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Abstract: Most NLP frameworks focus on state-of-the-art models which solve a single task. As an alternative to these
frameworks, we present the Dynamic Multitask System (DMS), based on native PyTorch. The DMS has a
simple interface, can be combined with other frameworks, is easily extendable, and bundles model download-
ing with an API and a terminal client for end-users. The DMS is flexible towards different tasks and enables
quick experimentation with different architectures and hyperparameters. Components of the system are split
into two categories with their respective interfaces: encoders and decoders. The DMS targets researchers and
practitioners who want to develop state-of-the-art multitask NLP tools and easily supply them to end-users.
In this paper, we, first, describe the core components of the DMS and how it can be used to deliver a trained
system. Second, we demonstrate how we used the DMS for developing a state-of-the-art PoS tagger and a
lemmatizer for Icelandic.

1 INTRODUCTION

The development of state-of-the-art NLP tools has be-
come easier in recent years, partly due to the emer-
gence of quality frameworks, implemented in a sin-
gle, easy to use, language. For example, FLAIR (Ak-
bik et al., 2019), Transformers (Wolf et al., 2020),
AllenNLP (Gardner et al., 2018), fastai (Howard and
Gugger, 2020), and fairseq (Ott et al., 2019)) are all
relatively new frameworks, which are implemented in
Python and have a backbone written in a faster, com-
piled language.

Most NLP frameworks, like the previously-
mentioned, focus on solving a single task. Further-
more, to make the developer experience more stream-
lined, they often provide a plethora of abstractions,
which the developer is expected to use, but can cause
a steep learning curve.

As an alternative to these frameworks, we present
a system called Dynamic Multitask System (DMS),
which focuses on combining multiple tasks into a sin-
gle model – a multitask model. The DMS, which is
based on native PyTorch, has a simple interface, can
be combined with other frameworks, is easily extend-
able, and bundles model downloading with an API
and a terminal client for end-users.

a https://orcid.org/0000-0001-9615-3455
b https://orcid.org/0000-0002-9298-4830

The DMS targets researchers and practitioners
who want to develop state-of-the-art NLP tools and
easily supply them to end-users. The system’s flexi-
bility towards different tasks and its simple interface
enables quick experimentation with different archi-
tectures and hyperparameters. The current implemen-
tation focuses on Part-of-Speech (PoS) tagging and
lemmatization, but can easily be extended to other
tasks, e.g. sentence classification or open text genera-
tion. The code is implemented in Python 3.8/PyTorch
1.8 and is published with the Apache 2.0 license1.

The DMS is designed from the ground up to be
a dynamic multitask system. For example, the sys-
tem can be used to train a model which can produce
PoS tags and/or lemmas without having to duplicate
parts of the code. To achieve this, we split compo-
nents of the system into two categories: encoders and
decoders, with their respective interfaces. The system
then relies on these components to do all the neces-
sary pre- and post-processing.

Let us contrast the dynamic multitask approach,
proposed in this paper, to a static multitask approach,
i.e. an approach which solves a specific multitask
problem by making hard architectural assumptions.
The dynamic approach allows for easier architecture
experimentation because the components are not as
tightly coupled. If components are tightly coupled

1https://github.com/cadia-lvl/POS
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and one wants to carry out an ablation study of the
component’s impact on the overall performance, one
needs to adjust the code in multiple locations in the
training pipeline: in the preprocessing step, in depen-
dant components, in the loss function, and when map-
ping the model’s output to human-readable strings.
Instead, we suggest a simple interface and a refer-
ence implementation of multiple components which
addresses these problems and allows for quick exper-
imental iterations. The most notable trade-off using
this approach is computational speed during training,
as we tie the preprocessing step into the training loop.
The DMS is therefore not suitable for training models
which rely on large amounts of data (over a few GBs),
but rather for less data-intensive tasks. We believe
that this is an acceptable trade-off for the suggested
use case.

Furthermore, the previous paragraph only ad-
dresses the problems a researcher/practitioner needs
to be aware of, but not how the trained model will be
consumed by the end-user. The end-user wants to be
able to use a trained model, with as little effort as pos-
sible. To achieve this, we use off-the-shelf solutions
for loading code and trained models for the end-user
along with an API and a terminal client which lever-
age the dynamic design of the system.

The DMS system should not be considered as a
framework as it does not try to push many abstractions
onto the developer. It rather uses PyTorch primitives
and can be used in conjunction with other existing text
embedding frameworks (Huggingface Transformers,
FLAIR, etc.) and can be made to fit other PyTorch
training frameworks. The system should be easily
adoptable by other researchers/practitioners working
on state-of-the-art NLP tools who, additionally, want
to release those tools to end-users in an easy to use
manner.

Originally, our goal was to develop a PoS tagger
and a lemmatizer for Icelandic as a part of the Lan-
guage Technology Programme for Icelandic 2019-
2023 (Nikulásdóttir et al., 2020). The programme
combines software development and research, i.e. the
tools need to be developed and delivered to end-users.
In order to deliver a joint high-performing PoS tag-
ger and a lemmatizer, we needed to experiment with
combinations of multiple components. None of the
existing frameworks had an off-the-shelf solution for
this problem – they make solving certain problems
easy but at the cost of a lack of flexibility. Thus,
we needed to develop our own system which could
leverage model implementation available in state-of-
the-art frameworks. Our resulting PoS tagger for Ice-
landic is state-of-the-art, achieving an accuracy of
97.84%.

The rest of the paper is structured as follows: In
Section 2, we present the DMS system. In Section 3,
we present our implementation and evaluation results
for PoS tagging and lemmatization for Icelandic. Fi-
nally, we conclude in Section 4.

2 THE DYNAMIC MULTITASK
SYSTEM

In this section, we describe the core components of
the DMS, namely the Encoder and the Decoder. We
describe the interface and how it is used during train-
ing and inference. We then list the currently imple-
mented components and explain how a trained system
is delivered with an API and a terminal client to the
end-user.

2.1 The Core

The core part of the system mainly consists of two in-
terfaces and a class which consists of a sequence of
implementations of these interfaces. The two inter-
faces are Encoder and Decoder. The module which
combines the encoders and decoders is aptly named
EncodersDecoders. All of them are PyTorch Mod-
ules. To implement a PyTorch Module one needs to
implement the forward method, which is called for
each forward step of the network. An overview of the
system can be seen in Figure 1.

The Encoder takes care of preprocessing a batch
of input sequences and encodes them for downstream
modules. An Encoder is a PyTorch Module which
implements the BatchPreprocess interface and has an
output_dim property. The BatchPreprocess interface
defines a function which accepts a batch of inputs and
preprocesses them. Thus, an implementation of an
Encoder defines how the input sequence should be
transformed from the text sequence to an encoding via
the preprocess and forward steps.

Similarly, the Decoder takes care of ingesting the
encodings and postprocessing them to the expected
output. A Decoder is a PyTorch Module, which im-
plements the BatchPostprocess interface, a method
called add_targets and has two properties: weight and
output_dim. The BatchPostprocess interface defines
a function which accepts batch of inputs which have
been passed through the forward method of the De-
coder and maps it to a sequence of strings. During
training, the add_targets method takes care of map-
ping the target output to a format expected by the de-
coder’s loss function. When computing the total loss,
the decoder’s loss is weighted by the defined weight.
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Figure 1: An overview of the DMS interface. The Encoder
transforms a text sequence to an encoding via preprocess
and forward. The Decoder transforms encodings to a text
sequence and further informs the training process.

The EncodersDecoders module accepts multiple
encoders and decoders and first runs the preprocess
and forward steps for each encoder and then the for-
ward step for each decoder. This loop is executed dur-
ing training and inference and returns the raw predic-
tions for each decoder. The add_targets is only called
during training as it is only used to compute the loss
function. The BatchPostprocess is only called during
inference and validation.

The main benefits of this approach are:

• Multiple and Separate Data Processing: Dif-
ferent encoders can have diverse requirements
on their input preprocessing, and the same goes
for decoder postprocessing. By making these
data processing steps a part of their imple-
mentation, a separate, component-aware data-
processing pipeline is not required.

• Dynamic Batch: By storing all previ-
ously computed values of a batch (for-
ward/preprocessing/postprocessing) in a Python
dictionary, later components can easily access
those values. Indeed, this makes the components
order-dependant, but that simply reflects the
architecture of the overall system.

• Experimentation and Ablation: As all compo-
nents of the model are dynamically added to cre-
ate an overall architecture, components of the sys-
tem can be easily adjusted and ablated.

2.2 Implemented Encoders

For our PoS tagging and lemmatization experiments
the model’s input is a tokenized sentence. We have
implemented several text encoders:

• CharacterEncoder: preprocesses the tokens into
a sequence of characters indices and then encodes
them using a PyTorch Embedding.

• WordEncoder: preprocesses the tokens to in-
dices which are derived from the training data and
then encodes them using a PyTorch Embedding.

• PretrainedWordEncoder: works the same way
as the WordEncoder except the indices and
weights are from external sources.

• CharactersAsTokenEncoder: a bidirectional
RNN (GRU (Cho et al., 2014)) which does no pre-
processing, but rather accepts the CharacterEn-
coder output as input, feeds it to the RNN and re-
turns the last hidden state as well as the output for
each timestep.

• TransformerEncoder: a BERT-like model (cur-
rently, ELECTRA (Clark et al., 2020)) along
with the pretrained subword tokenizer (Wu et al.,
2016). During preprocessing the tokens are con-
verted to subwords and a token_start mask is com-
puted. The subwords are then encoded using the
BERT-like model and the last hidden state masked
with the token_start is returned.

• SentenceEncoder: a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) which has
no preprocessing step, but rather accepts a list of
encodings, which have the same sequence length,
concatenates them along the feature dimension
and feeds the sequence to the LSTM and returns
the output for each timestep.

2.3 Implemented Decoders

We have implemented the following decoders which
map the encoded text to the output of the desired task:

• Tagger: a sequence tagger used to predict PoS
tags. It is a re-implementation of a classification
head in Huggingface Transformers, i.e. a dense
layer, followed by a layer normalization (Ba et al.,
2016), a relu activation, and, finally, a linear layer
with an output dimension equal to the number of
classes.

• Lemmatizer: an autoregressive character de-
coder. It is an RNN (GRU) and produces the
lemma of a given word, one character at a time.
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The input for each time-step is the previous pre-
dicted character, a context vector and multiplica-
tive attention vector over the time-sequence of a
CharactersAsTokenEncoder (Luong et al., 2015).

• Structured Tagger: a multilabel-multiclass se-
quence tagger. It consists of a Tagger per label,
where each label is a sub-category of a PoS tag.

As previously mentioned, each decoder imple-
ments two methods; add_targets in which the tar-
get outputs are mapped to a format suitable for the
loss function and BatchPostprocess in which the pre-
dictions of the decoder are mapped to a sequence of
strings.

For each decoder there is an associated loss func-
tion which is scaled by the decoder’s weight. All the
losses are then summed up and a backward step ap-
plied to the combined loss.

2.4 Delivering Trained Systems

Delivering an easy-to-use trained system can often be
a time-consuming task. The DMS makes this task
simpler.

After training, the trained model’s weights are
stored to disk along with all necessary files required
to successfully load the model: the global configura-
tion of the model components and the configuration
for each component (e.g. string-to-index mappings,
subword tokenizer, etc.). For a model release, these
files are packaged and uploaded to a web storage, for
example, CLARIN (Hinrichs and Krauwer, 2014).

An API is then defined which handles the inter-
face towards a trained model. The API initializes
the model parameters and loads the weights and other
necessary files. It then provides easy to use functions
based on the defined decoders. This API is then ex-
posed to the end-user via a PyTorch Hub configura-
tion file. The PyTorch Hub configuration also han-
dles model downloading and extraction. The terminal
client replicates the functionality of the PyTorch Hub
configuration.

3 EXAMPLE IMPLEMENTATION
AND RESULTS

In this section, we describe our implementation of
PoS tagging and lemmatization for Icelandic. In par-
ticular, we go through the development process and
experimentation which demonstrates the usefulness
of the DMS. At multiple stages in the development
process, we released the trained models to end-users.
The model’s accuracies are summarized in Table 1.

3.1 Reimplementing ABLTagger

Figure 2: An overview of the improved ABLTagger. It uses
the CharacterEncoder, CharactersAsTokenEncoder, Word-
Encoder, and two different PretrainedWordEncoder. These
are then combined using the SentenceEncoder and fed to
the Tagger.

We started by reimplementing the PoS tagger
(ABLTagger) presented in (Steingrímsson et al.,
2019) in PyTorch. It roughly consists of Character-
sAsTokenEncoder, WordEncoder, a PretrainedWor-
dEncoder with hand-constructed n-hot vectors based
on the the Database of Icelandic Morphology (DIM)
(Bjarnadóttir et al., 2019). All of these encoders are
then combined using the SentenceEncoder and de-
coded using the sequence Tagger. The ABLTagger
achieves an accuracy of 95.15% on MIM-GOLD
(Loftsson et al., 2010), the standard PoS benchmark
for Icelandic.

The input to the model consists of tokenized text
which is then further broken down into characters for
the CharactersAsTokenEncoder. We further require
two different token-to-index mappings, one for the
vanilla WordEncoder and another for the Pretrained-
WordEncoder, as their vocabularies differ.

We performed multiple ablation studies on the in-
dividual components to determine the effect of each
component. Whilst doing that, we discovered that
certain components were under-performing and found
better hyper parameters. We also incorporated an-
other PretrainedWordEncoder based on fastText (Bo-
janowski et al., 2017). Here, we found the dynamic
nature of the DMS to be helpful in testing different
architecture variations.

This improved version of ABLTagger resulted in
an increase of accuracy to 95.59%. An overview of
the architecture can be seen in Figure 2.

3.2 Incorporating a
TransformerEncoder

In the next step, we incorporated a TransformerEn-
coder, an ELECTRA-small model trained on the Ice-
landic Gigaword Corpus (Steingrímsson et al., 2018).
We evaluated multiple configurations of the previous
components in conjunction with the TransformerEn-
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Table 1: A summary of PoS tagging and Lemmatization experiments performed using the DMS. The results are based on
9-fold cross-validation on MIM-GOLD excluding the “e” and “x” tags. The lemmatization accuracies are based on a non-
standard split.

Accuracy
System PoS tagging Lemmatization
ABLTagger 95.15% -
Improved ABLTagger 95.59% -
ELECTRA-small 96.65% 97.54%
ELECTRA-small + DIM 96.65% 98.90%
ELECTRA-base 97.84% -

coder and the final model achieves an accuracy of
96.65%. Incorporating a TransformerEncoder further
increased the complexity of the preprocessing as now
we needed to apply a subword tokenizer on the input
whilst ensuring that the subword sequence length did
not exceed the positional encoding limit on the Trans-
formerEncoder. Furthermore, we needed to ensure
that the number of outputs from the TransformerEn-
coder equalled the number of tokens from the other
modules. Here, we found the BatchPreprocess inter-
face in the Encoder to be helpful.

The ELECTRA-small model was then switched
out for an ELECTRA-base model. In the exper-
iments with the ELECTRA-base model, we found
that the other components, the CharactersAsTokenEn-
coder, the WordEncoder and both the PretrainedWor-
dEncoders did not improve the PoS tagging accuracy,
resulting in a maximum, state-of-the-art, accuracy of
97.84%.

3.3 Adding the Lemmatizer

Figure 3: An overview of the joint tagger and lemmatizer.
It uses the CharacterEncoder, CharactersAsTokenEncoder
and the TransformerEncoder. The CharactersAsTokenEn-
coder is fed to Lemmatizer. The Tagger and Lemmatizer
share the TransformerEncoder.

Once the PoS tagging experiments were finished,
we trained a stand-alone Lemmatizer and a joint Lem-
matizer and Tagger. The joint model can be seen in
Figure 3. Both the stand-alone and joint models used
a TransformerEncoder and a CharactersAsTokenEn-
coder. By comparing the stand-alone model with the
joint model, we found that the Lemmatizer in the joint
model was under-performing and that the Lemma-
tizer was negatively affecting the PoS tagger. To at-
tempt to remedy this, we scaled down the loss weight

on the Lemmatizer and pretrained the Lemmatizer on
data from the DIM, i.e. lemmatization with PoS con-
text, but no sentence context. The model was then
fine-tuned on MIM-GOLD.2 Here, we found the De-
coder interface of the DMS to be very helpful. We
are still not satisfied with PoS tagging performance of
the joint model, as the PoS tagging accuracy is still
negatively affected by the Lemmatizer.

We have yet to experiment with the Structured
Tagger, in which we predict PoS tag sub-categories,
allowing us to predict tags not seen in the training
data.3 We also want to experiment with different ap-
proaches for the joint model.

4 CONCLUSIONS

We have presented DMS, the Dynamic Multitask Sys-
tem, and demonstrated its usefulness and simplicity
by applying it to PoS tagging and lemmatization for
Icelandic. Our PoS tagger achieves state-of-the-art
accuracy of 97.84%. Multitask systems are inher-
ently more complex to develop than single-task sys-
tems, but the DMS can reduce the development ef-
fort for multitask systems. The DMS can be easily
extended to different tasks, leverage state-of-the-art
text encoders and simplify frequent deliveries to end-
users.

We plan to continue developing the DMS, mainly
to make it easier to use for the developer. In short, the
DMS pushes a lot of the complexity to the system’s
run configuration. This configuration can become un-
wieldy, but this can be mitigated by run configuration
tools, such as Hydra (Yadan, 2019). Hydra enables
the developer to “dynamically create a hierarchical
configuration by composition and override it through
config files and the command line”.

2Note that the MIM-GOLD lemma data had not been
released at this stage, so we were using a non-standard split.

3There are roughly 600 PoS tags in the Icelandic tag set,
whereas only about 570 are seen in the training data. The
tags contain a structure which we expect the model to be
able to learn.
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Furthermore, some boiler-plate code required for
the training loop could also be reduced with a train-
ing framework, such as PyTorch Lightning. PyTorch
Lightning is a lightweight PyTorch wrapper which re-
duces the engineering effort required to train models.
It reduces the boiler-plate code required to train mod-
els on multiple GPUs, different hardware, different
floating-point precision etc.
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