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Abstract: Profile Hidden Markov Models (PHMM) have been used to detect malware samples based on their behavior on
the host system and obtained promising results. Since PHMMs are a novel way of categorizing malware and
there is limited research work on such detection method, there is no data on the impact that certain obfuscation
techniques have on PHMMs. An obfuscation tool that could weaken PHMM based detection has not yet
been proposed. Our novel approach is based on applying PHMM detection by training the machine learning
models on API calls that are dynamically extracted from the malware samples, and then attempting to elude
detection by the same models using obfuscation techniques. Hence, in our paper, we created a PHMM model
trained on API call sequences extracted by running malware in a sandbox, then we tried to undermine the
detection effectiveness by applying different state-of-the-art API obfuscation techniques to the malware. By
implementing sophisticated API calls obfuscation techniques, we were able to reduce the PHMM detection
rate from 1.0, without API call obfuscation, to 0.68.

1 INTRODUCTION

Malicious software (malware) has been with us since
the dawn of computer development. There are re-
ports of malware being detected as far back as the
1970s (Suenaga, 2009), and since then they continue
to evolve and infect various devices while increasing
in quantity. It is a constant race between threat actors
and security analysts to find an edge over the other.
Malware threats have evolved from harmless annoy-
ances to serious breaches such as ransomware and cy-
berterrorism (McKnight, 2017). Traditional approach
for malware detection is based on signature detection,
which relies on static analysis of malware before-
hand, and security analysis software detecting mal-
ware based on those signatures (Sathyanarayan et al.,
2008). Over time, however, malicious software has
become increasingly complex, and signature detec-
tion cannot be trusted anymore for hundred percent
accuracy in detection. That is where dynamic anal-
ysis and machine learning come into play. Recent
advancements in machine learning techniques have
provided the opportunity of applying it in the area of
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malware detection. There has been a lot of research
into using statistical models, such as Hidden Markov
Models trained on existing malware by extracting API
calls (Alqurashi and Batarfi, 2017). This paper fo-
cused on the possibility of using PHMMs, and ex-
plored any weaknesses in its efficiency in catching un-
known malware samples by applying state-of-the-art
obfuscation techniques.

The remainder of this paper is organized as fol-
lows. In Section 2 we provide a selective survey of
relevant work in this area. In Section 3, background
topics are discussed, with a focus on the machine
learning technique employed in this research. Sec-
tion 4 covers the methodology used, with a descrip-
tion of the project architecture and its implementa-
tion. Section 5 gives our experimental results and
analysis. Finally, Section 6 summarizes our results
and includes a discussion of possible directions for
future work.
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2 RELATED WORK
Looking at the literature of malware detection, there
are generally three approaches. The first is done by
taking large surveys where the authors take broad
known obfuscation techniques and compare them to
detection methods currently deployed, such as in (You
and Yim, 2010). The second approach is based
on using new techniques in the field of malware
detection, such as Profile Hidden Markov Models
(PHMM) algorithms, and pairing them with currently
known methods of analysis such as dynamic anal-
ysis (Alkhateeb, 2017), API calls and constructing
birthmarks (Vemparala et al., 2016). These methods
aid in trying to improve detection quality and create a
more robust malware detection framework. The third
approach taken by the literature is using malware de-
tection as a baseline and applying novel techniques
to obfuscate itself and escape detection, for example
in (Srivastava et al., 2008). While the former ap-
proach provides a favorable overview of the state of
current techniques, the latter two approaches to lit-
erature are in a sort of arms race. One side is try-
ing to create methods to evade detection while the
other side is creating methods to detect them. As it
stands currently, there are many papers for obfusca-
tion of a malware’s signature, and there is substan-
tial research for its detection. However, there is cur-
rently no research on how to obfuscate malware sam-
ples to hamper PHMM based detection. The majority
of research work is broad and more surface level. It
does not deepen into a technique, but rather it tests
and measures a wide variety of techniques. Research
is extensive for exactly how polymorphic and meta-
morphic malware uses techniques to modify itself in
intelligent ways to evade detection at a high success
rate (Singh and Singh, 2018). For example, they take
certain types of evasion techniques commonly imple-
mented by polymorphic and metamorphic malware,
such as adding dead code, transposing code, or re-
ordering subroutines (You and Yim, 2010). There is
more research showing how there are already various
techniques for malware detection, both static and dy-
namic to render common signature based detection
obsolete, for example, the work in (Damodaran et al.,
2017). This research mostly gives analysis on the
arms race between malware detection and obfusca-
tion, and provides good context and data to compare
different methods of detection or obfuscation. There
is also novel research being performed to evade de-
tection. In fact, novel techniques such as conditional
code obfuscation were developed and determined to
evade state-of-the-art malware detection (Sharif et al.,
2008). With new obfuscation schemes, new meth-
ods of detection are needed if malware can defeat

detection and can hide malicious behavior and activ-
ity. With novel obfuscation techniques being devel-
oped, there are also novel detection methods being
researched, particularly by using bioinformatics tools
to analyze and catch how malware evolves (Wad-
kar et al., 2020). There is research done for spe-
cific kinds of evasions of malware where the mal-
ware’s behavior will change if it thinks it is being an-
alyzed (Kirat and Vigna, 2015). Additionally, there
is research being done with using PHMM for mal-
ware detection. PHMM is usually used for catego-
rizing protein families, but it has been found to be
very effective in catching and categorizing malware
families. PHMM has been used to detect malware
in many different ways. PHMM has been incorpo-
rated in malware detection by using dynamic birth-
marks (Vemparala et al., 2016) and has been used
to classify known malware (Pranamulia et al., 2017).
While some research obtained high sensitivity scores,
they had a high false positive rate as well. Newer re-
search has been performed and reached high accuracy
and confidence in detection with a very low false pos-
itive rate (Alipour and Ansari, 2020). PHMM has
also been used in a variety of ways to tackle detec-
tion using static and dynamic forms of analysis such
as analyzing system call sequences (Pranamulia et al.,
2017), behavior based analysis (Ravi et al., 2013),
static analysis based on opcode sequences (Alipour
and Ansari, 2020), and using dynamic analysis tech-
niques (Vemparala, 2015). In parallel, there is also a
lot of research being achieved for extracting API calls
and using those calls for malware analysis. PHMM
in particular has also been shown to be robust on a
variety of operating systems and successfully detects
malware using API extractions on various platforms
such as Android (Sasidharan and Thomas, 2021). Re-
search has been done for static detection of malware
based on the binary’s executable (Fu et al., 2008).
Furthermore, there has been plenty of work demon-
strating efficacy in extracting API calls and being able
to classify them based on API sequences (Uppal et al.,
2014), or based on API call frequency (Garg and Ya-
dav, 2019). These methods are often paired with ma-
chine learning and yield promising results. Combin-
ing this approach with PHMM has shown to be very
efficacious for detecting malware. Malware detection
using dynamic birthmarks and PHMM has been mea-
sured to be very effective by using a windows sand-
boxing tool called Buster Sandbox Analyzer(Buster,
2021) to dynamically extract API calls (Damodaran
et al., 2017).
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3 BACKGROUND

In this Section, we briefly introduce the PHMM algo-
rithm and the obfuscation techniques implemented in
our experiments. A more detailed description of our
implementation can be found in Section 4.

3.1 Profile Hidden Markov Model

Profile Hidden Markov Models (PHMMs) are proba-
bilistic models that we used to train and test malware
API calls. It could be seen as an advanced version
of Hidden Markov Models (HMMs). In fact, one of
the drawbacks of HMM is the Markov assumption,
i.e. the current state depends only on the previous
state. PHMMs, instead, uses positional information
of sequences/symbols, and thereby gives a better fit
for dynamic malware detection that looks at API calls
being generated by malware (Stamp, 2017). PHMM
algorithm is mainly based on two steps, that is, the
pairwise alignment and the multiple sequence align-
ment (MSA). Pairwise alignment is a technique to
align two sequences, where a substitution matrix and
gap penalty function are used to align such sequences.
In this paper, we used local alignment where two
pairs are aligned locally using dynamic programming.
MSA is generated from a collection of pairwise align-
ments. In this paper, we used Kruskal algorithm to
construct a minimum spanning tree of pairwise align-
ments from highest scored pair to lowest sequence.
Starting from the highest scoring pair, MSA is pro-
gressively aligned to include each sequence in every
iteration. PHMM is then derived directly from MSA.
More details about PHMM can be found in (Stamp,
2017), while implementation details followed in this
paper are described more in in depth in Section 4.

3.2 Obfuscation Techniques

One of the obfuscation techniques that we imple-
mented was to change the instructions after decompil-
ing the malware samples, resulting in a change in the
sample appearance while its core functionality stays
unchanged. Our expectation was to get variable API
logs with the changed instructions and, thus, hamper-
ing the dynamic detection based on such sequences.
We also tested some existing state-of-the-art obfus-
cation tools, such as running malware files through
Enigma Protector (The Enigma Protector Developers
Team, 2021), which injects itself at the start of the
code flow, and padding and copying API calls (Sue-
naga, 2009). Another tool that we tested was Cal-
lObfuscator (Mahmood, M., 2021). The tool works
by replacing specific API calls in any of the DLLs in

windows API, while keeping the functionality of the
original PE intact.

4 METHODOLOGY AND
PROJECT ARCHITECTURE

Architecture for PHMM based malware detection has
multiple set-ups involving different subsystems for
API call logs collections, deriving PHMM, and train-
ing and testing the models. Architecture is modular-
ized into subsystems with different set-ups. Each sub-
system is responsible for its function. Here, we see a
brief description of each.

API Logs Collector. This set-up leverages Sand-
boxie and Buster Sandbox Analyzer to collect API
call logs from malware and application execution.

Derive PHMM. API call logs collected by the above
set-up are translated into sequences. These se-
quences are used to generate pairwise alignments
and MSA. PHMM is then derived from MSA to
be trained.

Train and Test PHMM. This system trains the
PHMM using API call sequences belonging to
various malware families. Once trained, we test
the model against other malware and application
API call sequences.

Obfuscate to Avoid Detection. In order to test
PHMM efficiency and how effective it is at
dynamic analysis of suspected malware samples,
it is suggested to explore relevant obfuscation
techniques and attempt to defeat the trained ML
model that was developed.

A depiction of this architecture is given in Figure 1.

4.1 Implementation

In a Windows 10 virtual machine, we installed Buster
Sandbox Analyzer and Sandboxie Classic (Sand-
boxie, 2021). On every new boot of the VM, we
made sure to disable Windows Real-time protection
as this would unintentionally delete malware test files
in the operating system. This can cause issues if
tested malware files are deleted, since our malware
files come pre-packaged and compressed. Under
“C:\Windows\Sandboxie.ini”, we added the follow-
ing configurations for a chosen sandbox:

InjectDll=[path to bsa’s logapi32.dll]
InjectDll=[path to bsa’s logapi64.dll]
OpenWinClass=TFormBSA
NotifyDirectDiskAccess=y
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Figure 1: Architecture for PHMM Virus Detection and Obfuscation.

Then, we started Buster Sandbox Analyzer (BSA)
and selected the Sandboxie folder containing the mal-
ware samples. We allowed the malware to run and,
when it completed its execution, the malware log
APIs was produced in the “Reports” directory in a
file called “LOG API.txt”. A script was created to
run BSA on a whole directory of applications.

After collecting API data on the malware families,
we took the 36 most common API calls and assigned
them an alphanumeric character. All other less com-
mon API calls where given the “*” character. The
value 36 is the optimal number of most common API
calls based on the work in (Vemparala et al., 2016).
In fact, the top 36 API calls constitute more than the
99.8% of the total API calls for each family tested.
A python script was implemented to convert the API
logs generated from the Log API collection step to its
corresponding character, then a shell script was used
to convert all log files into a sequence file for a given
malware family. Another Python program was writ-
ten to generate the sequences from API call logs.

4.1.1 Pairwise Alignment

MSA Pairwise Alignment is a method of aligning
sequences. This is a first step in generating MSA.
For analyzing the performance of PHMM against dif-
ferent malware families, we generated an MSA for
each malware family and a consolidated MSA repre-
senting all malware families. From the API log se-
quences generated by the script above, we shortlisted
10 sequences belonging to each malware family. Ev-
ery pair of sequences was aligned locally with the
score. We used a substitution matrix with a match
having score of 10 and no-match having score of -
10. We used a linear gap penalty function where
“-” in the initial gap and extension of gap had the
same penalty of -5. A python script and the Biopy-
thon library (Biopython, 2021) were used to align se-
quences as mentioned above. Biopython has a “pair-
wise2” module that has various functions that help
in aligning the sequences. Based on the score asso-
ciated with each pair, a minimum spanning tree is
constructed with the highest scoring pair at the top.
Each pair was translated into edges, and Kruskal al-
gorithm was used to derive the highest performing
minimum spanning tree. Nine pairs representing all
10 sequences were formed. A Multiple Sequence
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Alignment (MSA) is constructed by implementing the
Feng-Doolittle algorithm with progressive alignment
of sequences. We followed the method explained
in (Attaluri et al., 2009). In this method, alignment is
accomplished in the order dictated by pairwise align-
ments in a minimum spanning tree. MSA is itera-
tively constructed with the highest scoring pair being
the first to be added. Each pair is then progressively
added to MSA, each time aligning the sequences. Fig-
ure 2 depicts the process to generate MSA.

This program outputs a “malware family msa.txt”
file that will have an MSA which is going to be used
to derive PHMM and training the model. More pre-
cisely, once we had MSA for each malware family,
we loaded these MSAs into R. We used the aphid
library (RDocumentation, 2021) to derive PHMM.
PHMM was derived with residues consisting of al-
phanumeric characters (A-Z, 0-9) and an asterisk (*).
The k value of 2 was chosen. Once PHMM was de-
rived, it was trained using the BaumWelch algorithm.
More than 600 malware samples were used to train
this model. This trained model was saved onto the
disk for future use to test malware detection. The
PHMM model that was trained above was used for
malware detection. We had separate test data consist-
ing of more than 150 malware samples used to obtain
metrics on the performance of the model. Forward
algorithm (Stamp, 2017) was used to test the model
against these samples. The algorithm returned the
probability score. We also tested the model against
the application logs and noted down the probability
score. Later, both the results were fed into an AUC
function to get the AUC score. Details on AUC score
and the performance of the PHMM model can be
found in Section 5. The code used in this research
can be accessed at (Ali et al., 2021b) and (Ali et al.,
2021a).

4.2 Dataset

The dataset is made of five families, that is, ZeroAc-
cess, Zbot, Harebot, Trojan, and Winwebsec, for a to-
tal of 730 malware files split among the such fami-
lies, plus 40 benign applications. To train the models,
600 malware samples are used, while the rest of the
malicious files plus the benign samples are used for
testing. The malware samples are part of the Malicia
project (IMDEA Software Istitute, 2013).

5 EXPERIMENTS AND RESULTS

In this Section, we describe the experiments accom-
plished in this research. These experiments are based
on three different ways to obfuscate API calls, to
which we applied a trained PHMM model to quantify
its ability to detect the obfuscated samples.

In the first experiment, we used a disassembler
tool to explore compiled executables files (malware).
This helped us in opening files, disassembly, and
reading the code (assembly code). After decompil-
ing the malware sample, instructions were added ran-
domly at different places in the decompiled. The
goal was to confirm that adding instructions would
not change the API calls sequence. After recompiling
a malware sample with additional instructions at dif-
ferent points, we ran the same sample in Sandboxie
and captured the API logs via BSA. We confirmed
that there was no change in the actual API call log for
those obfuscated samples. This proved that obfuscat-
ing the code by changing the list of instructions does
not affect the sequence of API calls.

In the second experiment, we swapped certain API
calls with others in the Windows DLL IAT (Mah-
mood, M., 2021) with similar ones, thus to not al-
ter the original behavior of the program. Hence, we
modified the virus files so that the sequence of API
calls when logged through BSA would change con-
siderably. First we ran an unmodified malware file
through BSA to capture the API call sequence. Next,
we ran the dump to obtain the API calls list without
obfuscation. Next, we chose an API call to swap,
and modified the PE. Lastly, we reran the unmodi-
fied file through BSA to obtain the new obfuscated
API call sequence. The resulting “API LOG” was
then rerun through a sequence mapping script, and
the sequence was tested against the trained malware
detection model to observe the result. The model was
trained on the non-obfuscated version of the samples.
What we observed was that such API modifications
did not change the sequence enough to avoid detec-
tion, and dropped further obfuscation efforts through
this tool. The results of this last experiment are shown
in Figure 3, 4, 5, 6, and 7 for, respectively, Zeroac-
cess, Zbot, Winwebsec, Trojan, and Harebot family.
In Figure 8, instead, we see the results of our mul-
ticlass classification experiment with all such fami-
lies. Performance of the PHMM model is measured
by drawing the ROC curve and measuring the area
under it. PHMM performance is significantly better
in malware families like Zeroaccess, Zbot, and Win-
websec (1.0, 0.97, and 0.95 AUC, respectively) com-
pared to Trojan (0.82 AUC), that is the only family
that has been affected considerably by the tested ob-
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Figure 2: Generating MSA.

fuscation technique. As a mean of comparison, we
ran our model against the non-obfuscated version of
the malware samples. The results obtained were all
compatible to the work in (Vemparala et al., 2016),
with a consistent 1.0 AUC for all the families. A sum-
mary of this experiment is given in Table 1.

In the third experiment, we attempted differ-
ent techniques for obfuscation using callObfuscator,
manually changing DLL instructions, and enigmaPro-
tector. Out of all the various techniques, obfusca-
tion achieved using enigmaProtector resulted in sig-
nificant reduction of the AUC score when we utilized
the API call logs from the obfuscated malware. Fig-
ure 9 shows the ROC curve for our multiclass exper-
iment with obfuscated malware via enigmaProtector,
which significantly reduced the AUC score from 0.92
(swapping the API calls with alternative ones) to 0.68.

Figure 3: ROC curve for Zeroaccess family.

6 CONCLUSIONS

There is no evidence in literature of the influ-
ence of obfuscation strategies to evade PHMM-based
malware detection. The potential shortcomings of
PHMM-based detection, as well as how to circum-
vent detection, were yet to be proved using an ob-

Figure 4: ROC curve for Zbot family.

Figure 5: ROC curve for Winwebsec family.

Figure 6: ROC curve for Trojan family.
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Table 1: Malware Family AUC Scores.

Malware Family AUC Score (obfuscated
with enigmaProtector)

AUC Score (obfuscated
with API swapping)

AUC Score (non-obfuscated)

ZeroAccess 0.77 1.0 1

Winwebsec 0.95 0.95 1

Zbot 0.53 0.97 1

Harebot 0.79 0.92 1

Trojan 0.61 0.82 1

Multiclass 0.68 0.92 1

Figure 7: ROC curve for Harebot family.

Figure 8: ROC curve for our multiclass experiment.

Figure 9: ROC curve after obfuscating the samples with
enigmaProtector (multiclass).

fuscation tool. It is possible, in theory, to build ma-
chine learning models based on API calls collected
from known malware samples, and then use malware
obfuscation to evade detection by the same models.
To test this strategy, we used PHMM to detect differ-
ent malware families based on the API calls, and then
tried a few state-of-the-art obfuscation techniques to
evade detection. We used a tool called enigmaProtec-
tor which uses padded and copied API obfuscation,
we decompiled the samples, added dummy instruc-
tions (such as NOPs) at different places within each
sample, and then re-compiled the modified samples
so that we could run it using our model. Finally, we
tried modifying the malware executables with Cal-
lObfuscator which modifies the Import Address Ta-
ble. We did not obtained much success with NOPs
and CallObfuscator, however, by using enigmaProtec-
tor we got positive results in terms of evading detec-
tion. In fact, it reduced the AUC score from 0.92 to
0.68 which shows moderate effectiveness to evading
detection from PHMMs.

Further research would include scripting custom
malware obfuscation techniques such as dead code in-
sertion, instruction changes, substitution, and padding
to observe their effect on the list of API calls. Fur-
thermore, utilizing additional malware families to ob-
serve the AUC resuls would be beneficial, also, ob-
serving the accuracy of the classification by integrat-
ing the dataset with both benign and malicious pro-
grams. Finally, expanding the feature set by extract-
ing API calls both dynamically and statically, with the
introduction of additional features to oppose the effect
of enigmaProtector on the PHMM model.
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