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Abstract: In this paper we propose a novel genetic programming based iterative improvement approach for 
hardware/software cosynthesis of distributed embedded systems. Unlike other genetic programming solutions 
for distributed embedded systems in this work the system is specified using conditional task graph. In such 
a graph every node represents a single task. The edge represents amount of data needed to be transferred 
between connected tasks, however some of the edges can be conditional. The data is transferred using those 
edges only if condition is satisfied. Proposed methodology is based on genetic programming. Therefore the 
genotype is a system construction tree. In each nodes of the tree are system building options. The next 
generations are obtained using standard genetic operators: mutation, crossover, cloning and selection.  

1 INTRODUCTION 

Embedded systems can be found everywhere. For 
example: in modern cars (Srovnal, Machacek, Hercik, 
Slaby and Srovnal, 2010), drones (Yoon, Anwar, 
Rakshit and Raychowdhury 2019), autonomous 
robots (Vaidyanathan, Sharma and Trahan, 2021) and 
many others. Many of such systems have distributed 
architecture. 

De Micheli and Gupta (De Micheli and Gupta 
1997) separated embedded system design process on 
three phases: modelling, implementation and 
validation. Górski and Ogorzałek added another 
phase to this process: assignment of unexpected tasks 
(Górski and Ogorzałek 2016).  

 Co-synthesis process (Yen and Wolf 1995) 
generates the architecture of embedded system. The 
process include hardware allocation, task assignment 
and task scheduling. 

Co-synthesis methods can be divided on 
constructive and iterative improvement solutions. 
Constructive solutions (Srinivasan and Jha, 1995) 
build system step by step by making separate 
decisions for each task. They usually have low 
complexity. However such methods can easily stop in 
local minima of optimizing parameters. Allowing the 

algorithms to changed previous decisions (Dave, 
Lakshminarayana, and Jha, 1997) increases the 
complexity and the time of computation. Iterative 
improvement algorithms (Oh, Ha, 2002) build system 
by starting form suboptimal solution. Usually it is the 
fastest architecture. Next, by making local decisions, 
like allocating and deallocating resources or 
reassignment of tasks, they try to improve the quality 
of the system. Therefore those types of algorithms can 
escape from local minima but obtained results are still 
suboptimal. 

Genetic algorithms (Conner, Xie, Kandemir, Link 
and Dick, 2005) were also used in cosynthesis 
process. They can escape from local minima but very 
often provide only acceptable results in acceptable 
time. Moreover the results can strongly depend on the 
values of the parameters (Dick, and Jha, 1998). 
Genetic programming solutions build system by 
evolving the genotype which is a decision tree 
(Deniziak and Górski 2008, Górski and Ogorzałek 
2014a). The nodes of the tree contain system 
construction options. The probabilities of choosing 
the options were constant. Therefore the designer had 
to establish the value of the probability for every 
option. Genetic programming based adaptive 
methodologies (Górski and Ogorzałek 2014b, Górski 
and Ogorzałek 2017) can adapt to the environment 

Górski, A. and Ogorzałek, M.
Genetic Programming based Algorithm for HW/SW Cosynthesis of Distributed Embedded Systems Specified using Conditional Task Graph.
DOI: 10.5220/0011011700003118
In Proceedings of the 11th International Conference on Sensor Networks (SENSORNETS 2022), pages 239-243
ISBN: 978-989-758-551-7; ISSN: 2184-4380
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239



 

during its work by dynamically changing the 
probability of using each system designing option. 
However the time of computation in such methods 
was increasing. Good results were obtained by using 
a penalty functions for such algorithms (Górski and 
Ogorzałek 2021a Górski and Ogorzałek 2021b).  

One of the most popular way of representation of 
embedded systems is task graph. In such a graph all 
of the tasks need to be executed. However sometimes 
some of the tasks needed to be executed conditionally 
– only if the condition is satisfied. To solve those 
situations conditional task graph can be used to 
specify the behaviour of embedded systems (Eles, 
Kuchciński, Peng, Doboli, Pop, 1998).  

In this paper we propose a genetic programming 
based method for cosynthesis of distributed 
embedded systems specified using conditional task 
graph. In our method the phenotype is a decision tree 
consisted of system constructing options. Next 
populations are created using genetic operators: 
mutation, crossover, cloning and selection. 

2 SPECIFICATION OF 
EMBEDDED SYSTEM 

Embedded system can be consisted of two kinds of 
resources: Processing Elements (PEs) and 
Communication Links ((CLs). PEs are responsible 
for tasks execution. CLs provide communication 
between connected tasks. PEs can be divided into two 
groups: Programmable Processors (PPs) and 
Hardware Cores (HCs). PPs can execute more than 
one tasks thus they are cheaper, but slower. HCs are 
dedicated to execute one task thus they are faster but 
more expensive. Let’s assume that n is a number of 
tasks needed to be executed, m is number of PPs, and 
l is a number of CLs. The overall cost of designed 
system (Co) can be described by the formula below: 
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The algorithm searches for the system with lowest 
value of Co that does not exceed the time constrains.  

The behaviour of embedded system in our method 
is described using conditional task graph G={T, E}. 
In the nodes of the graph the are Tasks Ti. The edges 
Eij describe the amount of data that need to be sent 
between two connected tasks Ti and Tj. Except an 
usual edges in the graph there are conditional edges. 
The data flows through the conditional edges only if 
a condition is satisfied. Transmission time ti,j between 

two connected tasks Ti and Tj can be calculated as 
follows: 
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In the formula above di,j is an amount of data 
transmitted between the tasks, and b is a bandwidth 
of a CL which was used to connect the PEs. If tasks 
are executed by the same resource transmission time 
is equal to 0. 

The figure 1 presents an example of a conditional 
task graph.  
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Figure 1: Example of conditional task graph. 

As it is presented on figure 1 the system can 
execute 10 tasks: T0, T1, T2, T3, T4, T5, T6, T7, T8, 
T9. The edges contain amounts of data transmitted 
between tasks. For example the amount of data 
transmitted between tasks T4  and T9 is equal to 5, 
meanwhile amount of data transmitted between T3 
and T7 is equal to 18. In the graph there are two 
conditional edges: before T4 and T5. In the example 
the condition of edge before T4 is equal to true and 
the condition of edge before T5 is equal to false. That 
means the task T5 will not be executed in the 
example.  

Table 1 includes example of a database for the 
system described by the graph from figure 1. It 
contains the values of time (t) and cost (c) of 
execution of each task on every PE, and the costs of 
connecting PEs to CLs. 
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Table 1: Example of resource database. 

Task 
PP1 

C=280 
PP2 

C=350 
HC1 HC2 

t c t c t c t c 
T0 60 6 50 5 10 250 7 350 
T1 56 5 44 5 8 150 6 165 
T2 100 2 90 1 23 155 15 190 
T3 43 8 40 6 12 98 2 160 
T4 23 12 21 10 5 86 1 110 
T5 120 3 100 1 15 100 11 180 
T6 49 10 39 7 1 123 6 154 
T7 38 15 30 14 5 106 4 176 
T8 133 2 110 2 12 180 10 240 
T9 34 21 42 19 4 205 3 250 

CL1, 
b=8 

c=3 c=6 c=42 

CL2, 
b=9 

c=5 c=8 c=56 

The target system can be consisted of four types 
of PEs: two types of PPs (PP1 and PP2), and two 
kinds of HCs (HC1 and HC2). The cost of PP1  is 
equal to 280. The cost of PP2 is equal to 350. The 
processors can be connected using two kinds of CLs: 
CL1 and CL2. The bandwidth of CL1 is equal to 8. 
The bandwidth of CL2 is equal to 9. The cost of 
connecting HCs to CL1 is equal to 42, to CL2 is equal 
to 56. Cost of connecting PP1 and PP2 to CL1 is equal 
to 3 and 6. The cost of connection PP1 and PP2 to 
CL2 is equal to 5 and 8.  

3 THE ALGORITHM 

The approach we presented in this paper is 
a constructive algorithm based on genetic 
programming. Therefore every genotype of each 
individual is a tree. Because of constructive nature of 
the algorithm, structure of the genotype must be the 
same as structure of conditional task graph. The first 
node is an embryo. It contains the random 
implementation of the first task. Every next node of 
the tree contains system construction option for single 
task. The options are given in table 2. The table 
contains options for PEs and CLs. For each option 
there is given a probability of being chosen. The 
values of probability are different for each option. For 
greedy options (the cheapest and the fastest 
implementation) the value of probability is the 
lowest. For another options the value is bigger. The 
values of probability is not modified during the work 
of the algorithm.  

Table 2: Options for building system. 

Step Option Probability
PE a. The fastest implementation  0,1 

b. The cheapest implementation  0,1 
c. The same as task’s  

predecessor  0,2 

d. The rarest used PP 0,2 
e. min (t*c) 0,2 
f. Idle for the longest time 0,2 

CL  a. The cheapest CL 0,3 
b. The fastest CL 0,3 
c. The rarest used 0,4 

Task 
scheduling list scheduling 

In the first generation П individuals are created. П 
is described by the following formula: 

e*n* = αΠ  (3)

where n is a number of tasks in conditional task graph 
and α is a parameter which allows the designer to 
control the size of populations.  

If any PP executes more than one task then those 
tasks need to be scheduled. We decided to use list 
scheduling to establish the order of tasks’ execution. 
New individuals are created by cloning (Φ), crossover 
(Ψ) and mutation (Ω) operators. The number of 
generated individuals are described below by the 
following formulas: 
 Φ = β*П  
 Ψ = γ*П 
 Ω = δ*П 

In every generation there is constant number of 
individuals. To make it sure the following condition 
must be satisfied: 

β + γ + δ = 1 (4)

To select individuals for each genetic operators 
we use rank selection. After each population all of the 
individuals are ranked by cost. The selection operator 
selects appropriate number of genotypes for each 
operator from the rank list but with different 
probability (P). The probability is depended on 
a position of individuals (r) in the rank list. It is 
described by the following formula below: 

Π
−Π= rP  (5)

As it can be observed the genotypes from the top 
of the list have the biggest valued of the probability. 

Genetic Programming based Algorithm for HW/SW Cosynthesis of Distributed Embedded Systems Specified using Conditional Task Graph

241



 

The worst individuals have the lowest value of 
probability but not equal to 0. 

Crossover chooses Ψ individuals using selection 
operator. The individuals are randomly connected in 
pairs. Than the crossing point needs to be chosen. The 
crossing point must be the same for both individuals 
in each pair. Next subtrees are copied between chosen 
solutions to create two new individuals for each pair. 

Mutation selects Ω genotypes using selection 
operator. Then for each solution one node is chosen 
randomly. Mutation substitutes the option in the node 
on another using options included in table 2. 

Cloning copies Φ individuals from current 
population to the next one. To not to lose the best 
individual we assume that the best one (the first in the 
rank list) is always copied to the next population. 

If in next ε populations better solution is not 
found, the algorithm will stop. All of the parameters: 
α, β, γ, δ and ε are given by the designer.  

4 FIRST RESULTS 

To check the efficiency of presented approach we 
made some experiments using randomly generated 
graphs with 6, 8 and 10 nodes. The results were 
compared with results obtained by greedy time 
algorithm. They are presented in table 3 below. The 
parameters were set as follows: α=100, β=0,2, γ=0,7, 
δ=0,1, ε=5. 

Table 3: Results of the experiments. 

graph GPC greedy 

6 
Tmax= 1200  

t c gen t c 

772 783 5 547 1425 

8 
Tmax= 120 

119 1566 5 85 1592 

10 
Tmax= 190 

174 619 7 184 1815 

In the table 3 there are values of times (t) and costs 
(c) of generated systems. For an algorithm presented 
in this paper it is also given a number of generation in 
which the result was obtained. The time constrains 
were as follows: for graph with 6 nodes – 1200, for 
graph with 8 nodes – 120, and for graph with 10 nodes 
– 190. As it can be observed for every graph better 
results were generated by the algorithm presented in 
this paper. Costs of the system described by graphs 
with 6, 8 and 10 nodes were as follows: 783, 1566, 
619 for algorithm GPC and 1425, 1592 and 1815 for 
greedy solution.  

5 CONCLUSIONS AND FUTURE 
WORK 

In this work a novel GP-based algorithm for 
cosynthesis of embedded systems specified by 
conditional task graph was presented. Unlike other 
GP-based algorithms for HW/SW cosynthesis in this 
paper we investigate the situation when in task graph 
exist some conditional edges. 

The results presented in this paper are first 
obtained results by described method. To establish 
the quality of the results well they need to be 
compared with other known algorithms for HW/SW 
cosynthesis of distributed embedded systems 
specified by conditional task graphs. It is also 
important to compare the algorithms using bigger 
graphs. 

In the future we plan to modify the algorithm by 
using another system construction options or another 
genetic operators. We also plan to modify the 
probability of choose of each options. Especially we 
would like to provide a version of the algorithm 
which will be able to change the probability 
dynamically during the work of the algorithm. We 
would like to develop an iterative improvement GP-
based solution for cosynthesis of embedded systems 
specified by conditional task graph too. It is also 
important to check the influence of penalty function 
for described algorithm on a quality of the results. 
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