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Abstract: The number of reported malware and their average identification time increases each year, thus increasing
the mitigation cost. Static analysis techniques cannot reliably detect polymorphic and metamorphic mal-
ware, while dynamic analysis is more effective in detecting advanced malware, especially when the analysis
is performed using machine-learning techniques. This paper presents a novel approach for the detection of
ransomware, a particular type of malware. The approach uses word embeddings to represent system call fea-
tures and deep neural networks such as Convolutional Neural Networks (CNN) and Long Short-Term Memory
Networks (LSTM). The evaluation, performed on two datasets, shows that the described approach achieves a
detection rate of over 99% for ransomware samples.

1 INTRODUCTION

The AV-TEST Institute1 registered 1139 million ma-
licious programs in 2020. The number of reported
malware increases each year. According to IBM2,
the average time to identify a breach was 206 days
in 2019—a 5% increase over the identification time
in 2018. The costs associated with a breach increase
with its identification time. Therefore, better identifi-
cation techniques are required to shorten the identifi-
cation time and lower the associated costs.

Malicious programs vary by their goal. Ran-
somware is a type of malicious software (malware),
which when deployed on the computer encrypts or
locks a computer or files, requesting that a ransom
be paid to the author of the ransomware for the suc-
cessful decryption and release of the user’s data and
system. Ransomware aims to compromise the avail-
ability, confidentiality, and integrity of the victim’s
data (Sharma and Sahay, 2016; Egunjobi et al., 2019).

The majority of techniques for detecting and clas-
sifying malware involve the use of static or dynamic
features (Islam et al., 2013). The most basic ap-
proach for malware detection is checking program
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samples against a predefined repository of patterns.
Pattern comparison is usually performed as an ex-
act match of executable file signatures generated, for
instance, by the SHA-256 cryptographic hash func-
tion (Gilbert and Handschuh, 2003). In other cases,
a pattern is described by a regular expression over
instructions (Idika and Mathur, 2007). For this ap-
proach, patterns should be sufficiently general to de-
scribe slight malware variations but not too broad to
capture benign programs.

Unfortunately, polymorphic and metamorphic
malware mutate themselves upon each replication,
thus allowing them to achieve a high degree of vari-
ance. These types of malware evade static analysis
by obfuscating their semantics and altering their syn-
tactic structure on each replication. However, mal-
ware’s behavior remains intact between replications.
This is the main motivation for using dynamic analy-
sis for malware detection. Unlike static analysis, dy-
namic analysis is immune to evasions based on obfus-
cation, making it the preferred choice for analyzing
unknown, zero-day malware.

The goal of behavioral analysis is to classify a pro-
gram as malicious based on its behavior. Conceptu-
ally, the behavioral analysis system consists of two
components: a process or a system monitor and an
analyzer. The monitoring component can be imple-
mented as a user-mode agent, a kernel module, a hy-
pervisor, an emulator, or an external device. More
privileged and stealthy monitoring components de-
liver more reliable descriptions of the system’s behav-
ior.
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While the analyzer can be based on deterministic
policies with certain guarantees regarding the clas-
sification outcomes, writing such policies requires a
deep understanding of the overall system operation
and the security risks. Therefore, machine learning
techniques become more favorable for securing sys-
tems from known and unknown malware.

In this paper, we propose a method for the clas-
sification of system call sequences that utilizes Deep
Neural Networks (DNNs). We divide all system calls
made by a process into relatively short sequences, and
then classify those sequences as belonging to either
malicious (belonging to ransomware) or benign pro-
cesses.

The main contribution of this paper is three-fold:
1. two new datasets for training machine learn-

ing models for malware detection called REY
(RnsomwarE sYstem calls) and CryptoRansom.

2. a novel representation of string Win32 API
attributes of a system call with word vec-
tors (Mikolov et al., 2013) (also called word em-
beddings) that express how a word is used in the
text and what it means; they are learned by con-
sidering the context in which the words appear;

3. a novel approach for Ransomware detection
that uses Convolutional Neural Networks
(CNN) (Kim, 2014), Long Short-Term Mem-
ory (LSTM) neural networks (Hochreiter and
Schmidhuber, 1997) and their combinations. We
compare our approach with baseline machine
learning methods and state-of-the-art solutions
and show that our method achieves both higher
accuracy (the ratio of correctly classified samples)
and higher sensitivity (the ratio of correctly clas-
sified samples for the positive, i.e., ransomware,
class of samples) than the baselines.
This paper is organized as follows. Section 2 de-

scribes related work; Section 3 describes dataset con-
struction, representation of data features, and neural
models we employ for data classification. Section 4
is dedicated to experimental evaluation, and Section 5
concludes our work.

2 BACKGROUND AND RELATED
WORK

Malware analysis systems can be classified as static
or dynamic. Static analysis systems (Iwamoto and
Wasaki, 2012; Fereidooni et al., 2016) extract infor-
mation from the malicious file itself without execut-
ing it. This type of analysis is fast and secure be-
cause the malicious behavior is never invoked. Un-

fortunately, modern malware employs evasion tech-
niques whose purpose is to conceal its malicious in-
tent. In particular, polymorphism and metamorphism
are widely used in modern malware (You and Yim,
2010), thus imposing limitations on the applicability
of static analysis (Moser et al., 2007).

The dynamic analysis method (Or-Meir et al.,
2019) attempts to solve the difficulties imposed by
polymorphic and metamorphic malware. This method
concentrates on the behavior of the malware rather
than on its structure. The dynamic analysis system
executes the potentially malicious program, observes
its actions, and classifies them as malicious or benign.

Dynamic analysis systems vary by multiple as-
pects: some systems perform the analysis online dur-
ing normal computer operation and notify the system
administrator about any potential detections (Leon
et al., 2021). Other dynamic analysis systems perform
the analysis in an isolated environment (Jamalpur
et al., 2018).

Another aspect by which dynamic analysis sys-
tems vary is the set of observed actions. Some
systems acquire fine-grained information about mal-
ware’s execution, like calls to system functions (sys-
tem calls) (Jamalpur et al., 2018) or even private func-
tions of the malware itself (Dash et al., 2016). Other
systems collect general information, like CPU utiliza-
tion or values of performance counters (Demme et al.,
2013; Zhou et al., 2018; Bahador et al., 2014; Alam
et al., 2020).

Finally, dynamic analysis systems differ in the
analysis method of the acquired information. Some
systems determine whether the acquired behavior is
malicious or benign according to a set of pre-defined
rules of malicious behavior (Amit et al., 2021). Other
systems, and this work, use machine-learning tech-
niques for the classification of malicious behavior.

The machine-learning techniques can operate on
dynamic features (observed actions) (Or-Meir et al.,
2019), static features (e.g., executable files) (Iwamoto
and Wasaki, 2012), or a combination of the
two (Zhou, 2018). Multiple Machine Learning (ML)
designs have been used for malware detection and
classification. Extensive surveys of these works
can be found in (Sneha et al., 2020). Traditional
techniques include Random Forests (RF), Decision
Trees (DT), Support Vector Machines (SVM), k-
nearest neighbors algorithm (kNN), Logistic Regres-
sion (LR), Multi-Layered Perceptron (MCP), and so
on. Additionally, multiple techniques based on deep
neural networks (NN) have been utilized for ran-
somware detection. We mention the most prominent
papers in Table 1.

Our method belongs to the dynamic analysis cat-
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Table 1: ML methods and feature representations in works
malware detection and classification.

paper methods
(Islam et al., 2013) SVM, RF, DT
(Han et al., 2019) rule-based, tf-idf
(Rhode et al., 2019) NN, RF, SVM
(Zhang et al., 2019) DT, RF, tf-idf
(Khan et al., 2020) DNA sequences, feature selection
(Cusack et al., 2018) RF
(Alhawi et al., 2018) Bayes Network, MCP, RF, KNN, LR
(Scalas et al., 2019) RF
(Chen et al., 2019) TF-IDF, Linear Discriminant Analy-

sis, Extremely Randomized Trees
(Pal et al., 2016) RF
(Shaukat and Ribeiro, 2018) LR, SVM, NN, RF

Gradient Tree Boosting
(Egunjobi et al., 2019) Naive Bayes
(Vinayakumar et al., 2017) shallow and deep NN
(Rhode et al., 2018) RNN
(Homayoun et al., 2019) LSTM, CNN
(Agrawal et al., 2019) LSTM with attention
(Al-Hawawreh and Sitnikova, 2019) Convolutional Autoencoders (CAE),

Variational Autoencoders (VAE)
(Arabo et al., 2020) traditional ML and NN

egory as it uses information about system calls and
neural ML classifiers for malware detection. We aim
to use Win32 API attributes of system calls issued by
processes to determine whether a subsequence of pro-
cess system calls belongs to malicious ransomware.

3 PROPOSED METHOD

3.1 Dataset Construction

3.1.1 Data Collection

Our datasets consist of execution logs of benign pro-
grams and ransomware. Execution logs were col-
lected using Windows Internals Process Monitor (Mi-
crosoft Corporation, ) under Windows 7 SP1 run-
ning on a virtual machine. We chose this OS be-
cause it has been shown to have more vulnerabil-
ities related to ransomware in comparison to Win-
dows 10 OS (Zavarsky et al., 2016). The execution
strategy was different for benign and malicious sam-
ples. Benign logs were collected by running the PC-
Mark 8 benchmark (UL Benchmarks, ) until comple-
tion. Specifically, we executed the “Storage” and the
“ Work” tests provided by PCMark.

We have extracted a different number of system
calls for benign and ransomware samples. Our goal
was to obtain a balanced dataset with a comparable
number of system calls in both categories. Therefore,
we extracted a different number of system calls from
each sample to achieve this foal. We note that during
“malicious runs” the system calls of benign processes

were also recorded. However, these system calls were
excluded from the dataset.

We have recorded all Win32 API attributes that
appeared in the runs, but only a subset of them was
included in the datasets, as explained below. We in-
cluded the following attributes: (1) process identi-
fier, denoted by PID, which is a unique positive in-
teger number, (2) system call name, which stands for
an operation performed by the call, (3) return value,
a string attribute representing either that the operation
completed successfully or, if not, the error that oc-
curred during its execution, (4) duration in seconds,
computed from the start and end time of a process,
(5) system call arguments. The remaining attributes
were excluded from the dataset because they provide
either irrelevant (e.g., parent process identifier, image
path) or overly specific information (e.g., thread iden-
tifier, completion time) that cannot be used to train a
generalizable ML model. A final dataset, therefore,
contains a separate sequence of system calls for each
process. Each sequence is identified by the run num-
ber and the process identifier.

3.1.2 REY (RansomwarE sYstem Calls) Dataset

The REY dataset includes a single ransomware sam-
ple — the Jigsaw ransomware. In addition, it contains
30 benign programs that are distributed with the Win-
dows OS.

Two runs were made to build REY, as specified
below.

1. The first run with the ‘jigsaw’ malware running in
the background, that took 13 minutes. At that time
994,816 system calls were performed, 613,501
system calls of the malware. The system calls the
malware only, from 150,000th to 236,505th, mak-
ing it a total of 86,505 calls.

2. The second recording with only benign processes
running in the background lasted for 10 minutes.
30 different processes were running. For every
process, we added its first 5,000 system calls or
less (if a process performed less than 5,000 calls)
to the dataset.

The final size of the REY dataset is 173,010, with
86,505 malicious and 86,505 benign calls.

3.1.3 CryptoRansom Dataset

The CryptoRansom dataset contains recordings of
46 different benign processes and 12 different ran-
somware samples. The ransomware samples are a
subset of the VirusShare (Corvus Forensics, ) reposi-
tory, a publicly available repository of malware sam-
ples. Each sample of the VirusShare repository was
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submitted to VirusTotal (VirusTotal, ) for classifi-
cation by multiple antivirus vendors. If the classi-
fication string of at least 10 vendors contained the
substring ”ransom”, we included that sample in our
dataset. Additionally, we verified manually that these
processes indeed encrypt files.

Malicious samples (ransomware) were executed
for 15 minutes. After the execution period of each
sample, the virtual machines were reset to their orig-
inal state. The process that performed the highest
number of system calls during this 15 minutes-period
was considered malicious, and it was included in the
dataset. Moreover, because malicious processes man-
ifest their malicious behavior after they complete their
initialization process, we extract from the recorded
system call sequence the last 10,000 entries. We
recorded every one of the ransomware sample runs for
20 minutes, and included the last 10,000 system calls
from these runs into the dataset. To collect data for
benign processes, we performed the following three
runs.

1. 10 minute recording of processes running in the
background. There were 26 different processes,
and we collected the first 5,000 system calls for
every process. Overall, 36,664 system calls were
collected during this run.

2. PCMark8 benchmark complete Work tests (UL
Benchmarks, ). The Work tests are designed for
testing typical office notebooks and desktop PCs
that lack media capabilities and they contain the
following workloads: Web Browsing, Writing,
Video Chat, Spreadsheet.
There were 7 different processes (one for every
test), and we collected the first 5,000 system calls
(at most) for every process. Overall, 35,000 sys-
tem calls were collected during this run.

3. PCMark8 benchmark complete Storage tests that
contain the following workload traces – Adobe
Photoshop light, Adobe Photoshop heavy, Adobe
Illustrator, Adobe InDesign, Adobe After Ef-
fects, Microsoft Word, Microsoft Excel, Mi-
crosoft PowerPoint, World of Warcraft, Battlefield
3.
There were 10 different tests run on a single pro-
cess, and we collected the first 5,000 system calls
(at most), making it a total of 50,000 system calls.

As a result, the CryptoRansom dataset is balanced and
includes the data for 46 different benign processes and
12 different ransomware samples, with 121,664 sys-
tem calls of benign processes(50.34%) and 120,000
processes of ransomware processes (49.66%).

3.2 Data Representation

In this section, we describe the Win32 API attributes
of system calls that we have used in our neural models
and baselines, and representations we built for these
features.

3.2.1 Feature Selection

In general, attributes for Win32 API functions can be
divided into three categories by their domain - time at-
tributes, string attributes, and numeric attributes. We
collected all of the attributes produced by processes.
We did not use time attributes in our data model, but
used subsets of string and numeric attributes that do
not identify the process.

3.2.2 Feature Representation

All string attributes were first split to separate words
by using either delimiter (e.g., underscore, space, tab
as in ’END OF FILE’) or capital letters (as in ’Query-
BasicInformationFile’). Additionally, some shortcuts
were expanded into full words using hand-crafted
rules – for example, ’RegQueryKey’ was replaced
with ’Registry Query Key’. Finally, all strings rep-
resenting words were transformed into lower-case.

As a result, every string attribute a is associated
with a sequence of English words (wa

1, . . . ,w
a
n). For

every word wa
i of an attribute a we extracted its k-

dimensional word vector
−→
wa

i (see (Mikolov et al.,
2013)). We have used fastText vectors pre-trained on
English webcrawl and Wikipedia of length k = 300
(see (Grave et al., 2018)). The final representation
of an attribute a is an average of word vectors of its
words:

avec = avg(
−→
wa

1, . . . ,
−→
wa

n) (1)

All numeric attribute values were max-min nor-
malized and prefix zero-padded to vectors of length
300, namely

anorm = (0, . . . ,0,a/amax−amin), (2)

where a is the original numeric attribute value, and
amax and amin are the maximal and the minimal values
of this attribute in the dataset.

3.3 The Pipeline

The final pipeline of our approach includes the fol-
lowing steps: (1) data preprocessing, during which
the parameters are collected for a process, as de-
scribed in Section 3.2.1; (2) data representation where
all features are represented by numeric vectors as de-
scribed in Section 3.2.2; (3) randomly splitting the
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Table 2: Data summary.

dataset virus total virus benign majority
types syscalls syscalls syscalls (%)

REY 1 173,010 86,505 86,505 50
CryptoRansom 12 241,664 120,000 121,664 50.34

process data into training and test sets; (4) generation
of system call sequences for train and test set sepa-
rately; (5) training and evaluation of a neural model.
This approach is depicted in Figure 1.

3.4 Neural Classification Models

To represent a sequence of system calls of length W ,
we use the following neural models:

1. 2-dimensional CNN, where every system calls a
300-dimensional representing either a numeric or
a string attribute as described in Section 3.2.2.
A system call sequence of length W is then rep-
resented by Nfeatures× 300×W tensor SNfeatures ×
300×W , where Nfeatures = 57 is the number of
system calls features.
This model uses two convolutional layers with
kernel size 3 and ”relu” activation, followed by
three decreasing fully connected layers.

2. Many-to-one LSTM layer with the number of
neurons set to Nfeatures with sigmoid activation.

3. CNN-LSTM that combines the CNN and the
LSTM; it is built from a two-dimensional CNN
layer followed by a unidirectional LSTM layer.

For all the models loss function was defined to be
binary crossentropy, and Adam optimization algo-
rithm (Chang et al., 2018) was used.

4 EXPERIMENTS

4.1 Datasets

We evaluate our approach on two datasets – REY and
CryptoRansom – whose construction is described in
detail in Section 3.1. In all cases, the data were ran-
domly shuffled and split to the 80% training set/20%
test set. All the methods were trained on the training
set and evaluated on the test set; evaluation results are
reported below. A summary of dataset parameters is
given in Table 2, together with the majority vote.

4.2 Setup and Metrics

The tests were performed on a server with Tesla
K80(NVIDIA) GPU, Intel Xeon 2.3GHz CPU, 24
GB or RAM and 400GB SSD. Neural models were

implemented using Keras (Chollet et al., 2015) with
the TensorFlow backend (Abadi et al., 2015), and we
used sklearn (Pedregosa et al., 2011) implementations
of RF and SVM algorithms. We report binary classi-
fication accuracy (measured as the ratio of correctly
labeled samples to all samples), the runtime it too to
train and test each system, and sensitivity (the propor-
tion of true positives to all positives).

4.3 Evaluation Results and Analysis

We used RandomForest (Ho, 1995; Breiman, 2001)
(RF) and Support Vector Machine (SVM) (Cortes
and Vapnik, 1995), with linear and poly-kernel, as
baseline models. We have also used a dense Fully-
Connected Neural model (FCN) with 7 layers as a
neural baseline. The neural models we compared to
baselines are the CNN model, the LSTM model, and
the stacked CNN-LSTM model, all described in Sec-
tion 3.4. All neural models, including the baseline,
ran for 10 epochs with batch size 12.

Table 3 shows evaluations results for baselines on
both datasets. We report binary classification accu-
racy and sensitivity for the ’Yes’ class, e.g., the ratio
of correctly determined virus sequences to all virus
sequences in the data. SVM with poly kernel on the
CryptoRansom dataset was discovered to be too slow
and it was stopped after 10 hrs of training; therefore,
its results are not reported. Table 4 shows evaluations
results for neural models that use CNN or LSTM or
both; W denotes the length of system call sequences
analyzed by a model. The aim of this experiment
was also to determine what sequence length is opti-
mal w.r.t. the accuracy and training and test times;
best scores are marked in bold.

As can be seen from Table 4, classification ac-
curacy is very high for CNN and CNN-LSTM mod-
els, and it is much lower for the LSTM model. Dif-
ferent values of W produce minor variation in accu-
racy scores of CNN and CNN-LSTM models, and we
conducted tests to check if the difference in these re-
sults is statistically significant by applying Wilcoxon
paired non-parametric two-tail test (Wilcoxon, 1992).
It is worth noting that the Wilcoxon test applied to
the CryptoRansom dataset showed no statistical sig-
nificance in any of the above tests, and therefore we
focused our efforts on the REY dataset.

Table 5 demonstrates results of prediction com-
parison for different values of W for both CNN and
CNN-LSTM models on the REY dataset, and com-
parison of predictions of these models for the same W .
We can conclude that the difference between predic-
tions of CNN and CNN-LSTM for the same W is sta-
tistically significant in every case, while CNN model
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Figure 1: Pipeline of the ransomware detection with neural models.

Table 3: Baselines evaluation scores and runtime.

REY dataset
baseline train time (m) test time (m) acc (%)

RF 36.7 0.02 87.85
SVM (linear kernel) 7.5 0.003 83.28
SVM (poly kernel) 59 11.2 52.05
FCN 4.61 0.47 85.7

CryptoRansom dataset
baseline train time (m) test time (m) acc (%)

RF 14.25 0.04 93.34
SVM (linear kernel) 174.57 0.73 92.97
SVM (poly kernel)3 - - -
FCN 14.25 0.83 93.34

Table 4: Evaluation scores and runtime for CNN, LSTM
and CNN-LSTM neural models; W is the length of a system
calls sequence. All times are in minutes.

REY dataset
model W acc (%) sens (%) train time test time

CNN 3 96.67 93.71 4.15 0.028
CNN 6 99.51 99.02 6.88 0.567
CNN 9 99.41 99.23 10.75 0.789
CNN 12 99.74 99.51 18.83 1.191
CNN 15 99.82 99.65 36.13 1.516
LSTM 3 51.40 100 3.46 0.4
LSTM 6 95.23 97.02 7.01 0.539
LSTM 9 85.12 86.31 10.95 0.8
LSTM 12 79.76 82.55 18.83 1.842
LSTM 15 82.34 87.68 35.88 1.442
CNN-LSTM 3 95.79 93.81 4.54 0.031
CNN-LSTM 6 97.93 98.76 8.23 0.551
CNN-LSTM 9 99.62 99.23 12.36 0.812
CNN-LSTM 12 99.71 99.41 20.8 1.192
CNN-LSTM 15 99.74 99.48 36.73 1.054

CryptoRansom dataset
model W acc (%) sens (%) train time test time

CNN 3 95.31 97.59 2.27 0.13
CNN 6 99.27 99.29 5.72 0.7
CNN 9 99.59 99.77 9.92 2.02
CNN 12 99.53 99.95 20.1 2.51
CNN 15 99.70 99.70 39.1 2.28
LSTM 3 89.72 83.23 4.86 0.14
LSTM 6 89.73 85.47 10.96 0.71
LSTM 9 92.14 88.93 16.68 5.68
LSTM 12 48.77 48.83 24.39 2.47
LSTM 15 94.47 95.42 42.51 2.17
CNN-LSTM 3 97.32 96.74 6.14 0.38
CNN-LSTM 6 98.84 98.39 11.19 0.72
CNN-LSTM 9 99.60 99.65 17.02 1.32
CNN-LSTM 12 99.69 99.72 24.8 2.51
CNN-LSTM 15 99.74 99.82 72.15 2.35

predictions do not improve from W = 9 to W = 15.
Because the highest accuracy is achieved by CNN
with W = 6, we selected this model as the best one.

Table 5: Statistical significance tests on the REY dataset for
CNN and CNN-LSTM models.

model from W to W significant? p-value
CNN-LSTM 3 6 yes 0.0057
CNN-LSTM 6 9 yes <0.0001
CNN-LSTM 9 12 no 0.6694
CNN-LSTM 12 15 no 0.9115
CNN 3 6 yes 0.0124
CNN 6 9 yes 0.0056
CNN 9 12 no 0.3482
CNN 12 15 no 0.9557

model 1 model 2 W significant? p-value
CNN CNN-LSTM 3 yes <0.0001
CNN CNN-LSTM 6 yes <0.0001
CNN CNN-LSTM 9 yes <0.0001
CNN CNN-LSTM 12 no 0.125
CNN CNN-LSTM 15 yes 0.0146

5 CONCLUSIONS

In this paper, we present a method for ransomware
detection that classifies system call sequences of a
process as belonging to either malicious and or be-
nign categories with very high accuracy. We rep-
resented processes as sequences of system calls and
used NLP-based representation of system call fea-
tures that are words or multi-word expressions. Then,
we defined neural models that use CNN and LSTM
neural layers, and process system call sequences of
predefined length W . We evaluated our approach on
two datasets: (1) REY dataset, and (2) CryptoRan-
som dataset, whose construction and annotation are
described in Section 3.1.

From the evaluation, we can conclude that models
using CNN as their first layers, such as pure CNN and
CNN-LSTM, achieve the highest classification accu-
racy of over 99% on both datasets, while the pure
LSTM model falls far behind. Moreover, statistical
significance tests we conducted show that there is no
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need to enlarge W beyond 6 and that the results of
the CNN neural model are just as good as the results
of the CNN-LSTM that contains a recurrent layer and
is therefore slower. From a practical perspective, it
means that short system calls sequences are enough
to determine whether or not the process is malicious,
and that this detection can be done using a fast pre-
trained CNN model.
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