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Abstract: Today's green computing has to deal with prevalent Cyber-Physical Systems (CPSs), engineered systems that 
tightly integrate computation and physical components.  Green CPS aims to use electronic/computer devices 
and resources to perform operations as efficiently and eco-friendly as possible.  With the rise of smart 
technology combining with Artificial Intelligence Deep Learning (DL) in Internet of Things and CPSs, 
continuing use of these compute intensive CPS software like DL can negatively impact energy resources and 
environments.  Much research has advanced green hardware and physical component development.  Our 
research aims to develop green CPSs by making them energy aware.  To do this, we propose an analytical 
modelling approach to quantifying energy consumption of software artifacts in the CPS.  The paper describes 
the approach through energy consumption modelling of DL in distributed CPS due to the popular deployment 
of DL in many modern CPSs.  However, the approach is general and can be applied to any CPS. The paper 
illustrates the application of our approach for energy management in scaling and designing smart farming 
CPS that monitors crop health.

1 INTRODUCTION 

Increasing use of electronic/computer devices and its 
impacts on environments are inevitable. Green 
computing addresses how to use computers and their 
resources in an eco-friendly way. This includes 
designing, manufacturing, using, and disposing these 
devices to reduce electronic waste and power 
consumption with the goal to utilize the energy to 
perform operations as efficiently as possible (Dhaini 
et al., 2021; Ortiz et al., 2020). 

In today's world, cyber-physical systems (CPSs), 
or engineered systems that tightly integrate 
computation and physical components (Yu et al., 
2020), are everywhere. CPSs drive innovations and 
enable numerous applications from autonomous 
vehicles to smart cities and agricultures (Estevez & 
Wu, 2017; Liang et al., 2018; Yu et al., 2020). With 
the recent rise of smart technology combining with 
Artificial Intelligence Deep Learning (DL) in Internet 
of Things and CPSs, continuing use of these 
sophisticated computationally intensive CPS 
software like DL can no longer be ignored as they can 
unknowingly have negative impacts on energy 
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resources and environments (Estevez & Wu, 2017; 
Inderwildi et al., 2020). There is a need to develop 
green computing for CPS. 

Research has been studied extensively to develop 
green CPSs including improving infrastructures (e.g., 
cloud and data centers) (Ortiz et al., 2020) and finding 
energy-efficient solutions (e.g., lightweight protocols 
(Haseeb et al., 2020), energy harvesting (Zeng et al., 
2020), or optimizing scheduling (Fu et al., 2019; 
Liang et al., 2018)) to reduce energy waste and 
consumption. Some deals with estimating energy 
consumption (Horcas et al., 2019; Liang et al., 2018) 
and some (Bouguera et al., 2018) focuses on energy 
usage of certain communication protocols and sensor 
devices. While much work has advanced green 
hardware and physical component development, it 
appears that green computing software has lagged. To 
build and sustain green computing systems, the 
ability to monitor and quantify energy usage of 
software is as crucial as that of hardware artifacts. 
The estimated energy consumption can be useful for 
managing energy resources, planning and designing 
greener systems, or identifying possible 
power/energy savings. 
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Existing approaches employ power measurement 
tools (Faviola Rodrigues et al., 2018; Horcas et al., 
2019; Li et al., 2016; Mitchell et al., 2018), simulation 
(Yang et al., 2018) and analytical modeling (Yang et 
al., 2018).  Although these tool-based technique is 
simple, it is system-specific and relies on probing that 
may not always be accessible. Using simulation 
requires understanding of computational behavior of 
the system and can also take a long time to run.  

Our research aims to develop green CPSs by 
making them energy aware.  To do this, we propose 
an analytical modelling approach to quantifying 
energy consumption of software artifacts in the CPS.  
Unlike previous analytical approach by Yang et. al, 
our approach shows explicit modelling using two 
basic core elements, namely number of MAC 
operations and frequencies of data access. The paper 
describes the energy quantification approach through 
energy consumption modelling of DL in distributed 
CPS due to the popular deployment of DL in many 
modern CPSs. The approach is general and can be 
applied to any CPS. The paper illustrates the 
application of our approach for energy management 
in scaling and designing smart farming CPS that 
monitors crop health. 

In summary, the paper has the following 
contributions: (1) a foundation for energy modeling 
of software components using primitive basic 
elements relying on data computation and movement, 
(2) energy quantification of DL, specifically 
convolution and artificial neural nets, and (3) 
application of the DL energy models in designing and 
scaling smart farming CPS for crop health monitoring.  

The rest of the paper is organized as follows. 
Section 2 discusses related work and Section 3 
presents the proposed approach. Section 4 gives 
details of the approach on specific computing units, 
particularly, the execution of the trained deep 
learning model.  Our illustration of energy modeling 
approach on smart farming, including experimental 
design and setup, is given in Section 5, followed by 
experimental results in Section 6. The paper 
concludes in Section 7. 

2 RELATED WORK 

Most research on energy-related issues in CPSs 
includes energy management (Ortiz et al., 2020; Zhu 
et al., 2021), improving infrastructures such as cloud 
and data centers (Ortiz et al., 2020), energy harvesting 
(Zeng et al., 2020), and energy efficient solutions. 
The latter includes scheduling optimization (Fu et al., 
2019; Liang et al., 2018; Zhu et al., 2021), energy 

optimization strategies (Horcas et al., 2019; Hossain 
et al., 2020) and energy efficient protocols (Haseeb et 
al., 2020). While useful, all of these approaches, 
however, either does not estimate energy 
consumption (Zeng et al., 2020; Zhu et al., 2021) or 
does that of physical components (Fu et al., 2019; 
Hossain et al., 2020; Liang et al., 2018). Unlike these 
studies, we consider energy consumption of software 
or computing units.  

Research in estimating energy consumption of 
software components uses various techniques.  Most 
rely on  power measurement tools e.g., hardware 
sensors (Mitchell et al., 2018; Zhu et al., 2021), 
WattsUp? Pro (Horcas et al., 2019), Intel’s Running 
Average Power Limit (RAPL) interface and/or 
nvidia-smi (Li et al., 2016), and the Streamline 
Performance Analyser (Faviola Rodrigues et al., 
2018). These tools are used to measure actual energy 
consumption, then report energy usage or build 
energy model. However, these tool-based approach 
can be hardware specific and can only measure 
energy at the device level. They are unable to measure 
specific software computation. 

Another technique uses simulation to estimate 
energy consumption of software units (Yang et al., 
2018). It estimates energy consumption of deep 
learning based on two factors: number of Multiply-
and-Accumulate (MAC) operations and data 
movement in the hierarchy. The number of MACs 
and data accesses are obtained through simulation. In 
general, although the approach gives accurate results, 
it requires long runtime for large software 
component. Moreover, it requires a knowledge of and 
is specific to certain hardware system.  

To overcome the above limitations, few studies 
employ analytical approach (Mo & Xu, 2020; Yang 
et al., 2018; Z. Yang et al., 2021). Work in (Mo & Xu, 
2020; Z. Yang et al., 2021) presents a mathematical 
model to estimate software computing units based on 
numbers of CPU cycles, CPU frequency, and 
floating-point operations. They do not consider 
energy consumed by data movement within memory 
hierarchy which is rather significant to the overall 
consumption.  Work in (Yang et al., 2018) presents a 
tool for estimating software component using 
analytical modeling approach.  However, there is no 
details on the analytical models employed. Our work 
is most similar to (Yang et al., 2018) in applying basic 
elements of MACs and data movement.  Specifically, 
both (Yang et al., 2018) and our approach present 
energy modeling of energy consumption during deep 
learning execution (i.e., testing of deep learning 
model). However, this work differs from ours in that 
it does not show how the core elements (i.e., the 
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number of MACs and data movement) are obtained, 
whereas we do. Our model explicitly defines how to 
calculate number of MAC operations as well as 
frequencies of data access to quantify energy 
consumption of deep learning. 

3 ENERGY MODELING FOR 
COMPUTING UNITS IN CPS 

Figure 1 shows a conceptual architecture of CPS, 
where cyber and physical systems are tightly 
integrated.  The physical system sends data to the 
cyber system (via sensors).  The cyber system takes 
sensed data as inputs and computes and produces 
output to the physical system (via actuator).  The 
interactions can be intensive and may be required at 
different system granularities, thus CPS needs a tight 
component integration for efficiency.  

 

Figure 1: Conceptual architecture of CPS. 

Physical systems (or components/units) include 
human engineered systems (e.g., manufacturing, 
building) and natural systems (e.g., solar, climate, 
habitat, environments) and Cyber (or Software) 
systems (or components/units) include computing 
artifacts as well as relevant infrastructures (e.g., data 
storage and transmission network).  We refer to 
sensors and actuators as interface devices and use the 
term “computing units” and “cyber/software 
components” synonymously.  

Although some objects are of physical system 
(e.g., sensors, network cables), in estimating energy 
consumption of computing units in a CPS, we include 
energy consumption consumed by relevant physical 
components in computation and data transmission (or 
communication). Thus, energy consumption includes 
energy consumed by a sensor for sensing and 
transmitting the data to a server. 

In this section, we describe our approach to 
estimating energy consumption of computing units in 
CPS. We start with the methodology to estimate 
consumption per unit in Section 3.1 then present the 
estimation of the system in Section 3.2.  

 

3.1 Unit Energy Estimation 

Energy consumption of a computing unit consists of:  
(1) energy consumed from computation (Ecomp), (2) 
energy consumed from the associated data movement 
(Edata) and (3) energy consumed from transmission to 
other units (Etrans), i.e.,  

E =  Ecomp + Edata+Etrans (1)

Figure 2 summarizes an overall concept of how to 
compute E in (1). 

 

Figure 2: Energy consumption methodology of a computing 
unit. 

Details on the modeling the energy from 
computation, data access, and transmission are 
presented below in Subsections 3.1.1, 3.1.2, and 
3.1.3, respectively.  

3.1.1 Computation Energy 

 

Figure 3:  A MAC operation. 

The fundamental element of the computation is a 
multiply-and-accumulate (MAC) operation (Yang et 
al., 2018). Suppose we want to compute ∑ wixi

n
 i=0 .  

Figure 3 depicts a MAC operation, where for each 
iteration i, two inputs wi and xi are multiplied and the 
result is added to the (accumulated) partial sum pi, 
producing an updated partial sum pi+1 for the next 
iteration (or the accumulated sum of the 
multiplication pairs so far). This accounts for one 
MAC operation in one iteration.  Since the final 
summation is a result of n iterations of MACs, we say 
it takes n MACs. As a result, computation energy 
depends on the number of MACs, giving  

Ecomp = αc  (2)
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where c is the number of MACs and α is hardware 
energy cost per one MAC operation. 

3.1.2 Data Access Energy 

For each computation, data of different types (e.g., 
input and output) need to be stored in the memory. In 
particular, as shown in Figure 3, each MAC performs 
four data accesses, three reads (i.e., two inputs wi and 
xi and one previous accumulated partial result pi) and 
one write (i.e., new partial result pi+1). Since energy 
spent accessing different levels of memory hierarchy 
are significantly different, data movement energy 
depends on how data moves in the memory hierarchy 
(Yang et al., 2018).  

Let M be a memory hierarchy level, V be a set of 
data types (e.g., input, output, weight), βm be a 
hardware energy cost per data access in the memory 
level m, av,m be the number of data accesses for data 
of type v accessed at memory level m, and p be a 
precision in terms of number of bits for data 
representation (e.g., 8, 16).  We can estimate the 
energy consumption corresponding to data movement 
based on the number of data accesses and access 
location in the memory as shown below. 

 
Edata = ∑ ∑ βmav,m

M
m=1v∈V p  (3)

 
Note that we express βcache and βDRAM in terms of 

energy cost of a MAC operation α, resulting in βcache 
= 6α and βDRAM = 200α, used in (Yang et al., 2018). 

In this study, without loss of generality, we 
consider data moves between two memory levels: 
cache (m = 1) and DRAM (m = 2) with a cache hit 
rate h.  Data are looked up in the cache first. If they 
are not found (cache miss), they will be fetched from 
DRAM and stored in cache. As a result, we can 
simplify data movement energy to be as follows.  

 
Edata= ∑ (βcacheav+ βDRAM(1-h)av) pv∈V   (4)

 
As seen in (4), in the best-case scenario (h = 1), 

all data are fetched from cache, whereas in the worst 
case (h = 0), all data have to be fetched from DRAM 
as expected.  

3.1.3 Transmission Energy 

Transmission energy (Etrans) of a computing unit can 
be calculated from transmission power p scaled by 
transmission time t (Mo & Xu, 2020; Z. Yang et al., 
2021). The transmission time can be obtained from 
dividing the total number of bits to be transmitted s 
by the achievable rate r. 

Etrans = pt = p (s/r) (5)
 
Depending on communication protocols, the 

achievable rate r can be calculated differently. For 
example, in Frequency Division Multiple Access 
protocol (FDMA) (Z. Yang et al., 2021), r can be 
achieved by: 

 

r = b log ቀ1+
ph

N0b
ቁ  (6)

 
where b is bandwidth, p is transmission power of the 
edge node, h is channel power gain and N0 is power 
spectral density of the Gaussian noise. Similarly, in 
non-orthogonal multiple access (NOMA) protocol 
(Mo & Xu, 2020), r can be found by: 
 

r = B log ൬
σ2+ ∑ pihi

n
i=1

σ2+ ∑ pihi
n-1
i=1

൰  (7)

  
where B is bandwidth, p is transmission power, h is 
channel power gain, n is the number of edge nodes 
and 𝜎ଶ is a variance for the additive white Gaussian 
noise (AWGN). 

3.2 System Energy Estimation 

 

Figure 4: Sensor-based CPS network. 

Once we quantify energy for each computing unit as 
in Section 3.1, this section combines the energy of all 
computing units in a system. Figure 4 shows an 
example of a sensor-based distributed system 
consisting of two computing units, each is a network 
of sensors (or sensing nodes) and distributed server 
(or server or edge node). Total energy consumption 
of the system can be expressed by 
 

Enetwork = Nsense (Esense)+Nserver(E)  (8)
 
where Nsense, Nserver is the number of sensors and 
servers, respectively.  Esense is energy consumed by 
each sensing node, which includes consumption 
during all sensor operations e.g., sensing, logging and 
transmission (Bouguera et al., 2018). Finally, E is 
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energy consumed by each server obtained by 
modeling approach discussed in the previous section.  

4 DEEP LEARNING MODELING 

To further explain energy modeling of computing 
units in more details (i.e., to show how one can count 
the number of MACs and data access in the memory), 
we need to work on specific software units. Here we 
choose a relatively difficult computing unit of a 
popular Deep learning or deep neural network 
(DNN). DNN has been widely used in CPS for 
various tasks such as control, automation, detection, 
and monitoring. This section further describes the 
methodology in Section 3.1 to estimate energy of 
DNN computation.  Specifically, we focus on energy 
consumption of computation and data access during 
the execution of the trained DNN model on one data 
instance.  That is, we do not deal with energy usage 
for training DNN. 

Background of DNN and how to assess the number 
of MACs and the number of data access from the 
DNN model are described in Subsections 4.1, 4.2, 4.3, 
respectively.  

4.1 Background on DNN 

Artificial neural networks (ANN) are a computational 
model consisting of layers of neurons.  Each output is 
obtained by computing a weighted sum of all inputs, 
adding a bias, and (optionally) applying an activation 
function as shown in (9). Examples of activation 
functions are sigmoid function and Rectified Linear 
United (ReLU). 
 

 y = f( ∑ wixi
n
i=0 +b)  (9)

 
where y, xi, wi, b and n are the output, inputs, weights, 
bias and number of inputs, and f(.) is an activation 
function (Sze et al., 2017).  

A convolution neural networks (CNN) is a type of 
DNN that has been successfully applied to image 
analysis and computer vision (e.g., face recognition, 
object classification). Figure 5 shows a typical CNN 
architecture where multiple convolution (CONV) 
layers are used for feature extraction and fully 
connected (FC) layers are used for classification. 
Since CNN usually deals with images with high 
dimensions, pooling (POOL) layers are used to 
reduce the dimensionality using pooling operations 
(e.g., max, average).  As shown in Figure 5, the POOL 
layer selects the maximum element of an input region 
and reduces dimension of a 4x4 input to a 2x2 output. 

 
Figure 5:  A Convolutional Neural Network (CNN). 

The CONV layer, a building block of CNN, 
consists of high-dimensional convolutions. Equation 
(10) defines the computation of each CONV layer. 
For each layer, an input (also called input feature 
map) is a set of 2-dimensional matrices, each of 
which is called a channel. Each channel is convolved 
with a distinct filter channel (i.e., 2-dimensional 
weights). As seen at the bottom of Figure 5, a 
convolution starts with the 2-dim filter slides over a 
region of the 2-dim input of the same size, performing 
pointwise multiplication and summing the results into 
a single value. The convolution results are summed 
across all channels (3rd dimension of input block). 
The bias b can be added to the result, yielding the 
single output value z (as shown in (10)).  

 
zs,f,m,n= ( ∑ ∑ ∑ wf,c,i,jxs,c,m+i,n+jjic ) + bf   (10)

 
where zs,f,m,n is the output feature map of layer l, batch 
s, channel f and location (m, n), w is the weight of 
filter f, channel c and location (i, j), x is the input and 
b is bias. The filter repeats this process as it slides 
over all the input regions, yielding a filled output 
matrix. The process then repeats for all F filters. Each 
of the output values (LHS of (10)) then goes through 
an activation function and becomes an input to the 
next layer (Sze et al., 2017). 

Since a DNN model consists of multiple layers of 
different types (e.g., convolution, pooling and fully 
connected), the total consumption of the DNN is the 
summation of computation and data access energy 
from all layers. Next, we provide a per-layer 
estimation of number of MACs (for computation 
energy) and data access (for data access energy) 

4.2 Estimation of Number of MACs 

Since different type of layers require different 
computation, we provide estimation of number of 
MACs for each layer as follows. 

4.2.1 Fully Connected (FC) Layer 

Consider Figure 6 representing a FC layer l of n 
neurons, each of which is connected with every 
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neuron of an FC’s input layer (or previous layer) of m 
neurons.  (Note that if the FC’s previous layer is a 
convolution or pooling layer whose output is 
represented in a stack of h 2-dimensional square 
planes, say k×k then the input layer of FC has m = 
h×k×k neurons). 

 

Figure 6:  Computation and associated data in FC layer. 

As shown in Figure 6, for each of n neurons in the 
FC layer, we compute m weighted sums (as in f’s 
argument) and one activation (by function f). Thus, c, 
the total number of MACs in the FC layer is shown 
below in (11). 

 
c = mn + cact n  (11)

 
where cact is the number of MACs used in the 
activation function which will be determined later. 

4.2.2 Convolutional (CONV) Layer 

 

Figure 7: Computation and associated data in CONV layer. 

The convolution layer aims to extract features by 
means of weights in filters. It results in a large number 
of computations and corresponding data movements.  
An input of n1 width and height and m channels is 
convoluted with f filters, each of dimension n2 x n2 x 
m, and results in an output of size k x k x f.  

As shown in Figure 7, the convolution process 
starts with a pointwise multiplication of a filter and an 
input region where the results are summed across all 
channels. To obtain this one output value (e.g., the top 
leftmost cell of the output), it takes n2

2m MACs (A in 
Figure 7). The convolution process continues for the 
rest of the input region, yielding the output of size k 
by k yielding the number of MACs (B in Figure 7). 
The process then repeats for the rest of the f filters, 
ultimately producing f outputs and taking n2

2mk2f 
MACs, shown as C. Note that the output value can go 

through to an activation function which takes another 
cact MACs. In other words, to obtain each output 
value, it takes n2

2m and cact MACs. The operation 
repeats k2f time for all output values giving the total 
number of MACs in the CONV layer as: 

 
c = (n2

2m)(k2f) + cact (k2f) (12)

4.2.3 Pooling Layer 

The energy consumption of a pooling layer depends 
on the type of the pooling operation. We consider the 
two popular types: max pooling and average pooling.  

In max pooling, the filter slides over input region, 
the maximum element in the region is selected as an 
output value. Since no MAC operation is used, we 
obtain c = 0. 

Similar operation is done in average pooling, but 
instead of selecting the maximum value of the input 
region, the operation averages the values in the 
region. Each operation is estimated to use one MAC. 
Since the number of pooling operations in a layer is 
equal to the size of the output, number of MACs 
operation can be expressed as: 

 
c = n2

2m (13)

4.2.4 Activation Functions 

We estimate computation of different activation 
functions in terms of number of MACs to be used in 
the earlier layer-wise analysis. We denote cact as 
number of MACs required to compute an activation 
function. 

1. Linear function: f(z) = z requires no MAC giving, 
cact = 0. 

2. Sigmoid function: σ(z)= 1/(1+e-z) takes one MAC 
(for a division) with extra computation γ for 
exponential function. This gives cact = 1 + γ. 

3. ReLU function: R(z) = max(0,z). It is a non-linear 
function and is widely used in both convolutional 
layer and fully connected layer. The computation 
does not require MAC, giving cact = 0. 

4. Softmax function: S(z) = ez/( ∑ ezim
i=1 ), where m is 

a number of classes. The function is typically used 
in the output layer for classification. We estimate 
the number of MACs to be m+1 (m for product 
sum and one for a division) with extra computation 
γm (i.e., γ for each of m computations of 
exponential function). As a result, we get 
cact = 1 + m + γm.  
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4.3 Estimation of Number of Data Access 

Since computation in each type of layers differs, 
number of data access also varies. Therefore, we 
provide estimation of number of data access for each 
layer as follows. 

4.3.1 Fully Connected (FC) Layer 

For data movement energy in FC layer, we consider 
m input neurons, mn weights, n biases and n neurons 
in FC layer (or output layer). Let ax be the number of 
data accesses for x. As shown in computation of Ai’s 
in Figure6, each input xi is read n times while each 
weight and each bias are each read once. Thus, a total 
number of data accesses for input, weight and bias 
would be mn, mn, and n, respectively.  These results 
are shown in (14)-(16).  As shown in Figure 6, each 
output Ai includes read/write accesses of m products, 
yielding 2m data accesses. Since there are n output 
neurons, a total of number of data accesses for output 
would be 2mn as given in (17).  

ainput   = m(n) (14)

aweight = m(n) (15)

abias    = n (16)

aoutput = n(2m)  (17)

Next section shows how to compute MACs and 
data movement energy in CONV layers.  

4.3.2 Convolutional (CONV) Layer 

Data movement energy in this layer involves input, 
filters (i.e., weights), biases and output. As shown in 
Figure 7, each input data is accessed at least once for 
each filter requiring n1

2 m MACs. As the filter slides 
over the input, some of the input data are being 
accessed again (i.e., being reused). Let t be the 
maximum bound of the number of reuses and ri be the 
number of data that are reused i times. Thus, for f 
filters, number of input data accesses is shown in (18). 

Similarly, each weight in the filter and each bias is 
accessed once to calculate one output value. To 
complete the output for one filter of size k2, as circled 
in blue in Figure 7., the weights and bias hence are 
accessed k2 times. Since there are n2

2m weights and 1 
bias for one filter, with f filters, total number of 
weight and bias data access can be expressed in (19) 
and (20), respectively. As labeled as A in the Figure 
7, each of the output value takes n2

2 m iterations of 
MAC. This means the output value is being accessed 
2 n2

2 m  times accounting for data read and write. 

Since there are k2f output values, number of output 
data access can be expressed as shown in (21). 

ainput  = (n1
2m+ ∑ rii

t
i=2 ) · f (18)

aweight = n2
2 m f k2 (19)

abias   = fk2 (20)

aoutput =  k2f (2n2
2 m) (21)

4.3.3 Pooling Layer 

Data movement energy for max pooling and average 
pooling involves only input and output. The input 
data access depends on the size of the filter (i.e., 
pooling size) and stride. Similar to how (18) is 
obtained, number of input data access can be 
determined by (22). In addition, stride is sometimes 
set to be equal to the size of the filter. As a result, the 
input region is not overlapped, causing each the input 
value to be accessed only once. In this case, the 
second term of (23) is zero. In this layer, each output 
data is accessed once, which accounts for data write. 

ainput  = (n1
2m+ ∑ rii

t
i=2 ) (22)

aoutput =  n2
2m  (23)

where n1 is the width and height of the input, m is 
number of channels, n2 is the width and height of the 
output. Note that, n2 is derived from the input, pooling 
size k and stride s (i.e., n2= (n1  k/s) + 1).  

5 ILLUSTRATIONS 

This section illustrates how the model can be applied 
in practice to help the design and management of 
CPS, particularly in a smart agriculture system. 
Section 5.1 describes the system and the unit under 
study. Section 5.2 gives experiments and results. 

5.1 Smart Agriculture Systems 

Smart agriculture systems include smart farming and 
smart CPS for controlled environments for precision 
agriculture and food security supply (Rajasekaran & 
Anandamurugan, 2019).  These systems typically 
employ sensors to collect data from the field and use 
them for various tasks (e.g., crop health monitoring, 
and management of soil nutrients, pesticides, 
fertilizer, and irrigation) to increase the crop yields.  
To sustain such a system, one needs to manage cost 
derived from energy consumption from computation 
in these units.  
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Consider a crop health monitoring subsystem of 
the smart agriculture CPS. The subsystem includes a 
disease detection unit that deploys a trained DNN 
model to analyze plant images sent from neighboring 
cameras (sensing nodes) in the field. The server in the 
disease detection unit executes the DNN model to 
detect if the plant has a disease or to classify the 
disease type. It then transmits those images with 
corresponding results to the cloud for backup and 
further analysis or to be alerted by another unit. 

Suppose a farm owner wants to expand the farm to 
grow more plants, cover larger area with more sensors 
and disease detection computing units. This will lead 
to higher energy consumption. The farm owner or the 
smart agriculture system engineer needs to manage 
energy resource constraint as well as appropriate 
structures to maximize the overall net gain to the 
farm. Planning for resource management to make 
such a smart agriculture system sustainable can be 
challenging.  In this paper, we limit the scope of our 
investigation to energy consumptions of computing 
units to identify appropriate scale and structure for a 
design of a sustainable future system. 

5.2 Experiments and Initial Setup 

We consider two CPS network structures: star and 
mesh.  The left of Figure 8 shows two stars, each of 
which has four sensing nodes, where each directly 
connects to its assigned distributed server.  The right 
of Figure 8 shows two meshes, each of which also has 
four sensing nodes, all of which are directly 
connected to one another.  Sensing nodes sense and 
transmit their own data but also serve as repeaters that 
relay data from other nodes.  For examples, sensing 
nodes that are not connected to the distributed server 
will send their data to their neighbors which will 
forward the data to the distributed server.  Distributed 
servers in both structures connect to the cloud to store 
their data. 

 

Figure 8: Star and Mesh Topology. 

Since in each star or mesh 80% of nodes are 
sensing nodes and 20% of nodes are distributed 
server, we use the same ratio between sensing nodes 
and distributed servers when we scale total number of 
nodes from 100 to 10,000 nodes in our experiments. 
Note that each star or mesh maintains 4 sensing nodes 

and one distributed server. From this point on, we use 
server to mean distributed server, unless it is 
specified differently. 

For a deep learning model deployed at the server 
of each structure, we choose Alexnet (Krizhevsky et 
al., 2017), a CNN model to be deployed at the server 
due to its popularity and successful use in many smart 
agriculture applications (Gikunda & Jouandeau, 
2019). Alexnet’s architecture contains 5 convolution 
layers with ReLu activation, 3 pooling layers and 3 
fully connected layer with Softmax for classification.  

In our illustration, data are fetched from cache and 
DRAM at 50% cache hit rate. Data precision is 16 
bits. The energy consumption is expressed in terms of 
the number of MAC operations as it directly 
translates to energy usage. We also assume that each 
MAC operation consumes about 10 pJ (picojoules). 

Table 1:  Experimental Setup. 

Variable Type/Values 

Structure Star, mesh 

DL model Alexnet (CNN model) 

Data Access Cache (hit rate), DRAM  

Communication Protocol FDMA 

% No. Servers 20% 

% No. Sensors 80% 

Bandwidth 500k Hz and 2M Hz 

For a communication protocol, we use FDMA 
(Frequency Division Multiple Accesses) (Z. Yang et 
al., 2021). Bandwidth is set to 500k Hz and 2MHz to 
represent low and normal bandwidth scenarios. 
Transmission power for each central server is set to 
that of a standard laptop at 32 mW while the sensing 
node’s is halved (16 mW). Distance between nodes is 
set to 100. For sensor energy consumption, the power 
and sensing time are 10.5 mW and 25 ms as reported 
by (Bouguera et al., 2018). The frequency of the 
operation (i.e., the sensing node captures picture and 
transmits the data) is set to be every hour. A summary 
of experimental setups is shown in Table 1. 

Three sets of experiments are performed to help 
gain understanding of sources of energy consumption 
of the computing units of the smart agriculture 
system.  The designer of the crop health monitoring 
units might ask the following: (1) Does different 
structure matter to energy consumption? (2) How 
does the number of sensors in each structure effect 
energy consumption?  (3) Which of the task between 
computation or communication consumes more 
energy? (4) How much does the bandwidth effect 
total energy consumption? Our experiments aim to 
answer these questions with respect to scales (i.e., 
number of nodes) of the smart agriculture system. 
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6 EXPERIMENTAL RESULTS 

The results of the experiments along with some 
explanations are discussed in three sections below. 
The results should help the farm owner or the smart 
agriculture system engineer in designing and 
selecting appropriate structures and scale to sustain 
energy usage of the new smart disease detection 
computing units. 

6.1 Effects from Network Structures  

We use our analytical energy model to estimate 
energy consumptions of two structures: star and mesh 
when scaling the number of nodes (i.e., sensors and 
distributed servers) up to 10,000 nodes.  

 

Figure 9: Energy consumption of star and mesh networks. 

As shown in Figure 9, as we increase number of 
nodes, energy consumption linearly increases for both 
structures (or topologies) as expected as execution of 
each unit requires approximately the same energy 
usage in a normal situation (i.e., no transmission 
delays).  However, the mesh structure consumes 
slightly higher energy consumption than the star 
structure.  This is due to the differences in energy 
consumption by data transmissions to be investigated 
in more details below. 

Figure 10 compares energy consumed by sensing 
nodes and (distributed) servers (or edge node) of both 
star and mesh structure.  In both topologies, shown in 
Figure 10, the servers consume significantly higher 
energy than the sensors. This is mainly due to high 
energy consumption from deep learning execution. 
Moreover, as shown in Figure 10, energy 
consumption at the servers in both topologies are the 
same. This is because the servers in both topologies 
perform approximately the same amount of deep 

learning computation and transmit the same amount 
of data.   

 

Figure 10: Energy consumption of sensors vs. distributed 
servers (edge nodes). 

On the other hand, Figure 10 shows that the 
transmission (or communication) energy at sensing 
nodes of the mesh is higher than that of the star.  As 
the number of nodes increases, the differences in 
transmission energy grow. This is because, as 
opposed to direct transmission in the star structure, 
sensing nodes in the mesh that are not connected to 
its designated server require multi-hop transmission. 
Since some nodes need to send not only their data but 
also data from other nodes, more energy is consumed. 
Consequently, the mesh structure has higher 
transmission energy and higher total energy 
consumption. In our experiments, we consider at most 
2-hop data forwarding as depicted in Figure 8. If more 
hops are needed to reach the distributed server, even 
higher energy consumption is expected. 

In general, despite being simple and cheaper in 
terms of energy, the star structure has limitation in the 
maximum transmission range between the sensing 
node and the server.  Since sensing node and the 
server must be in transmission coverage of one 
another, having more sensing nodes may not mean 
increased coverage area. Using communication 
technology such as LoRa can overcome this issue as 
it enables long range transmission with low power 
consumption, but it has a low bandwidth. Mesh 
topology does not have the same issue as the sensing 
nodes can relay data from other nodes and hence can 
be anywhere as far as they are connected to another 
node. Moreover, it can provide better reliability since 
data can be rerouted using different paths in case a 
node fails. The smart farming designer has to take 
these tradeoffs into consideration along with energy 
consumption effects. 

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

40



6.2 Effects from Bandwidths 

This section explores impact of bandwidth to energy 
consumption by computing units. Since the results 
between star and mesh networks are similar, we only 
show the results from the star network here. We focus 
on energy consumption by the distributed servers 
rather than sensors since their energy consumption 
has much higher contribution to the overall system. 
Figure 11 and Figure 12 shows energy consumption 
of the distributed server with bandwidth capacity of 
2MHz and 500kHz, respectively.  

 

Figure 11: Energy consumption where bandwidth is 2MHz. 

 

Figure 12: Energy consumption where bandwidth is 500kHz. 

As shown in Figure 11, with a high bandwidth of 
2 MHz, deep learning energy consumption dominates 
that of data transmission. Also, total energy 
consumption contributed by the DL computation and 
data transmission of the distributed server is scalable. 
However, this is not the case with a lower bandwidth.   

As shown in Figure 12, when there are more than 
7,000 nodes, transmission energy starts to dominate 
deep learning computation energy. This is because 
bandwidth is shared among the nodes. When there are 

nodes, higher traffic is expected. This results in 
longer transmission time and thus higher energy 
consumption. Thus, in the scenario of this experiment 
with low bandwidth, the system should not grow 
more than 7000 nodes, otherwise, more energy will 
be wasted on transmissions instead of actions to gain 
productivity (i.e., more images being analyzed).  For 
the system designer, the ability to estimate energy 
consumption per computing units prior to 
implementation can give insights on the scale of the 
smart farm system to fit the energy budget constraint 
or to determine investment on bandwidth capacity. 

6.3 Effects from Sensors and Servers Ratios 

Results obtained in Section 6.1 indicate that 
structures (i.e., mesh, star) of the computing units do 
not appear to impact energy consumption that much.  
In our previous experiments, the number of sensors in 
each structure is set to be four. We want to investigate 
further the number of sensors in each structure 
impacts energy consumption.  This section considers 
only the star structure as it is baseline energy 
consumption of the two structures.   

We consider two sets of sensors, 10 and 100. 
Table 2 shows comparison of energy consumption 
between having ten and a hundred sensors sending 
data to one server.  The ratio difference in the last 
column represents the ratio of energy consumption in 
the 100-sensor case over that in the 10-sensor case.  
Thus, it gives a multiplying factor of the former to the 
latter. As shown in the first line of Table 1, since the 
number of sensors increases 10 times, sensing energy 
consumption increases 10 times as expected. 
Similarly, at the distributed server, more number of 
sensors means more number of images being 
processed. Thus, the server has to do 10 times more 
image analysis and thus, the energy consumption of 
DL execution increases 10 times as it should be.  

Table 2: Effect of number of sensors in a star-structured group. 

Energy 
Consumption 

10 sensors + 
1 edge node 

100 sensors + 
1 edge node 

Ratio 
Difference 

Sensing 0.06 0.63 10.00 

Sensor Transm. 173.06 2,376.75 13.73 

Total at Sensor 173.13 2,377.38 13.73 

DL execution 11,624.73 116,247.29 10.00 

Edge Transm. 181.67 3,003.42 16.53 

Total at Server 11,806.40 119,250.71 10.10 

Nevertheless, transmission cost does not 
necessarily increase linearly.  Transmission energy of 
the 100-sensor case is about 13.7 times more than that 
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of the 10-sensor case. This is due to higher traffic 
which in turns increases the latency and energy. 
Similarly, the transmission cost at the server is over 
16 times more expensive. Since the server transmits 
larger data size than the sensors, this causes heavier 
transmission traffic and results in much higher energy 
consumption. With the results shown here we make a 
conjecture that the number of sensors in each 
structure can lead to larger difference of energy 
consumption produced by mesh and star topologies. 

Overall, our experiments and results aim to show 
methodology to help the farm owner or engineer 
design a sustainable smart farming system based on 
estimated energy consumption of computing units.   

7 LIMITATION AND DISCUSSION 

This paper focuses on a method for quantifying the 
energy consumption of software artifacts in CPS and 
illustrates its use for deep learning software. The 
evaluation of the resulting models of the deep 
learning software are limited to theoretical models. 
Proper evaluation of the resulting models requires 
further empirical work on real-world systems.  This is 
beyond the scope of our work in this paper.  However, 
we show initial findings of our theoretical evaluation 
of our resulting models below.    

Table 3: Alexnet computation energy. 

Method CONV FC Total 

Ours 666M 58.6M 724M 

Sze et al., 2017 666M 58.6M 724M 

T. J. Yang et al., 2018 528M 58.6M 586M 

Specifically, we compared energy consumed by 
Alexnet and compared with published results in (Sze 
et al., 2017) as well as those obtained by an online 
analytical tool (T. J. Yang et al., 2018).  

In Table 3, assuming that the data movement of the 
computation in all the three methods are the same, the 
energy consumptions are compared based on the 
number of MACs. As shown in Table 3, our results 
match those reported by Sze et al. The estimates from 
Yang et al., however, are about 21% less than those 
of ours and Sze et al.'s. This preliminary result gives 
a theoretical comparison of our models with existing 
work. However, to complete the theoretical evaluation, 
we need to relax the assumption on data movement.  
To fully evaluate our approach, we need to 
experiment our method with different software 
computation in CPS and obtain energy models to be 
compared with actual energy obtained by power 

measuring tools in real systems. These are potentials 
of our future work.  

8 CONCLUSIONS 

This paper presents an analytical approach to 
quantifying energy consumption of software artifacts 
in CPSs. For clarity and due to the increasing use of 
deep learning in CPSs, the approach is described 
using the deep learning computation process. While 
the model is specific to deep learning in distributed 
networks, the proposed approach provides a building 
block concept that is general in that it can be applied 
to any software computation (e.g., other machine 
learning or data analysis algorithms) in the CPS other 
than deep learning. The paper also illustrates how the 
resulting energy model can be applied in practice 
including methodology in analyses to help the design 
and management of CPS. This contributes to a 
fundamental approach towards the development of 
green computing CPS, particularly in the aspects of 
planning of energy resources.  

Future work includes (1) applying the proposed 
approach to other real-world CPS software 
components, and (2) expanding the energy 
consumption modelling to manage CPS resources in 
multiple contexts (e.g., economy, energy, 
computation, quality of service, environment, and 
sustainability). 
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