, A.
Automated Summarization of Service Workflows to Facilitate Discovery and Composition.
DOI: 10.5220/0011036200003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 317-326
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

317

While BPMN offers inherently a visual
representation of the modeled business process, it is
often convenient to have a brief, textual summary of
the underlying workflow. Apart from labeling
purposes, such summaries can be highly valuable for
identifying existing workflows in registries (through
keyword search). Furthermore, for platforms aiming
to assist web service developers in reusing similar
service compositions, textual summaries can be used
to enable service searching, identification and reuse.

In the SmartCLIDE H2020 project 1 we aim at
developing a smart cloud-native development
environment that will support creators of cloud
services in the discovery, creation, composition,
testing, and deployment of full-stack data-centered
services and applications in the cloud. Among other
features, SmartCLIDE facilitates workflow
development by recommending nodes, after seeking
similar workflows to the one that is being developed.
Workflow similarity is assessed based on the
similarity of their corresponding textual descriptions.
To this end, we have leveraged the power of Natural
Language Processing (NLP) techniques to
automatically extract a concise textual summary of an
existing workflow expressed in BPMN.

The rest of the paper is organized as follows.
Section 2 discusses related work on service
composition and NLP. In Section 3 we elaborate on
the adopted methodological approach and in Section
4 we present details about the implemented tool.
Section 5 discussed results from the evaluation of the
tool in an industrial context. Finally, we conclude in
Section 6.

2 RELATED WORK

As described above, numerous technologies have
been combined (web applications, BPMN, NLP etc.),
to achieve the greater goal of workflow
summarization. Each one of these technologies forms
an entire field of research and practice in the science
of information technology and has evolved largely
over time.

Discovering appropriate services and components
on the network (intranet or internet), in order to
enhance and extend an application under
development, is one of the holy grails in today’s
software development. Leveraging the power of
existing services can help us escape from the
hardcoded model used in monolithic application

1 https://smartclide.eu/

development which leads to dysfunctional and hard to
maintain collections of software modules. Messina et
al. (2016) describe a dynamic and flexible model to
keep track of all the components using a service
registry focusing on consistency during the discovery
process while having each part isolated from the
outside world.

Assuming there is an existing set of available
components, the next step is to combine them in a
way to achieve the desired functionality. The
composition of those parts is a concept where instead
of dealing with the infrastructure and the location of
the components, we focus on bringing the pieces
together to achieve a greater goal. Wu et al. (2015)
describe two basic ways to create compositions of
services. The first one is a manual process where user
decides which components will be combined and in
which way, leading to more meaningful outcomes at
the cost of significant effort and time, taking into
consideration the existence of thousands of available
options. The second way is an automated process
where a list of components is evaluated using
artificial intelligence approaches. Next, heuristic
functions decide the best option to use. The latter
approach yields less accurate compositions but offers
substantially higher performance. Both options have
their drawbacks, for example, for a user to evaluate a
set of services, he first needs to execute them in a
controlled environment, requiring a set of resources
and tools. On the other side, the automated process
also requires resources regarding the collection and
the evaluation of the services in a parallel or even
distributed way.

In order to generate an accurate definition of a
flow, we first need to deconstruct its individual parts
and classify them. In this process Natural Language
Processing (NLP) comes in hand. Alan Turing back
in 1950 was the first to conceive the idea that
determining or not whether a computer is truly
intelligent involves the generation of natural language
as criterion of intelligence. Since then, multiple
efforts were made to create chatbots or other
conversational agents that can interact with the
content in the same way that a person does. Lo et al.
(2017) performed an analysis on various
implementations to clarify how far we have come
today and the potentials that lie ahead. Most of those
implementations are naturally based on the English
language. Fahad et. al. (2018) discuss the techniques
used today using neural networks as a pillar for multi
document summarization, spell checking, speech
recognition etc.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

318

The generation of natural language, which follows
initial text processing, is the process in which an
artefact or model is presented in text form as output.
McBurney et al. (2016) suggest a five-step procedure
in order to create a final text that can describe
accurately a block of code and compare the results
with the respective human generated descriptions. At
first, the content that will be used is selected, which
is a very crucial step that defines the quality of the
result. After the content filtering comes the
structuring, in which the sequence of the content is
defined. The third step is the lexicalization, where
more suitable words are selected when necessary.
After that comes aggregation of similar phrases and
sentences in order to remove any duplicate content.
The final step is the realization, where the content to
be exported is created taking into consideration the
respective grammar rules. Since this is a standalone
approach working automatically, it is effective to any
input given in any language.

For the BPMN 2.0 specification, Geiger et al
(2016) performed an analysis of the evolution of the
standard, while Falcone et al. (2017) focus on the
potential of the model that originates from its
appealing graphical presentation and attempt to
integrate it with other modelling and simulation
systems.

3 BACKGROUND

3.1 BPMN

An example of a simplified business process is
depicted in Figure 1 where a subset of the BPMN
elements are demonstrated. The diagram models a
process that gets triggered by a message which
denotes that a working group is active. Next a
scheduled activity triggers a repeating set of tasks
every Friday at 6 PM: First a system task checks the
status of the working group. Then a decision node
determines the execution path depending on the result
of whether the working group is active or not. It
‘active=true’, the execution continues to the task that
sends a current issue list and then it goes back to
waiting mode until the next Friday @ 6 PM.
Otherwise the process terminates.

Both system tasks in this process (i.e. checking the
working group’s status and sending the current issue
list) could be easily carried out by two respective Web
Services that can be triggered through special
configuration during the creation of the tasks.

Figure 1: Example BPMN process.

3.2 Text Summarization

Text summarization refers to any automated process
during which a program parses a set of sentences and
generates a meaningful summary. The main goal of
every summarization approach is to produce a precise
and concise summary that reflects the basic context
of the initial document and does not lack vital
information, neither includes unnecessary or
irrelevant details (Figure 2). Such approaches have
been extensively used in automatic text classification,
news article summarization and automatic title
production.

As a technical problem, automatic summarization
forms a challenging endeavour because unlike
humans who can scan through an article and quickly
grasp the context and the basic parts of the topic,
machine algorithms must overcome several non-
trivial problems for capturing the essence of a
document.

Figure 2: Text Summarization.

Three approaches are mainly used for automatic text
summarization (Widyassari et al., 2020).
 Extraction Based summarization, where content

only from the original document is being used. An
initial evaluation pass determines the parts that
should be kept and afterwards these parts are
merged for the final summary.

 Abstraction Based summarization, which attempts
to mimic the human approach. Initially, Natural
Language Understanding techniques are being used
for identifying the meaning of the document and

Automated Summarization of Service Workflows to Facilitate Discovery and Composition

319

afterwards the final summary is produced by
rephrasing versions of the basic parts.

 Aided summarization is a semi-automatic approach
which demands intervention by a human who will
pick the text parts that will form the final summary,
as well as the method that this should be performed.
This approach is used in occasions where high
accuracy is needed.

The first one, extraction-based approach is the one
that initially gained high popularity due to its
simplicity and the abundance of available
information. However, with the improvements in AI
and computing power a huge part of the
implementations has been move to the abstraction-
based approach (Widyassari et al., 2020), which can
lead to more meaningful summaries.

4 TOOL IMPLEMENTATION

The proposed tool forms part of a broader toolset
which aims at semi-automatic service discovery and
composition by using service descriptions that assist
users in selecting the service that suits their needs in
the most effective way. To this end, descriptions of
available service flows should automatically be
extracted by parsing BPMN diagrams. The
summative descriptions can be used as short textual
service documentation about the purpose and the
mechanics of each service composition. This process
produces a documented registry containing all
services/workflows that can be identified and reused.

The selection process takes place in two steps.
Initially users defined a set of keyword-based criteria
for a desired service (service composition) and the
system responds to this search by returning a list of
compositions that are the best possible fit the given
criteria. In the second step users read through returned
results and select the one that is the most suitable to
their demands.

The description of each service composition is
obtained by analysing the internal structure, the
underlying flow with all possible execution paths and
the naming of all BPMN elements (nodes). The
documentation is created by parsing the BPMN
representation files (XML structure) and yields a
textual description output using Natural Language
Processing and Natural Language Generation
techniques.

4.1 System Architecture

In this chapter a detailed analysis of all system

components is presented along with a description of
the steps that produce the service documentation.

The tool accepts one or more BPMN files as input,
processes them and outputs the produced
documentation in the form of text files in English
language (Figure 3). It becomes evident that for the
tool to operate correctly, the system should process
only BPMN processes described in English.

Figure 3: General analysis concept.

We opted for the Web as our deployment platform to
provide a multi-channel API that can be invoked both
by human users as well as from third-party web
services as shown in Figure 4. The proposed tool is
available both through a headless API and in the form
of a human reachable Website.

Figure 4: Application is available through both as a
headless API and as human reachable Website.

The backend has been developed using the Java
Spring Boot framework (Spring Boot, 2021) and the
public interface is exposed through a REST API.

Figure 5: Internal application Architecture.

The internal structure of the backend module is
depicted in Figure 5. The Controller module acts as
the gateway of the system as it handles external
requests, performs an initial input validation, and
returns responses to clients.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

320

The Service component is responsible for
carrying out the actual business logic for the request.
It contains the source code that analyses a business
process and produces its documentation. Internally it
invokes the BPMN parser, which goes through all
XML nodes in the underlying XML file, models each
node as a Java Object, invokes the Natural Language
Processing Subsystem to semantically analyse the
retrieved information and finally generates output
with the Natural Language Generator. More details
about the core functionality of extracting a textual
summary are provided in the next subsection.

4.2 Analysis Engine

In this section a more in-depth analysis about the
automatic business process documentation engine is
presented. The overall flow which comprises three
sequential phases is depicted in Figure 6. Initially the
process is being parsed for the determination of all
nodes in the workflow. Then each node is visited and
documented, starting from the first node of the
process, the Start Event. Finally, all results are
collected and formatted to formulate the final
description.

Figure 6: Detailed analysis of processing flow.

Phase A - BPMN Parsing: This phase starts from the
cleaning task which removes redundant or

unnecessary parts of the process that would introduce
noise to the NLP algorithms later. The basic part of
this phase is the modelling of BPMN nodes into Java
Objects and the identification of connections among
them. This task ensures the validity of the given
process and facilitates the understanding of the
process flow.

Phase B – Documentation Generation: This phase
accepts the previously created objects with their
connections and creates a description for each one of
them. These descriptions are the parts that will
comprise the final documentation. The core algorithm
contains a recursive procedure which visits all
elements in specific order beginning from the Start
Event of the process.

Phase C – Response Preparation: After visiting all
nodes, all parts are aggregated to give the final result.
In the occurrence of back cycles in the flow, special
anchors in the form of markers are inserted to avoid
redundant text duplication. A second optimization
that is applied in this step is the removal of duplicated
phrases or sentences. Finally, the complete process
documentation is returned.

4.2.1 Documentation Process

The description of a process is created from the
concatenation of sentences produced from individual
parts. Apart from specific descriptions for each part
of the process, a general introductory sentence
offering a general overview of the process context, is
inserted at the begging of the documentation.

Table 1: Process characteristics.

Adjective Description

Scheduled
Process that contains a timer
event that controls the firing

time and date
Automatic No human interaction involved
Single approval One step of approval only
2-level approval Two approval steps
3-level approval Three approval steps
Multiple-level approval More than three approval steps
Short (single-task) Process contains only one task
Short (2-tasks) Process contains 2 tasks
Short (3-tasks) Process contains 3 tasks

Flat (no branching) Process does not contain a
decision gateway

Multi branched Contains one or more decision
gateways.

Alternative ending Contains multiple ending nodes
Repetitive A cyclic flow exists

Automated Summarization of Service Workflows to Facilitate Discovery and Composition

321

For the general description of the process
structure, the analysis engine searches for a set of
specific characteristics which map to adjectives that
are composed to form the desired phrase. Table 1
presents the characteristics along with a short
description.

The general description contains also a phrase
describing the process type which is deducted from
the analysis of the Start Node and the BPMN file
itself. Initially the algorithm attempts the retrieval of
the description of the Start Node, however if
description does not exist or is not usable (no noun),
the algorithm utilizes the name of the BPMN file that
contains the process. The reason for selecting these 2
elements is because BPMN process developers
describe them in a way that differentiates one process
from the others.

5 USE CASES AND EVALUATION

This section presents several use cases with results of
the application of the proposed approach on synthetic
examples. Next the results from the empirical
evaluation of the results are presented. To validate the
quality of the extracted summaries we resorted to
industry professionals having experience in
creating/understanding process workflows as part of
their job.

5.1 Use Cases

Figure 7 depicts a simple book reservation process
with one human task and one system/notification
task.

Figure 7: Simple book reservation use case.

The automatic documentation of the process is as
follows:

This is a single approval, short (2‐task),
flat process about book reservation.
A user decides about the book selection. A
send task is used to notify user.
Then the process ends.

Bold Highlighted Text in Italics designates the

general description of the process from which we can
deduct that a user task exists (this enables the
characterization of the process as one with “approval

step”), that is a flat process (without alternative paths)
and that it contains two individual tasks and is about
a book reservation. Next, the process steps are
described in chronological order described in clear
text with zero formatting as it is deduced from the
order of nodes on the directed graph. Underlined
phrases indicate the description about the process
terminating node.

Figure 8: Example Business Process with decision
branching.

An example of a business process which contains
a decision node, which leads to two branches is
depicted in Figure 8. After book selection, an
availability check takes place and if the book is
available, the process notifies the user, otherwise it
immediately terminates.

The produced description follows. Note that the
general description here lacks the characterization
“flat” due to the branch existence.

This is a single approval, short (2‐task)
process about book reservation.
A user decides about the book selection. A
decision is taken depending if reserved.

If available: A send task is used to
notify user. Then the process ends.

If unavailable: Then the process ends.

We proceed with a few more complicated
examples to highlight the strengths and weakness of
the proposed approach.

Figure 9: Process example with two decision branches.

Figure 9 presents a business process with two
decision gateways, which create three decision
branches. The produced description is as follows:

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

322

This is a single approval, short (3‐task),
alternate ending (3‐ways) process about book
reservation.
A user decides about the book selection. A
decision is taken depending if reserved.

If available: A send task is used to
notify user. Then the process ends.

If unavailable: A decision is taken
depending if reserved in branch library.

If available in branch library: A send
task is used to notify user. Then the
process ends.

If unavailable in branch library: Then
the process ends.

The process in Figure 10 contains an intermediate
throw signal event which means that when this node
is executed, a special signal is emitted to notify other
interested (subscribed) processes.

Figure 10: Process with an intermediate Catch Event.

The automatic description for the process with
intermediate signal throw as shown in Figure 10 is as
follows:

This is an automatic (not involving any
human task), short (2‐task), flat process
about book return.
A method is called to set book status. The
process broadcasts a signal. A manual task
is used to update book position.
Then the process ends.

The process in Figure 11 introduces the concept
of End Message. This is a signal with a message
payload that is emitted at the end of the process to
notify any other interested processes (Message Start
events or intermediate message-catch events). The
same approach is being followed for all signal types
(Message, Error, Cancel, Link etc).

The automatically generated description follows.

Figure 11: Example Process with End Message Event.

This is an automatic (not involving any
human task), short (2‐task), flat process
about book return.
A method is called to set book status. A
manual task is used to update book position.

The process concludes messaging a
participant.

Next, in Figure 12 a special process with a timer
controlled segment is depicted. A timer event is a
special type of node on which the execution flow
blocks until the timer expression that is declared
during node creation is fulfilled. The automatically
generated description follows.

Figure 12: Example process with Timer Event.

This is a scheduled, automatic (not
involving any human task), short (2‐task),
repetitive process about book statuses.
[1] A decision is taken depending if books
exist.

If true: A daily timer is used to repeat
the following process. A method is called to
get books. A method is called to set
statuses. The same flow is repeated [1].

If false: Then the process ends.

As it is readily observed, special anchors have been
used for the correct description of the flow circle in
order to avoid redundant phrase repetitions.

Figure 13 depicts a process with multiple levels
of approval and multiple endings. The corresponding
automatic documentation follows.

Figure 13: Example process with multiple approval levels
and multiple endings.

Automated Summarization of Service Workflows to Facilitate Discovery and Composition

323

This is an automatic (not involving any
human task), short (3‐task), alternate
ending (4‐ways) process about book
existence.
A method is called to check book.
A decision is taken depending if exists.

If yes: Then the process ends.
If no: A method is called to check book.

A decision is taken depending if exists.
If yes: Then the process ends.
If no: A method is called to check book.

A decision is taken depending if exists.
If yes: Then the process ends.
If no: Then the process ends.

5.2 Evaluation

To evaluate the effectiveness of the proposed
methodology in capturing the essence of the actual
business process through the extracted summary, an
online questionnaire-based study was conducted. The
participants were nine industry professionals, all of
them highly skilled on BPMN process creation and
understanding.

Each participant was presented with 6 processes
along with the corresponding automatically generated
documentation and was asked to evaluate the extent
to which the documentation captured the actual
process and is meaningful. The responses were
provided in Likert scale (Joshi et al., 2015) as
depicted in Figure 14.

Figure 14: Indicative evaluation question.

The responses indicate a generally positive
opinion about the extracted summaries. A pie chart
with an overview of the evaluation results is
presented in Figure 15. It should be noted that none
of the participants voted with a value equal to 1. The
majority of evaluations correspond to values 4 and 5
(reaching a total 80%), highlighting the
expressiveness of the approach, at least for the used
case studies.

Figure 15: Distribution of evaluation responses.

The next section presents separate results for each
case along with the distribution of the evaluations
received, depicted as a bar chart. It is reasonable to
expect variations in the user acceptance of the
summaries, as some processes are more complex than
others. The results confirm this hypothesis, since
some of the most complex scenarios, such as case 6
(Fig. 21) and case 4 (Fig. 19) received fewer ‘5’
scores.

Figure 16: Evaluation case 1.

Figure 17: Evaluation case 2.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

324

Figure 18: Evaluation case 3.

Figure 19: Evaluation case 4.

Figure 20: Evaluation case 5.

The evaluation results from this pilot evaluation on
the 6 presented cases are positive and demonstrate the

potential of the approach. Extracting a meaningful
summary becomes more challenging for processes
having multiple paths and more nodes. A possible
explanation of this phenomenon might be the fact that
longer processes produce longer documentation
segments which inevitably are less cohesive and more
difficult to express in natural language (even if a
human attempts to extract a summary for a highly
complex workflow the resulting text would seem less
‘natural’). Through the free text responses that were
allowed, the participants identified syntactic errors
that should be avoided.

We remind that the goal of extracting a summary
for a given workflow is not only the ‘labeling’ of a
process with text but to enable the searching for
similar workflows through similarity of their
corresponding description. While this experiment is
planned as future work we believe that the extracted
summaries capture both key aspects of the process
(such as decision nodes and timed events) and all
necessary terms that characterize nodes. Thus, we are
optimistic that performing similarity checks between
the textual summary of BPMN process will allow the
efficient identification of ‘similar’ workflows.

Figure 21: Evaluation case 6.

6 LIMITATIONS AND THREATS
TO VALIDITY

The proposed approach and accompanying tool
suffers from specific limitations which can be
addressed by more advanced NLP techniques. First of
all, the tool cannot parse workflows containing
descriptions in languages other than English, but if
such a need exists, the approach can be adapted
accordingly. The tool will also yield inaccurate

Automated Summarization of Service Workflows to Facilitate Discovery and Composition

325

summaries in case of missing verbs in BMPN
elements or for structures which exhibit substantial
complexity (e.g. in the case of tens of paths between
the start and end node). While there is no trivial way
to address such issues, human intervention to abstract
entire blocks of BPMN elements by tagging them
with an appropriate high-level description, might be
promising in this direction.

The performed study to evaluate the effectiveness
of the approach and tool is also subject to validity
threats. The number of employed evaluation cases in
limited, both in number and in terms of the underlying
domain. As a result, any claims about the potential of
the approach are subject to external validity threats
and the results cannot be generalized to other
domains. Furthermore, we acknowledge that using a
simple rating to capture the correctness,
meaningfulness and attractiveness of the extracted
summary might be insufficient to assess the pros and
cons of the approach. The relevant construct validity
threat can be addressed by more systematic and
larger-scale validations in the future. The low number
of participants did not allow any systematic statistical
analysis (e.g. to investigate inter-rater agreement) of
the findings. We plan to advance the statistical
conclusion validity during the case study on the
ability of using summaries to identify similar
processes.

7 CONCLUSIONS

Service-based software systems have become
mainstream in various domains as the benefits of
using and composing individual services towards
reduced development time, better scalability and
easier maintainability are well acknowledged and
documented. Modeling real business processes as
BPMN workflows where individual nodes
correspond to invoked services has great potential to
lower the entry barriers to system development.
However, findings workflows which are similar to the
targeted one, so as to reuse previous services is
challenging.

To address this problem, as part of the
SmartCLIDE H2020 project, we have developed an
approach and accompanying tool that automatically
extracts summaries from a BPMN process. By
providing as input the process file a textual summary
is extracting leveraging NLP techniques. A pilot
evaluation with 9 industry professionals revealed a
positive reception of the generated summaries. As a

next step, we plan to evaluate the efficacy of textual
summaries as a means for finding similar workflows.

ACKNOWLEDGEMENTS

Work reported in this paper has received funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No
871177 (project: SmartCLIDE).

REFERENCES

Fahad, S. A., & Yahya, A. E. (2018). Inflectional Review
of Deep Learning on Natural Language Processing.
2018 International Conference on Smart Computing
and Electronic Enterprise (ICSCEE). https://doi.
org/10.1109/ICSCEE.2018.8538416

Falcone, A., Garro, A., D’Ambrogio, A., & Giglio, A.
(2017). Engineering systems by combining BPMN and
HLA-based distributed simulation. 2017 IEEE
International Systems Engineering Symposium (ISSE),
1–6. https://doi.org/10.1109/SysEng.2017.8088302

Geiger, M., Harrer, S., Lenhard, J., & Wirtz, G. (2016). On
the Evolution of BPMN 2.0 Support and
Implementation. 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), 101–110.
https://doi.org/10.1109/SOSE.2016.39

Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert
scale: Explored and explained. British Journal of
Applied Science & Technology, 7(4), 396.

McBurney, P. W., & McMillan, C. (2016). Automatic
Source Code Summarization of Context for Java
Methods. IEEE Transactions on Software Engineering,
42(2), 103–119. https://doi.org/10.1109/TSE.2015.24
65386

Messina, A., Rizzo, R., Storniolo, P., & Urso, A. (2016,
June 26). A Simplified Database Pattern for the
Microservice Architecture. https://doi.org/10.13140/R
G.2.1.3529.3681

OMG. (2007). BPMN Specification—Business Process
Model and Notation. https://www.bpmn.org/

Richardson, L., & Ruby, S. (2007). RESTful Web Services
(1st ed.). O’Reilly Media.

Spring Boot. (2021). https://spring.io/projects/spring-boot
Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko,

E., Syukur, A., Affandy, A., & Setiadi, D. (2020).
Review of automatic text summarization techniques &
methods. https://doi.org/10.1016/j.jksuci.2020.05.006

Wu, Z., Deng, S., & Wu, J. (2015). Chapter 7—Service
Composition. In Z. Wu, S. Deng, & J. Wu (Eds.),
Service Computing (pp. 177–227). Academic Press.
https://doi.org/10.1016/B978-0-12-802330-3.00007-2

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

326

