
Exploring Classification in Open and Closed Eyes EEG Data for 
People with Cognitive Disorders 

Ioanna Chouvarda1 a, Lampros Mpaltadoros1 b, Ioanna Boutziona1, George Nikolaos Tsakonas1, 
Magda Tsolaki2 c and Konstantinos Diamantaras3 d 

1Lab of Computing Medical Informatics and Biomedical Imaging Technologies, School of Medicine, 
Aristotle University of Thessaloniki, Greece  

2Greek Alzheimer Association, Thessaloniki, Macedonia, Greece  
3Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece  

Keywords: Alzheimer’s Disease, Mild Cognitive Impairment, EEG, Signal Processing, Machine Learning. 

Abstract: Cognitive disorders, including Alzheimer’s Disease (AD), are health issues concerning all society. The 
evolution of technology and Artificial Intelligence (AI)/ Machine Learning (ML) in the health domain 
promises an earlier and more accurate diagnosis for Alzheimer’s disease and Dementia. In this study, we 
examine Healthy patients and patients with AD and Mild Cognitive Impairment (MCI), often a prior step of 
AD. With the use of EEG, we collect data from their brain activity. After a basic processing step, kernel PCA 
is applied as a dimensionality reduction method using segments of the multichannel signal, and the 
transformation output is employed as input for the predictive model. Machine learning functions are used to 
classify data correctly into Healthy, AD, MCI classes, and a postprocessing step allows for classification at 
the patient level. The results show that the algorithm can predict with an accuracy of 90 percent and more in 
total, AD or MCI patients vs. Healthy patients.  

1 INTRODUCTION 

The aging population is increasing at an alarming 
rate. The prevalence of diseases more frequent in 
older adults like Dementia is therefore increasing. 
Because of the heterogeneity of clinical presentation 
and complexity of disease neuropathology, dementia 
classification remains controversial (Raz et al., 2016).  

Current research also focused on investigating 
patients with mild cognitive impairment that will 
evolve to Alzheimer’s disease (Dallora et al., 2017). 
An early characterisation of MCI, especially 
progressing MCI, may help timely interventions and 
slow disease progression. 

There are many studies concerning Dementia and 
AD. AD is the most common type of Dementia. The 
difference between Dementia and AD is that AD has 
a higher severity of EEG abnormalities (Kulkarni & 
Bairagi, 2014). MCI on the other hand, is also 
characterized from memory loss but is an early stage 
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of Dementia and AD with no apparent symptoms. 
Some MCI patients may return to the normal stage, 
but a small percentage of them proceed to AD 
(Amezquita-Sanchez et al., 2019). 

Numerous approaches have been proposed 
towards the classification of dementia patients, based 
on EEG, MRI images, biomarkers, daily life tests 
(Buegler M, 2020). With respect to EEG for AD and 
MCI characterisation, either evoked potentials, or rest 
EEG, can be of use.  

EEG is a medical modality used for brain 
disorders, including AD and Dementia recognition. In 
most Dementia types, slow brain activity is common, 
so EEG is used for diagnostic evaluation. EEG signals 
are categorized based on the frequency (delta, theta, 
alpha, beta and gamma) from 0.1 Hz to almost 100 
Hz (Kumar & Bhuvaneswari, 2012). There are many 
pieces of research concerning the detection of 
Dementia, AD, and MCI. Regarding rest EEG 
analysis, several approaches include feature 
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extraction, in terms of spectral, wavelet, entropy 
features in specific channels, or network analysis and 
connectivity features among channels, combined with 
machine learning for classification. Newer studies 
incorporate deep learning approaches.  

In the research on early stages of AD, some 
researchers used Deep Neural Networks (DNN) for 
classification with Relative Power (RP) to re-
combine features from the system’s learning method, 
which improved diagnosis results compared to 
another NN, which contained RP features as domain 
knowledge (Kim & Kim, 2018). In newer studies, 
though, Multiple Signal Classification and Empirical 
Wavelet Transform (MUSIC-EWT) was used to 
reconstruct signals into proper EEG frequencies, 
analyze them with non-linear indices to discriminate 
AD from MCI patients, evaluate features with 
ANOVA for feature selection and use Epoch Neural 
Network (EPNN) for classification (Amezquita-
Sanchez et al., 2019). Usually, preprocessing filters 
are applied to EEG signals, while Independent 
Component Analysis (ICA) or Blind Source 
Separation (BSS) are considered for signal 
improvement, Fast Fourier Transform (FFT) or 
Wavelet Transform (WT) for feature extraction and 
Linear Discriminant Analysis (LDA) or Support 
Vector Machine (SVM) for the classification. In 
addition to FFT for feature extraction, Continuous 
Wavelet Transform (CWT) can also be applied, and 
for data classification, K-Nearest Neighbor (KNN) 
has been used successfully (Durongbhan et al., 2019). 

The current study aims to use the information 
hidden in all EEG channels without selecting the most 
informative ones. It is explored whether open or 
closed eyes recordings, are more informative. Also, 
to identify the most informative frequency zones, 
high-pass and low-pass filtered versions of the signal 
are used. This study explores the value of a 
classification method based on Kernel PCA and 
Random Forest classifier in classifying Healthy, MCI 
and AD patients on the preprocessed EEG data, in the 
above-mentioned schemes. Classification follows 
two steps, classification of EEG segments as a first 
step, and classification of patients via segment 
majority voting as a second step. 

2 METHODS 

As a starting point, the EEG data stored in European 
Data Format (EDF), which included both open and 
closed eyes parts, was serialized via Python object 
serialization (pickle) for more efficient data handling 
of the open-eye closed-eye segments separately. 

During the preprocessing of the data, the data were 
segmented into multiple parts for every patient and 
for every status (open eyes, closed eyes). After this 
process, major artifacts were rejected via standard 
deviation thresholding, and two types of filters were 
used (delta-theta, and alpha-beta bands, respectively). 

ML algorithms were used to study the accuracy of 
different classifiers when classifying patients as MCI 
patients, AD patients, or Healthy, with different 
schemes, e.g., eyes closed and low-pass filtered. The 
algorithms used were based on the Random Forest 
(RF) Classifier as a first step classifying patient 
segments and a majority voting scheme as a second 
step. 

These methodological steps are described in more 
detail in the following subsections.  

2.1 EEG Data 

In this paper EEG data were collected through a set 
of 21 electrodes following the 10-20 international 
reference system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, 
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2) at 
500Hz. 

For EEG signal collection an Nihon274Kohden 
Neurofax J921A system was used. Input impedance 
was set to Z<10kω, and the signals were digitized 
with the Neurofax EEG-12200 Ver. 01-93, and a 
sampling frequency of 500Hz. The protocol used for 
data acquisition of the EEG signals refers to the 
resting stage that lasts for 10 minutes, from which 5 
minutes the patient’s eyes are closed, and the other 5 
are opened, while being seated in an upright position. 

 For the experiment, we used 27 AD, 22 Healthy 
και 24 MCI. The data were provided from the Greek 
Association of Alzheimer’s Disease and Related 
Disorders, with ethical approval for use, and based on 
the patient data privacy legislation, the data were 
anonymized. 

The EEG data collected are saved in raw EEG 
EDF files. Every EDF consists of 19 EEG signal 
channels. Each file contains annotations about signal 
phases such as open eyes, calibration, closed eyes, 
A1+A2 electrode ON. Those annotations were used 
to distinguish segments into open and closed eyes and 
remove irrelevant ones. Then the data were processed 
and stored in pickle format for storage capacity 
reasons.  

Following, a preprocessing pipeline is used, 
including segmentation, filtering and transformation. 
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2.2 Preprocessing 

Data preprocessing includes filtering and 
segmentation of data before data analysis. Filtering is 
used to refine data and remove noise and artifacts.  

Segmentation is a technique used in this case with 
the prospect of separating data depending on the 
annotations of EEG signals for the machine learning 
algorithm, so that there is sufficient data to be 
properly trained. The data transformation via KPCA 
is applied for dimensionality reduction to provide the 
classifier with a reasonable number of features 
representing the information of the multichannel EEG 
segments. 

2.2.1 Segmentation 

In this study, the recordings were segmented into 
smaller chunks, allowing us to train the machine 
learning algorithm with smaller data chunks and 
facilitating training as our dataset was quite limited. 
All open-eye and closed-eye recordings were 
segmented into nonoverlapping 5 second segments. 

To avoid overfitting, the maximum number of 
segments per patient file was set to 45, taking into 
account that the number of good quality segments per 
subject varied. The segmentation into chunks also 
facilitated the dimensionality reduction procedure 
(see section 2.3), as it was applied in flattened 
segments of length N=channels x segment_size.     

2.2.2 Signal Filtering 

The data segments with a much higher standard 
deviation than an adapted average threshold were 
automatically removed from the sample to remove 
possibly significant artifacts.  

In addition, in this research, we used two types of 
filters. The first was a low-band Finite Impulse 
Response (FIR) filter to keep delta and theta signals, 
and the second filter was a high-band FIR filter for 
alpha and beta signals. Those FIR filters were used to 
create two different data schemes. In addition, 
although channels Fp1 and Fp2 are informative, they 
were removed to avoid potential artifacts, a necessary 
step since segments were not manually inspected. 
Thus, a scheme with 17 channels was employed. An 
alternative scheme with a reduced number of 
channels (10 channels in the central-temporal zone) 
was also considered. 

2.3 Dimensionality Reduction 

In search of a method that will use the flattened 
segments of length N=channels x segment_size as 

sample inputs, and produce a much-reduced number 
of features to be used for the classification, the typical 
dimensionality reduction methods, PCA and t-SNE 
(van der Maaten and Hinton; 2008) were initially 
considered, with moderate results.  

Kernel PCA (KPCA), an extension of PCA using 
kernel methods, was adopted as a much better choice. 
KPCA is used for multivariate datasets and performs 
better in non-linear data. With kernel methods, KPCA 
can protrude data to a higher dimension where there 
are linearly separable (Wang, 2012). We chose 
heuristically 160 components and radial basis 
function kernel (rbf) for KPCA, with gamma 
parameter to be by default 1/number of features. 
These 160 KPCA components, resulting from the 
transformation of each multichannel segment, are 
used as classification inputs.  

3 CLASSIFICATION 

3.1 Segment Classification 

The classification of each multichannel segment, 
employing the KPCA components, employs Random 
Forest (RF). RF is an ensemble method based on 
Decision Trees. RF aggregates the outcome of many 
individual decision trees operating as one.  

In the RF classifier algorithm, we applied 80 
decision trees, 5 jobs to run in parallel, balanced class 
weight, and random state value=1, which is the 
parameter controlling the randomness of samples 
when building the trees. An SVM was considered 
alternatively (Awad & Khanna, 2015), but potentially 
due to the fact that the data were already transformed 
via an RBF kernel, did not add better results and was 
not further pursued, 

The number of segments used for the 
classification were 871 closed-eyes and 891 open 
eyes for Healthy subjects, 2008 closed and 2096 open 
eyes for MCI, 1034 closed and 1034 closed, and 1197 
open eyes for AD. 

3.2 Subject Classification 

In order to move from segment classification to 
patient classification, a hard voting scheme was 
applied as a second step. The classification of each 
patient’s segment contributes a vote to the 
classification of a patient. The performance recall 
TP/(TP+FN) was calculated among the classified 
segments per patient, and a threshold >=0.6 is applied 
to denote the majority and suggest whether the patient 
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is correctly classified based on the majority of 
segments or not. 

For instance, if at least 60% of a patient’s 
segments were classified as AD, the patient was 
categorized as an AD patient. 

3.3 Training and Testing 

We chose to run three different binary classifiers for 
our prediction, one for AD vs. MCI, one for Healthy 
vs. AD, and one for MCI vs. AD. For completeness, 
a 3-class classifier was also presented.  

A cross-validation strategy was followed. The 
classifiers were trained 20 times, leaving in each 
iteration a set of 2 patients out (one from each class) 
for testing, in a leave-one-subject-out scheme. For 
example, we run the classifier for Healthy and MCI 
patients, and for every run, the classifier left out all 
the segments of a different patient from the Healthy 
and MCI class. After each run, the RF classifier 
returned the training and test set accuracy and a 
confusion matrix, and the two-step classification 
procedure was applied for the two subjects to classify 
the and Healthy or MCI. The average performance 
metrics per patient were used for comparison.    

4 RESULTS 

This section presents the results for the binary 
classifiers for AD vs MCI, Healthy vs AD and MCI 
vs Healthy patients for open and closed eyes with low 
and high band filter, as well as the three-class model 
performance 

In order to illustrate the transition from the 
segment-wise classification to the patient-based 
classification, a histogram of the classification recall 
per patient is provided (Figure 1). The recall per 
patient (TP/TP+FN) shows the percentage of TP vs 
FN of the classified segments per patient, and in the 
hard voting scheme selected, a recall threshold >=0.6 
as selected to suggest a correct patient classification. 
As seen in the figures, most of the segments are well 
above the 0.6 threshold in all cases. Only in Figure 
1a, in the Healthy class, one can see 2 out of the 20 
cases where recall is between 0-5 and 0.6, in which 
cases we do not conclude with a correct subject 
classification. 

Table 1 presents the summarised performance 
metrics in the testing set regarding the three binary 
classification models, with closed eyes and low-pass 
filter. In each run, all segments of the 1st class belong 
to a single subject of this class that is left out for 
testing, and the same stands for the 2nd class. The  

 
(a) 

 
(b) 

 
(c) 

Figure 1: Distribution of classification recall per patient. a) 
Healthy-MCI closed eyes, low band, b) MCI-AD closed 
eyes low band, c) Healthy-AD closed eyes low band. 

precision and recall metrics are depicted as median 
and (1st -3rd quantile), corresponding to the 
percentages of correctly and falsely classified 
segments per subject. The correctly classified 
subjects per class are calculated based on recall >0.6 
in each run.  
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Table 1: Patient Classification performance metrics for the 
three binary classification models, using RF classifier and 
the majority voting per patient. H stands for Healthy, M for 
MCI, A for AD. #C stands for the correctly classified 
subjects (correct segments > 60%). 

H/
M 

 Precision Recall #C 

 H 0.97 
(0.87–1) 

0.84 
(0.75-0.93) 

18 /20 

 M 0.85 
(0.74-0.95) 

0.97 
(0.86–1) 

19 /20 

H/
A 

    

 H 0.91 
(0.85–1) 

0.9 
(0.81-0.97) 

20/20 

 A 0.91 
(0.84-0.97) 

0.93 
(0.86–1) 

19 /20 

M
/A 

    

 M 0.94 
(0.88-0.97) 

1  
(1-1) 

24 /24 

 A 1  
(1–1) 

0.93 
(0.86-0.97) 

22 /24 

Table 2: Classification cross-validation results measured in 
a range between 0 and 1 in terms of ratio of correctly 
classified patients for the AD vs MCI, Health vs AD and 
MCI vs Healthy scenario, with all channels. 

AD vs MCI Closed Eyes Open Eyes
 AD MCI AD MCI

High Band  0.42 0.46 0.22 0.52
Low Band  0.92 1.00 0.93 1.00

Healthy vs AD Closed Eyes Open Eyes
 Health AD Health AD

High Band  0.20 0.45 0.00 0.57
Low Band  1.00 0.95 0.90 1.00

MCI vs Healthy Closed Eyes Open Eyes
 MCI Health MCI Health

High Band  0.70 0.00 0.76 0.00
Low Band  0.95 0.90 0.86 0.76 

Table 3: Ratio of patients classified correctly in the three 
binary classification scenarios, with selected channels. 

AD vs MCI Closed Eyes Open Eyes
 AD MCI AD MCI

High Band  0.04 0.58 0.07 0.52
Low Band  0.29 0.96 0.44 1.00

Healthy vs AD Closed Eyes Open Eyes
 Health AD Health AD

High Band  0.50 0.40 0.00 0.48
Low Band  0.65 0.80 0.71 0.95 

MCI vs Healthy Closed Eyes Open Eyes
 MCI Health MCI Health

High Band  0.65 0.15 0.76 0.00
Low Band  0.90 0.00 1.00 0.00

More detailed results are presented in Table 2 and 
Table 3, as regards the different schemes considered. 
More specifically, these results show percentages of 
correctly classified subjects per class and correspond 
to the three binary classification models (based on the 
2-stage classifier) and the schemes with 17 vs. 10 
channels, open vs closed eyes, and high vs low-
frequency bands. 

 

Figure 2: Classification results (correctly patients classified 
ratio) with low / high band filter, with open / closed eyes 
and all channels for top) AD vs MCI patients. mid) Healthy 
vs AD patients, bottom) MCI vs Healthy patients. 

The case with ten selected channels (in the 
central-temporal zone) resulted in inferior results, 
suggesting that the combined information from all 
channels was useful. The case of Healthy vs. AD Low 
Band Open Eyes and closed eyes is the only open-eye 
case where classification results are quite high. 
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Figure 3: Classification results (correctly patients classified 
ratio) with low/high band filter, with open/closed eyes and 
all channels for top) AD vs. MCI patients. mid) Healthy vs. 
AD patients, bottom) MCI vs. Healthy patients. 

As illustrated in Figure 2, the scheme with the low 
band filter and closed eyes works better for every case 
in our dataset. In Healthy vs. AD and MCI vs. Healthy 
examples, the algorithm returned in total the optimal 
accuracy using the low band filter.  Figure 3 presents 
the correctly classified patients, when selected 
channels are used, and performance is overall lower.  

Overall, when considering together the results of 
low-frequency closed and open eyes, only one AD 
and one healthy subject are wrongly classified in both 
open and closed eye cases, while one healthy subject 
is wrongly classified vs. AD and vs. MCI in open 
eyes. All other failures are basically in open eyes, 
which is probably a more challenging case and lies in 
the inconclusive area, having around 50% of patients’ 
segments in each class. The combination of both open 
and closed eyes in a classification scheme might lead 
to interesting results, and even manage to classify into 
more subgroups.  

Table 4: Summarised performance metrics for the 3-class 
classification model. Precision and recall are calculated in 
terms of percentages of correctly and falsely classified 
segments per subject. Values correspond to median and 1st-
3d quartiles. The correctly classified patients are depicted 
in the #C column. 

 Precision Recall #C 
Healthy 0.96 

0.86-1.0 
0.85  

0.72-0.96 
16/20 

MCI 0.75 
0.69-0.87 

0.95-
0.84-1.00 

17/20 

AD 1.00  
0.99-1.00 

0.95  
0.90-0.98 

19/20 

In the case of the three-class classification 
problem, Table 4 presents similar performance 
metrics for the 3-class model in the testing set, 
including segments from two subjects in each run. 
Metrics include Median (1st -3rd quartile) for precision 
and recall. Based on recall >0.6 in each run, the last 
column shows the correctly classified subjects per 
class. Results are slightly poorer in this case than the 
binary models as presented in Table 1, especially 
regarding the Healthy class. The 3-class model may 
require more data for training. 

Finally, an important issue that would need to be 
addressed is that of exploring feature importance. 
KPCA is not directly leading to insights about the 
features that lead to best classification, and the 
mechanisms behind that, and more sophisticated 
methods would be required to illustrate results in 
terms of interpretability.  

Nevertheless, Figure 4 provides feature 
importance, as provided by the RF model, based on 
the Gini importance, to illustrate the contribution of 
multiple components of the KPCA transform, and 
how these differ per classification problem. This 
could potentially help in optimising the features 
eventually selected in each classification model. 

4 CONCLUSIONS 

The presented method is based on KPCA for 
dimensionality reduction of multichannel segments. 
This method has been used before with EEG analysis 
(Ye et al, 2018). Considering the classification 
results, low band filter returns better accuracy for 
both training and test set. Furthermore, the algorithm 
works best with AD or MCI vs Healthy patients rather 
than AD vs MCI. Compared to the results performed 
in the comparative study of (Lehmann et al, 2007), a 
rather higher accuracy is achieved. This is probably 
because MCI and AD signals share some similarities,  
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(a) 

 

(b) 

 

(c) 

Figure 4: Feature importance from the Random Forest 
model classification results with low band filter, closed 
eyes and all channels, for a) Healthy-MCI model, b) for 
MCI-AD model, and c) Healthy-AD model. Y-axis 
corresponds to 1-160 KPCA components used as features.  

and the algorithm faces difficulty to correctly identify 
patient data as one of those classes.  

While the low frequency closed eyes scheme 
seems to produce a better result than open eyes, it is a 
matter of further research whether information from 
both states would result in more stable and safe 

results. Certainly, a larger training dataset and a more 
comprehensive evaluation would improve the 
credibility of the results. A more thorough finetuning 
of the various parameters would also be of value and 
would potentially lead to a more optimized outcome.  

Furthermore, adding an explainability layer 
would help better understand and trust the approach. 
Finally, it would be relevant to address the problem 
in a continuous space rather than a classification 
problem and recognize the problem’s complexity 
addressing the different subtypes of the MCI/AD 
conditions.  
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