DMS: A System for Delivering Dynamic Multitask NLP Tools

Haukur Páll Jónsson1,a and Hrafn Loftsson2,b

1Miðeind ehf., Reykjavík, Iceland
2Department of Computer Science, Reykjavik University, Iceland

Keywords: NLP, Multitask, Icelandic, PoS, Lemmatization.

Abstract: Most NLP frameworks focus on state-of-the-art models which solve a single task. As an alternative to these frameworks, we present the Dynamic Multitask System (DMS), based on native PyTorch. The DMS has a simple interface, can be combined with other frameworks, is easily extendable, and bundles model downloading with an API and a terminal client for end-users. The DMS is flexible towards different tasks and enables quick experimentation with different architectures and hyperparameters. Components of the system are split into two categories with their respective interfaces: encoders and decoders. The DMS targets researchers and practitioners who want to develop state-of-the-art multitask NLP tools and easily supply them to end-users.

In this paper, we, first, describe the core components of the DMS and how it can be used to deliver a trained system. Second, we demonstrate how we used the DMS for developing a state-of-the-art PoS tagger and a lemmatizer for Icelandic.

1 INTRODUCTION

The development of state-of-the-art NLP tools has become easier in recent years, partly due to the emergence of quality frameworks, implemented in a single, easy to use, language. For example, FLAIR (Akbik et al., 2019), Transformers (Wolf et al., 2020), AllenNLP (Gardner et al., 2018), fastai (Howard and Gugger, 2020), and fairseq (Ott et al., 2019) are all relatively new frameworks, which are implemented in Python and have a backbone written in a faster, compiled language.

Most NLP frameworks, like the previously-mentioned, focus on solving a single task. Furthermore, to make the developer experience more streamlined, they often provide a plethora of abstractions, which the developer is expected to use, but can cause a steep learning curve.

As an alternative to these frameworks, we present a system called Dynamic Multitask System (DMS), which focuses on combining multiple tasks into a single model – a multitask model. The DMS, which is based on native PyTorch, has a simple interface, can be combined with other frameworks, is easily extendable, and bundles model downloading with an API and a terminal client for end-users.

The DMS targets researchers and practitioners who want to develop state-of-the-art NLP tools and easily supply them to end-users. The system’s flexibility towards different tasks and its simple interface enables quick experimentation with different architectures and hyperparameters. The current implementation focuses on Part-of-Speech (PoS) tagging and lemmatization, but can easily be extended to other tasks, e.g. sentence classification or open text generation. The code is implemented in Python 3.8/PyTorch 1.8 and is published with the Apache 2.0 license1.

The DMS is designed from the ground up to be a dynamic multitask system. For example, the system can be used to train a model which can produce PoS tags and/or lemmas without having to duplicate parts of the code. To achieve this, we split components of the system into two categories: encoders and decoders, with their respective interfaces. The system then relies on these components to do all the necessary pre- and post-processing.

Let us contrast the dynamic multitask approach, proposed in this paper, to a static multitask approach, i.e. an approach which solves a specific multitask problem by making hard architectural assumptions. The dynamic approach allows for easier architecture experimentation because the components are not as tightly coupled. If components are tightly coupled

\footnotesize{1https://github.com/cadia-lvl/POS}
and one wants to carry out an ablation study of the
component’s impact on the overall performance, one
needs to adjust the code in multiple locations in the
training pipeline: in the preprocessing step, in depend-
ent components, in the loss function, and when map-
ing the model’s output to human-readable strings.
Instead, we suggest a simple interface and a refer-
ence implementation of multiple components which
addresses these problems and allows for quick exper-
imental iterations. The most notable trade-off using
this approach is computational speed during training,
as we tie the preprocessing step into the training loop.
The DMS is therefore not suitable for training models
which rely on large amounts of data (over a few GBs),
but rather for less data-intensive tasks. We believe
that this is an acceptable trade-off for the suggested
use case.

Furthermore, the previous paragraph only ad-
dresses the problems a researcher/practitioner needs
to be aware of, but not how the trained model will be
consumed by the end-user. The end-user wants to be
able to use a trained model, with as little effort as pos-
sible. To achieve this, we use off-the-shelf solutions
for loading code and trained models for the end-user
along with an API and a terminal client which lever-
age the dynamic design of the system.

The DMS system should not be considered as a
framework as it does not try to push many abstrac-
tions onto the developer. It rather uses PyTorch primitives
and can be used in conjunction with other existing text
embedding frameworks (Huggingface Transformers,
FLAIR, etc.) and can be made to fit other PyTorch
training frameworks. The system should be easily
adoptable by other researchers/practitioners working
on state-of-the-art NLP tools who, additionally, want
to release those tools to end-users in an easy to use
manner.

Originally, our goal was to develop a PoS tagger
and a lemmatizer for Icelandic as a part of the Lan-
guage Technology Programme for Icelandic 2019-
2023 (Nikulásdóttir et al., 2020). The programme
combines software development and research, i.e. the
tools need to be developed and delivered to end-users.
In order to deliver a joint high-performing PoS tag-
ger and a lemmatizer, we needed to experiment with
combinations of multiple components. None of the
existing frameworks had an off-the-shelf solution for
this problem – they make solving certain problems
easy but at the cost of a lack of flexibility. Thus,
we needed to develop our own system which could
leverage model implementation available in state-of-
the-art frameworks. Our resulting PoS tagger for
Icelandic is state-of-the-art, achieving an accuracy of
97.84%.

The rest of the paper is structured as follows: In
Section 2, we present the DMS system. In Section 3,
we present our implementation and evaluation results
for PoS tagging and lemmatization for Icelandic. Fi-
ally, we conclude in Section 4.

2 THE DYNAMIC MULTITASK
SYSTEM

In this section, we describe the core components of
the DMS, namely the Encoder and the Decoder. We
describe the interface and how it is used during train-
ing and inference. We then list the currently imple-
mented components and explain how a trained system
is delivered with an API and a terminal client to the
end-user.

2.1 The Core

The core part of the system mainly consists of two in-
terfaces and a class which consists of a sequence of
implementations of these interfaces. The two inter-
faces are Encoder and Decoder. The module which
combines the encoders and decoders is aptly named
EncodersDecoders. All of them are PyTorch Mod-
ules. To implement a PyTorch Module one needs to
implement the forward method, which is called for
each forward step of the network. An overview of the
system can be seen in Figure 1.

The Encoder takes care of preprocessing a batch
of input sequences and encodes them for downstream
modules. An Encoder is a PyTorch Module which
implements the BatchPreprocess interface and has an
output_dim property. The BatchPreprocess interface
defines a function which accepts a batch of inputs and
preprocesses them. Thus, an implementation of an
Encoder defines how the input sequence should be
transformed from the text sequence to an encoding via
the preprocess and forward steps.

Similarly, the Decoder takes care of ingesting the
encodings and postprocessing them to the expected
output. A Decoder is a PyTorch Module, which imple-
ments the BatchPostprocess interface, a method
called add_targets and has two properties: weight and
output_dim. The BatchPostprocess interface defines
a function which accepts batch of inputs which have
been passed through the forward method of the De-
coder and maps it to a sequence of strings. During
training, the add_targets method takes care of map-
ing the target output to a format expected by the de-
coder’s loss function. When computing the total loss,
the decoder’s loss is weighted by the defined weight.
2.2 Implemented Encoders

For our PoS tagging and lemmatization experiments the model’s input is a tokenized sentence. We have implemented several text encoders:

- **CharacterEncoder**: preprocesses the tokens into a sequence of characters indices and then encodes them using a PyTorch Embedding.
- **WordEncoder**: preprocesses the tokens to indices which are derived from the training data and then encodes them using a PyTorch Embedding.
- **PretrainedWordEncoder**: works the same way as the WordEncoder except the indices and weights are from external sources.
- **CharactersAsTokenEncoder**: a bidirectional RNN (GRU (Cho et al., 2014)) which does no preprocessing, but rather accepts the CharacterEncoder output as input, feeds it to the RNN and returns the last hidden state as well as the output for each timestep.
- **TransformerEncoder**: a BERT-like model (currently, ELECTRA (Clark et al., 2020)) along with the pretrained subword tokenizer (Wu et al., 2016). During preprocessing the tokens are converted to subwords and a token_start mask is computed. The subwords are then encoded using the BERT-like model and the last hidden state masked with the token_start is returned.
- **SentenceEncoder**: a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) which has no preprocessing step, but rather accepts a list of encodings, which have the same sequence length, concatenates them along the feature dimension and feeds the sequence to the LSTM and returns the output for each timestep.

2.3 Implemented Decoders

We have implemented the following decoders which map the encoded text to the output of the desired task:

- **Tagger**: a sequence tagger used to predict PoS tags. It is a re-implementation of a classification head in Huggingface Transformers, i.e. a dense layer, followed by a layer normalization (Ba et al., 2016), a relu activation, and, finally, a lineur layer with an output dimension equal to the number of classes.
- **Lemmatizer**: an autoregressive character decoder. It is an RNN (GRU) and produces the lemma of a given word, one character at a time.
The input for each time-step is the previous predicted character, a context vector and multiplicative attention vector over the time-sequence of a CharactersAsTokenEncoder (Luong et al., 2015).

- **Structured Tagger**: a multilabel-multiclass sequence tagger. It consists of a Tagger per label, where each label is a sub-category of a PoS tag.

As previously mentioned, each decoder implements two methods: `add_targets` in which the target outputs are mapped to a format suitable for the loss function and `BatchPostprocess` in which the predictions of the decoder are mapped to a sequence of strings.

For each decoder there is an associated loss function which is scaled by the decoder’s weight. All the losses are then summed up and a backward step applied to the combined loss.

2.4 Delivering Trained Systems

Delivering an easy-to-use trained system can often be a time-consuming task. The DMS makes this task simpler.

After training, the trained model’s weights are stored to disk along with all necessary files required to successfully load the model: the global configuration of the model components and the configuration for each component (e.g. string-to-index mappings, subword tokenizer, etc.). For a model release, these files are packaged and uploaded to a web storage, for example, CLARIN (Hinrichs and Krauwer, 2014).

An API is then defined which handles the interface towards a trained model. The API initializes the model parameters and loads the weights and other necessary files. It then provides easy to use functions based on the defined decoders. This API is then exposed to the end-user via a PyTorch Hub configuration file. The PyTorch Hub configuration also handles model downloading and extraction. The terminal client replicates the functionality of the PyTorch Hub configuration.

3 EXAMPLE IMPLEMENTATION AND RESULTS

In this section, we describe our implementation of PoS tagging and lemmatization for Icelandic. In particular, we go through the development process and experimentation which demonstrates the usefulness of the DMS. At multiple stages in the development process, we released the trained models to end-users. The model’s accuracies are summarized in Table 1.

3.1 Reimplementing ABLTagger

![Figure 2: An overview of the improved ABLTagger. It uses the CharacterEncoder, CharactersAsTokenEncoder, WordEncoder, and two different PretrainedWordEncoder. These are then combined using the SentenceEncoder and fed to the Tagger.](#)

We started by reimplementing the PoS tagger (ABLTagger) presented in (Steingrímsson et al., 2019) in PyTorch. It roughly consists of **CharacterAsTokenEncoder**, **WordEncoder**, a **PretrainedWordEncoder** with hand-constructed n-hot vectors based on the the Database of Icelandic Morphology (DIM) (Bjarnadóttir et al., 2019). All of these encoders are then combined using the **SentenceEncoder** and decoded using the sequence **Tagger**. The ABLTagger achieves an accuracy of 95.15% on MIM-GOLD (Loftsson et al., 2010), the standard PoS benchmark for Icelandic.

The input to the model consists of tokenized text which is then further broken down into characters for the **CharactersAsTokenEncoder**. We further require two different token-to-index mappings, one for the vanilla **WordEncoder** and another for the **PretrainedWordEncoder**, as their vocabularies differ.

We performed multiple ablation studies on the individual components to determine the effect of each component. Whilst doing that, we discovered that certain components were under-performing and found better hyper parameters. We also incorporated another **PretrainedWordEncoder** based on fastText (Bojanowski et al., 2017). Here, we found the dynamic nature of the DMS to be helpful in testing different architecture variations.

This improved version of ABLTagger resulted in an increase of accuracy to 95.59%. An overview of the architecture can be seen in Figure 2.

3.2 Incorporating a TransformerEncoder

In the next step, we incorporated a **TransformerEncoder**, an ELECTRA-small model trained on the Icelandic Gigaword Corpus (Steingrimsson et al., 2018). We evaluated multiple configurations of the previous components in conjunction with the TransformerEn-
Table 1: A summary of PoS tagging and Lemmatization experiments performed using the DMS. The results are based on 9-fold cross-validation on MIM-GOLD excluding the “e” and “x” tags. The lemmatization accuracies are based on a non-standard split.

<table>
<thead>
<tr>
<th>System</th>
<th>PoS tagging</th>
<th>Lemmatization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLTagger</td>
<td>95.15%</td>
<td>-</td>
</tr>
<tr>
<td>Improved ABLTagger</td>
<td>95.59%</td>
<td>-</td>
</tr>
<tr>
<td>ELECTRA-small</td>
<td>96.65%</td>
<td>97.54%</td>
</tr>
<tr>
<td>ELECTRA-small + DIM</td>
<td>96.65%</td>
<td>98.90%</td>
</tr>
<tr>
<td>ELECTRA-base</td>
<td>97.84%</td>
<td>-</td>
</tr>
</tbody>
</table>

coder and the final model achieves an accuracy of 96.65%. Incorporating a TransformerEncoder further increased the complexity of the preprocessing as now we needed to apply a subword tokenizer on the input whilst ensuring that the subword sequence length did not exceed the positional encoding limit on the TransformerEncoder. Furthermore, we needed to ensure that the number of outputs from the TransformerEncoder equaled the number of tokens from the other modules. Here, we found the BatchPreprocess interface in the Encoder to be helpful.

The ELECTRA-small model was then switched out for an ELECTRA-base model. In the experiments with the ELECTRA-base model, we found that the other components, the CharactersAsTokenEncoder, the WordEncoder and both the PretrainedWordEncoders did not improve the PoS tagging accuracy, resulting in a maximum, state-of-the-art, accuracy of 97.84%.

3.3 Adding the Lemmatizer

![Figure 3: An overview of the joint tagger and lemmatizer. It uses the CharacterEncoder, CharactersAsTokenEncoder and the TransformerEncoder. The CharactersAsTokenEncoder is fed to Lemmatizer. The Tagger and Lemmatizer share the TransformerEncoder.](image)

Once the PoS tagging experiments were finished, we trained a stand-alone Lemmatizer and a joint Lemmatizer and Tagger. The joint model can be seen in Figure 3. Both the stand-alone and joint models used a TransformerEncoder and a CharactersAsTokenEncoder. By comparing the stand-alone model with the joint model, we found that the Lemmatizer in the joint model was under-performing and that the Lemmatizer was negatively affecting the PoS tagger. To attempt to remedy this, we scaled down the loss weight on the Lemmatizer and pretrained the Lemmatizer on data from the DIM, i.e. lemmatization with PoS context, but no sentence context. The model was then fine-tuned on MIM-GOLD. Here, we found the Decoder interface of the DMS to be very helpful. We are still not satisfied with PoS tagging performance of the joint model, as the PoS tagging accuracy is still negatively affected by the Lemmatizer.

We have yet to experiment with the Structured Tagger, in which we predict PoS tag sub-categories, allowing us to predict tags not seen in the training data. We also want to experiment with different approaches for the joint model.

4 CONCLUSIONS

We have presented DMS, the Dynamic Multitask System, and demonstrated its usefulness and simplicity by applying it to PoS tagging and lemmatization for Icelandic. Our PoS tagger achieves state-of-the-art accuracy of 97.84%. Multitask systems are inherently more complex to develop than single-task systems, but the DMS can reduce the development effort for multitask systems. The DMS can be easily extended to different tasks, leverage state-of-the-art text encoders and simplify frequent deliveries to end-users.

We plan to continue developing the DMS, mainly to make it easier to use for the developer. In short, the DMS pushes a lot of the complexity to the system’s run configuration. This configuration can become unwieldy, but this can be mitigated by run configuration tools, such as Hydra (Yadan, 2019). Hydra enables the developer to “dynamically create a hierarchical configuration by composition and override it through config files and the command line”.

2Note that the MIM-GOLD lemma data had not been released at this stage, so we were using a non-standard split.

3There are roughly 600 PoS tags in the Icelandic tag set, whereas only about 570 are seen in the training data. The tags contain a structure which we expect the model to be able to learn.
Furthermore, some boiler-plate code required for the training loop could also be reduced with a training framework, such as PyTorch Lightning. PyTorch Lightning is a lightweight PyTorch wrapper which reduces the engineering effort required to train models. It reduces the boiler-plate code required to train models on multiple GPUs, different hardware, different floating-point precision etc.

ACKNOWLEDGEMENTS

This project was funded by the Language Technology Programme for Icelandic 2019–2023. The programme, which is managed and coordinated by Almannarömur⁴, is funded by the Icelandic Ministry of Education, Science and Culture.

We would like to thank Jón Friðrik Daðason at Reykjavik University for supplying us with the ELECTRA models used in this research.

REFERENCES

⁴https://almannaromur.is/
