
iProfile: Collecting and Analyzing Keystroke Dynamics from Android
Users

Haytham Elmiligi1 a and Sherif Saad2 b

1Computing Science Department, Thompson Rivers University, BC, Canada
2Department of Computer Science, University of Windsor, ON, Canada

Keywords: iProfile, Keystroke Dynamics, Machine Learning, Android Application, Behavioral Biometric, Smartphone,
Data Collection, Feature Extraction.

Abstract: Keystroke dynamics is one of the most popular behavioural biometrics that are currently being used as a
second factor of authentication for many web services and applications. One of the reasons that makes it really
popular is that it is a resettable biometric, which meets one of the main usability requirements of authentication
systems. With the recent advances in mobile technologies, developers and researchers utilized several machine
learning algorithms to identify smartphone users based on their keystroke dynamics. The biggest problem that
faces researchers in this area is the ability to collect datasets from smartphone users that could be used to train
the machine learning algorithms and, hence, create accurate predictive model. This paper introduces iProfile, a
native Android application that collects keystroke dynamics from Android smartphone users. This application
opens the door for researchers to recruit participants from all over the world to contribute to the data collection
of keystroke dynamics. Our iProfile application allows researchers to study the impact of several parameters,
such as hardware brands, users’ geolocation, native language text direction, and several other factors, on the
accuracy of machine learning classifiers. It also helps maintain a standard benchmark for keystroke dynamics.
Having a standard benchmark helps researchers better evaluate their work based on consistent data collection
procedures and evaluation metrics. This paper explains the main building blocks of the iProfile application,
the algorithms used in the implementation, the communication protocol with the database server, the structure
and format of the generated dataset and the feature extraction approaches. As a proof of concept, the app was
used to develop a novel feature-set that identifies Android users based on 147 features.

1 INTRODUCTION

Keystroke dynamics is currently considered one of
the most popular behavioral biometrics that are be-
ing considered, as a second factor of authentication,
to authenticate users to different services and appli-
cations (Lu et al., 2020). There are two different im-
plementations for user authentication using keystroke
dynamics: one-time or static authentication and con-
tinuous or dynamic authentication. In one-time au-
thentication, a personal profile is created for the users
based on their typing patterns and then used only at
login time to authenticate those users to the target ser-
vice or application (Chen et al., 2021). In continu-
ous authentication, a personal profile is crated for the
users and then used at scheduled time periods to ver-
ify the identity of those users as along as the service

a https://orcid.org/0000-0003-1458-3035
b https://orcid.org/0000-0002-5506-5261

is running or the session is active (Baig and Eskeland,
2021). The main two problems that face researchers
in this area are 1) the lack of data collection tools
for different smartphone operating systems, and 2) the
lack of standard benchmarks, which makes it difficult
for researchers to compare the accuracy of their pre-
dictive models without questioning the impact of the
used datasets.

This paper addresses these two problems by in-
troducing iProfile, a native Android application that
could be used to collect keystroke dynamics data
from Android users. The proposed application al-
lows researchers to study the impact of different at-
tributes on the feature selection and the accuracy of
machine learning classifiers. These attributes include
the smartphone hardware brand, users’ geolocation,
and native-language text-direction. Our application
also helps in maintaining a standard benchmark for
keystroke dynamics on Android platform, which pro-

Elmiligi, H. and Saad, S.
iProfile: Collecting and Analyzing Keystroke Dynamics from Android Users.
DOI: 10.5220/0011002600003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 621-628
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

621



vides a high level of consistency for comparative anal-
ysis. This paper explains the design of the iProfile ap-
plication and how the application utilizes cloud ser-
vices, the algorithms used in the implementation, the
communication protocol with the database server, the
structure and format of the generated dataset and the
feature extraction approaches.

The proposed iProfile application can be used in
both static and continuous authentication. The app
can be used in various application domains, such as
preventing impersonation in online exams and ensur-
ing the entire session is secure and not affected by any
unauthorized accesses.

This paper is organized as follows. Section 2 dis-
cusses related work in the literature and explains the
difference between our approach and the work pub-
lished in this research area. Section 3 discusses the
details of the application design, including user in-
terface design, administration activities, user identi-
fication, connection with could services, etc. Sec-
tion 4 focuses on the feature extraction approaches
used to create an accurate user profile based on raw
data. This section compares different approaches and
uses machine-learning libraries to conduct compara-
tive analysis between different feature-sets. Section 5
presents a case study to show how researchers could
use this application to explore keystroke dynamics
authentication on Android smartphones. Finally, we
draw our conclusion and discuss future work in Sec-
tion 6.

2 LITERATURE REVIEW

There are three different research directions in the lit-
erature with respect to keystroke dynamics. The first
research direction focuses on the implementation of
data collection tools and the different techniques used
to collect as much information as possible from the
users’ keystrokes. The second approach discusses
the feature extraction and selection methods used to
create an accurate user profile. The third approach
discusses the utilization of machine learning algo-
rithms to classify users’ typing patterns into different
classes and identifying users based on their profiles.
Other research work also suggested mixing other
techniques, such as handwriting, with keystrokes to
create a unique profile (Condorelli, 2019).

An example of the first research direction is a soft-
ware tool for determining of the keystroke dynamics
parameters developed by Andrey A. Vyazigin et al.
(Vyazigin et al., 2019). The tool used Standard Java
libraries JAXB (Java Architecture for XML Binding)
and Java NIO.2 for conversion of java objects into ag-

gregated datasets and to implement the file I/O func-
tions, respectively. The advantage of using this design
style is that it makes it easy for developers to main-
tain the project because they have to maintain only
one workspace, while creating different interfaces for
different operating systems. However, this approach
does not capture the real touch screen events on the
main screen layout. For example, it does not handle
events on the activities in smartphone devices, such as
android nor the events on the storyboards in iOS.

Another example is the Android application devel-
oped by Antal et al. (Antal et al., 2015). This appli-
cation was developed using native Android Software
Development Kit (SDK) and created a custom layout
for the user login window to capture the keystroke dy-
namics. The application collected the touch events
time stamps and created a feature vector that has 71
features. Data collected from 42 participants with
different genders and age groups. Although this ap-
proach is more accurate than the first example in cap-
turing the touch events using the native SDK, there
is a major drawback. Authors decided to remove all
user inputs that had errors due to typos or backspaces.
Although this approach normalizes the datasets and
makes it easy for the classifier to identify similar pat-
terns, it generates a predictive model based on unre-
alistic assumptions because users make mistakes and
making typos or pressing a backspace button should
be handled in the pre-processing phase, not totally ig-
nored.

For the second research direction, data extraction
methods focused, in most cases, on the timing fea-
tures. The two main timing features that were con-
sidered in almost all research work are the dwell time
and the flight time (Stavanja et al., 2020). Dwell time
is defined as the time between a touch-down event
and the next touch-up event on the same key, whereas
flight time is defined as the time between a touch-up
event on one key and a touch-down events on the next
key. Researchers extended these two concepts to cal-
culate different time combinations, such as the time
between two consecutive touch-down events or touch-
up events. Researchers also collected other features
such keystroke pressure and touch area. An extension
to this approach is utilizing smartphone sensors. Cor-
pus et al. collected smartphone accelerometer sensor
data in conjunction with timing and swipe dynamics
features (Tse and Hung, 2019).

For the third research direction, researchers con-
sidered two different types of machine learning classi-
fiers: one-class classifiers and multi-class classifiers.
In the context of user authentication using keystroke
dynamics, one-class classifiers use binary classifica-
tion to label an instance (i.e. one sample) as positive

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

622



or negative. A positive response means the instance is
accepted and hence the user is authenticated, whereas
a negative response means the instance is rejected and
the user will not be authenticated to the session or
the service. An example of one-class classifiers is the
one-class Support Vector Machine (SVM) (Schölkopf
et al., 1999). The main idea behind one-class SVM is
to create origin points in the space that represent one
class, for example X, and maximize the distance be-
tween all other data points and the space that host the
origin points. The main objective is to create a clear
gap between the origin data set and all other samples
that do not belong to the origin. In this paper context,
the X class represents the training set of the users’
keystroke dynamics. One-class SVM has been used
in the literature for many anomaly detection applica-
tions (Hejazi and Singh, 2013), and has been recently
been used for authenticating users based on keystroke
dynamics (Liu et al., 2014). In addition to one-class
SVM, few other one-class algorithms were used to au-
thenticate users using keystroke dynamics. Kazachuk
et al. discussed the utilization of fuzzy kernel-based
classifier and a modified version of random-forests
one-class classifier to achieve an efficient implemen-
tation of user authentication systems (Kazachuk et al.,
2016).

The second type of machine learning classifiers
used for user authentication is the multi-class clas-
sifiers (Sahu et al., 2020). Chinmay Sahu et al. de-
veloped a novel distance-based localization algorithm
that could be used to classify keystroke dynamics data
for multi-user biometric classification (Sahu et al.,
2020). Abir Mhenni et al. used both long short-term
memory (LSTM) model and bidirectional long short-
term memory (BLSTM) to classify keystroke dynam-
ics data. LSTM is used to recognize a continuous se-
quences of keystroke dynamics and BLSTM is used
to maintain information about future data. There are
several studies in the literature that analyzed the dif-
ferences between single-class and multi-class classi-
fiers. Pui Koh et al. used the Artificial Bee Colony
(ABC) algorithm as a classifier to classify keystroke
dynamics datasets (KOH and LAI, 2019). The work
published in (KOH and LAI, 2019) provided detailed
description on the development and design of a classi-
fication system to identify 10 different users based on
different sets of features. The authors also explained
the implementation of the ABC algorithm to catego-
rize users.

This paper focuses mainly on the first and second
research directions. We explain in details the design
and implementation of a new mobile application that
is currently being used to collect keystroke dynam-
ics data from Android users. With the new releases

of Android OS, it becomes important to understand
the limitations and challenges that face developers
before implementing such an authentication mecha-
nisms into their applications or services. We also dis-
cuss the different approaches of providing administra-
tive services to manage the data collection procedure,
change the data format, and support different cloud
database servers.

3 iProfile DESIGN AND
IMPLEMENTATION

3.1 User Interface Design

The iProfile app has several user interface windows.
Figure 1 shows five screenshots of the application that
show some of its functionalities. Due to ethics re-
quirements, the iProfile app starts with a digital con-
sent, as shown in Figure 1(a). The digital consent is
used to: 1) explain the data collection project to the
user, 2) emphasize that users’ participation in the data
collection is voluntarily, 3) illustrate that participants
will receive no direct benefits from participating in
this research study, 4) assure that data will be saved in
an anonymous format with no direct links to the iden-
tity of participants, 5) inform the user that the app col-
lects information about the device and the way users
type on the keyboard, 6) provides contact informa-
tion in case the user has questions at any time about
the study or the procedures, and finally 7) request the
user’s consent. Users have to confirm that they have
read the consent, they voluntarily agree to participate,
and they are 18 years of age or older in order to pro-
ceed to the next window. Otherwise, the application
will shut down and will not allow them to proceed to
the data collection window.

Once the user accepts the digital consent form,
the data collection window will appear. Figure 1(b)
and Figure 1(c) show screenshots of the data collec-
tion window for letters and numeric entries, respec-
tively. In the data collection window, users are asked
to type the key word “.tie5Roanl” 30 times, spread
over 5 days. They keyboard shows in Figure 1(b) and
Figure 1(c) is a custom keyboard that we designed in
house and built inside the application. The keyboard
design allows users to type in small letters, capital let-
ters, numbers and special characters. There are three
standard buttons included to switch between capital
and small and to correct typos: a shift, a space and
a backspace buttons. There is also an “?123” /“ABC”
button to switch between the letter-keyboard interface
and the number-keyboard interface. After the users

iProfile: Collecting and Analyzing Keystroke Dynamics from Android Users

623



Figure 1: Screenshots from iProfile Android application. Version 2.1.

finishes typing the keyword, they must press on the
“Done” key to submit their attempt. Once the “Done”
key is pressed, a method inside the Main Activity of
the application is called to check for three conditions.
The first conditions is whether the user types the cor-
rect keyword or not. The second condition is whether
there is at least 5 minutes gap between the current at-
tempt and the previous attempt. The third condition
is whether the user’s device is connected to the WiFi
network. If all these conditions are met, the appli-
cation 1) sends the users’ keystroke raw data to our
cloud database server along with the timestamp for
further processing, 2) displays a toast message to the
user to confirm that the attempt was successful and
the keyword was entered correctly, and 3) updates a
small counter on the main screen to display the num-
ber of successful attempts and the timestamp of the
last attempt. If one or more of these conditions are
not met, the application rejects the attempts and dis-
plays an error message to the user to let them know
why this attempt was rejected. In all cases, the Text
View that holds the data entry will be cleared despite
the status of the attempt.

In addition to data collection, our iProfile appli-
cation provides advanced features for administrators.
Through a special menu that can be accessed after
receiving instructions from the principle investigator,
researchers can set the path to the cloud-based server
that hosts the datasets. The network connection mod-
ule inside the application expects a path to a php script
that receives either a flat JSON object for each touch
event or a nested JSON array that splits the user’s fea-
tures and the device’s features into two JSON objects.
It is important to explain here that a touch event refers
to any touch-down or touch-up event on any key. That
means, for each single character, two events at least
will be sent to the database server; one for touch-
down and one for touch-up. Each event will be as-

sociated with 10 features related to the host Android
device and 10 features related to the user’s behavior.

One observation should be noted here based on
our experimental work. Depending on the touch-
screen sensitivity on the target device, the device
might send more than one touch event for a single
action. That means, a single touch on any key can
result in multiple events registered for the same key.
The redundant records are filtered out in the data pre-
processing phase to make sure that only one single
event is registered for touch-up and the same thing for
touch-down for each key. Figure 1(d) shows a screen-
shot of the administrator settings window, where ad-
ministrators can change the default URL to the cloud
database server and the type of the JSON format. The
application also provides an access to a web-interface
page to access the database server from the mobile ap-
plication. Figure 1(e) shows a screenshot of the login
window from the web interface. This access is im-
plemented in the mobile application to make it easy
for administrator to retrieve or check specific records
from the data collection application. This access is
implemented as a Web View in a separate activity in-
side the application and can be accessed only through
the administrator menu.

3.2 Data Collection Logic

The data collection logic depends mainly on the event
handling mechanism. Different alternatives for event
handling have been considered before implementing
the data collection logic. One important decision de-
sign was the design of the keyboard.

The first approach we examined was to use the
built-in keyboard in Android and create touch event
listeners to listen to touch events on the keys. Al-
though this approach is the optimum implementation,
it has limitations on extracting timestamps and pres-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

624



Table 1: Raw data collected on a touch-down event on “t” button.

Features Value Feature Value
ID 48637 Button t

UID PMWDS1455200829526 Touch Pressure 0.2832
Language English Touch Size 0.419355

HW Model Nexus 7 X Coordinate 552.6786
SDK Version 23 Y Coordinate 753.4286
Manufacture Asus X Precision 1.12
Screen Size 6.77382 Y Precision 1.166667
Time Zone New York Action Type Down

Country Code US Action Timestamp 3747694
CPU Cores 4 HR Timestamp 2/11/2021 9:27:43 AM

sure data from the standard Android button views us-
ing the on-touch listener class. Based on our tests with
Android API 25, that target device information about
users’ touch-events. Since rooting the target device
is not a practical solution, we decided not to consider
this option.

The second approach we examined was to create
option was to create a keyboard as an Input Method
Editor (IME). To implement this option, we have to
complete three tasks: 1) creating a class that ex-
tends Input Method Service class, 2) create a settings-
activity to pass options to the IME service, and 3) cre-
ate a setting user interface that should be displayed as
part of the standard system settings on the android de-
vice. Although this option sounds promising since it
allows users to change the input method and set our
keyboard as the default one for all applications, our
surveys show that users did not like to change their
defaults password and did not like the extra step on
the setting menu.

The third approach we examined was to create
a custom keyboard layout and design the keyboard
logic from scratch to have full control over the touch
event listeners. The keyboard could be called as a
fragment inside any activity and all data collected
from the keyboard fragment can be sent back to the
Main Activity when needed. The application collects
20 features: 10 static features to create a profile for
the Android device and 10 dynamic features to create
a profile for the user.

Table 1 shows an example of data collected at one
of our experiments to create a profile for the target
device. The ID field is an auto-increment field that
identifies a touch event record in the database. The
UID is a randomly generated user ID that is associ-
ated with each submission from the same user. The
other 8 fields are used to identify the device. The right
hand-side of Table 1 shows an example of data col-
lected at the same experiment on a touch-down event
on “t” button. Every time a touch event is received

from any button, a method inside the on-touch lis-
tener collects the user’s features and stores them into
a local database inside the application. The database
is implemented as SQLite with a SQLiteOpenHelper
class to create a standard interface with the database.
Once the user presses the “Done” button and all three
conditions discussed before are met, all the records of
the keyword is sent to the database server as multiple
flat JSON objects or nested JSON arrays based on the
settings of the application. The data is filtered out and
processed later in the server to extract the timing, po-
sition and pressure features. Once the data is sent to
the database server, the application waits for a con-
firmation from the server that it received the JSON
objects correctly with no errors. The confirmation is
logged in the application for debugging purposes.

The iprofile application provides a new set of fea-
tures, in addition to the classic features collected in
previous work, that describe the target device tech-
nical specifications. This new addition allows re-
searchers to study the impact of changing the tar-
get Android device on the user’s behavioral biometric
profile.

3.3 The Server Side

The server side consists of two parts: the front-
end and the back-end. The front-end is built using
HTML5, java script, bootstrap and php. The front-
end allows administrators to run several queries and
display data in four different formats: 1) view data
by user id, 2) view data by session id, 3) view data
in a summary table, and 4) view raw data. Figure 2
shows screenshots of the front-end interface. Figure
2(a) shows a query by user’s ID. There are currently
100 users registered in the system but not all of them
completed the 30 samples. We are using bootstrap
badges, which are numerical indicators of how many
items are associated with a link. The administrator
can see the number of entries per user as badges in

iProfile: Collecting and Analyzing Keystroke Dynamics from Android Users

625



Figure 2: Screenshots from iProfile administrator web interface, server side -– front-end.

the right hand side. In this example, the selected user
has entered 31 samples and is using Samsung device
that is running SDK 22. Figure 2(b) shows a different
query by sessions. A session represents 24 hours. We
currently have 91 sessions registered in the system.
These sessions are spread over more than 6-month pe-
riod. The administrator can see the number of entries
per session. In this example we have 51 entries in the
selected session and the timestamp is displayed as a
badge next to each user id.

The back-end of the server consists of three mod-
ules, MySQL database server, phpMyAdmin as an ad-
ministration platform for the database server and sev-
eral php scripts to handle the communication between
the front-end and the database server. The database
server is password protected and data can be extracted
from the server in raw format as a csv file or as an ex-
cel sheet. We were planning to collect GPS locations
and sensors data and we implemented these features
in the first version of the application but we had may
participants declining to continue in the data collec-
tion phase because they did not feel comfortable with
registering their GPS locations. Participants felt that
they were tracked although we assured them that data
is collected in anonymous format. One of the main
reasons for getting these strong concerns from partic-
ipants is related to the Android handle permissions in
the recent releases. Android classifies the access to
GPS location in the Android device as a dangerous
permission and therefore, developers has to request
that permission at runtime, which raises more con-
cerns from the user’s perspective compared to the old
traditional way of accepting all permissions at instal-
lation time. Therefore, we had to remove the part of
the code that collects the GPS collection in the latest
release of the application (Version 2.1).

4 FEATURE EXTRACTION

When we designed the communication module inside
the iProfile application, the highest priority was to
transfer as much raw information as possible to the
server. We made a critical design decision by no per-
forming any data processing before the transmission
stage because we did not want to lose any opportunity
to utilize the raw data in the future by creating a new
feature or analyzing certain information, etc. While
this approach preserved the raw contents, it required
a per-processing step to re-format the data before the
feature extraction phase.

The data collection was done over 2 weeks with
invitation emails sent to over 1000 users and research
groups. We also created a home page for the project
to answer all questions from participants and refer-
enced the ethics approval obtained from our home
university. Throughout the data collection phase, we
received 211,304 records for touch events from vol-
unteered from all over the world.

The raw data was sent as a collection of 32
touch events (records) for each successful attempt for
each user. Because users had to type the keyword
“.tie5Roanl”, each successful attempt generated 16
touch-down events and 16 touch-up events, as shown
in Table 2.

The “?123” key switches the keyboard from letter
to numeric and the “ABC” returns the keyboard from
numeric back to letters. The shift key is used to switch
the keyboard to upper-case letters, which lasts for the
next click only and then returns back to lower-case
letters. To prepare the dataset for the feature analy-
sis phase, a python script is developed to execute the
following procedure:

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

626



Table 2: 32 touch events for each attempt to write
.tie5Roanl.

1 ?123 Down 17 ABC Down
2 ?123 Up 18 ABC Up
3 . Down 19 Shift Down
4 . Up 20 Shift Up
5 t Down 21 R Down
6 t Up 22 r Up
7 ABC Down 23 o Down
8 ABC Up 24 o Up
9 i Down 25 a Down

10 i Up 26 a Up
11 e Down 27 n Down
12 e Up 28 n Up
13 ?123 Down 29 l Down
14 ?123 Up 30 l Up
15 5 Down 31 Done Down
16 5 Up 32 Done Up

1. Data Sorting: All record were originally sorted
based on timestamps, which makes it possible
to find overlapped instances from different users.
The first step in our pre-processing procedure is
to sort data based on user id and timestamp in an
ascending order.

2. Removing Redundant Records: Our volunteers
used different brands of smartphone devices with
different sensitivity levels of touch screens. We
observed in few records that one touch is generat-
ing multiple down and up events for the same key.
Our second step was to remove all the redundant
records and keep only the last registered event for
each key.

3. Excluding Users with typos or Low Number of
Samples: We decided to exclude all users with
less than 50 correct attempts and all attempts with
typos. Scince this paper focuses only on the data
collection and initial analysis, we decided to leave
the error handling to a future extension of this pa-
per.

5 FEATURE ENGINEERING AND
EXPERIMENTAL ANALYSIS

We extracted 147 unique features from each user-
attempt. Our generated features are grouped in 12
groups as shown in Table 3. We extracted these 147
features for all users. The app can be used to collect
all 147 features and report them back to the research
administrators for further processing. As a proof of

concept, we created a data-frame using pandas li-
braries in python for 10 valid users, 10 instances each.
We used the generated dataset to train various ma-
chine learning models. These models were evaluated
based on 10 K-fold cross validation. The experimen-
tal results show that Naive Bayes achieved 96% clas-
sification accuracy, Decision table achieved 89% clas-
sification accuracy, whereas Random Forest achieved
100% classification accuracy. We believe that this ap-
plication can be used on a wide range within the re-
search community to provide a standard data collec-
tion environment. Having such a tool helps improve
the quality of comparative analysis between research
findings because the same collection tool was used
to generate the datasets used in these comparisons.
This first version of the app is currently in review on
Google Play store (Elmiligi, 2021) and we are plan-
ning to give researchers the ability to configure the IP
address of the destination server so that they can cus-
tomize the app for their needs. We are also planning
to create an open source project to invite researchers
from allover the world to collaborate in the develop-
ment of this tool so that we can advance the research
in this field.

6 CONCLUSION AND FUTURE
WORK

This paper presented the fine implementation details
of a data collection tool for keystroke dynamics on
Android phones. The collection tool, iProfile, helps
the research community to use a common environ-
ment to create comparable datasets. iProfile can be
used as a stand-alone app for data collection or as an
Android library that can be imported in any Android
application to facilitate the data collection feature.
The paper explained how the collected data can be
analyzed and processed to create a new dataset of 147
features. Experimental results show that the new fea-
ture vector can achieve high accuracy of 100% if used
with Random Forest classifier. Although this results
were obtained based on samples from only 10 users, it
proves that the feature vector created by our tool can
be used to standardize the data collection and feature
engineering processes. It also generates a feature vec-
tor that can be used to train existing machine learning
classifiers to achieve high accuracy compared to sim-
ilar trained models in the literature.

iProfile: Collecting and Analyzing Keystroke Dynamics from Android Users

627



Table 3: 147 features extracted from raw data based on touch events for 18 users, 50 valid samples per user.

N Feature-Type Definition Number of Features
1 Down-up Dwell time 16
2 Up-down Flight time 15
3 Down-Down Flight time 15
4 Up-Up Flight time 15
5 Down-up (2-graph) Flight time 15
6 Pressure Touch pressure 16
7 Size Touch area 16
8 X-Y P X-Y precision 16
9 X-Y C X-Y coordinates 16

10 Averages for timing features Average UD, DD, DU, UU, 2-graph 5
11 Average pressure Average pressure for all keys 1
12 Average size Average area for all keys 1

Total 147

REFERENCES

Antal, M., Szabó, L. Z., and László, I. (2015). Keystroke
dynamics on android platform. Procedia Technology,
19:820 – 826. 8th International Conference Interdis-
ciplinarity in Engineering, INTER-ENG 2014, 9-10
October 2014, Tirgu Mures, Romania.

Baig, A. F. and Eskeland, S. (2021). Security, privacy, and
usability in continuous authentication: A survey. Sen-
sors, 21(17).

Chen, Z., Cai, H., Jiang, L., Zou, W., Zhu, W., and
Fei, X. (2021). Keystroke dynamics based user au-
thentication and its application in online examina-
tion. In 2021 IEEE 24th International Conference
on Computer Supported Cooperative Work in Design
(CSCWD), pages 649–654.

Condorelli, M. (2019). Eva lindgren and kirk p. h. sullivan
(eds.). observing writing. insights from keystroke log-
ging and handwriting. Written Language & Literacy,
22:159–162.

Elmiligi, H. (2021). iprofile – app land-
ing page on googleplay store -
https://play.google.com/store/apps/details?
id=blue.pyramid.iprofile.

Hejazi, M. and Singh, Y. P. (2013). One-class support vec-
tor machine to anomaly detection. Applied Artificial
Intelligence, 27(5):351–366.

Kazachuk, M., Kovalchuk, A., Mashechkin, I., Orpa-
nen, I., Petrovskiy, M., Popov, I., and Zakliakov, R.
(2016). One-Class Models for Continuous Authenti-
cation Based on Keystroke Dynamics, pages 416–425.
Springer International Publishing, Cham.

KOH, P. M. and LAI, W. K. (2019). Keystroke dynam-
ics identification system using abc algorithm. In 2019
IEEE International Conference on Automatic Control
and Intelligent Systems (I2CACIS), pages 108–113.

Liu, J., Zhang, B., Zeng, H., Shen, L., Liu, J., and Zhao,
J. (2014). The beihang keystroke dynamics systems,
databases and baselines. Neurocomputing, 144:271 –
281.

Lu, X., Zhang, S., Hui, P., and Lio, P. (2020). Continuous
authentication by free-text keystroke based on cnn and
rnn. Computers & Security, 96:101861.

Sahu, C., Banavar, M., and Schuckers, S. (2020). A novel
distance-based algorithm for multi-user classification
in keystroke dynamics. In 2020 54th Asilomar Confer-
ence on Signals, Systems, and Computers, pages 63–
67.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor,
J., and Platt, J. (1999). Support vector method for
novelty detection. In Proceedings of the 12th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’99, pages 582–588, Cambridge, MA,
USA. MIT Press.

Stavanja, J., Peer, P., and Emeršič, . (2020). Use of
keystroke dynamics and a keystroke-face fusion sys-
tem in the real world. In 2020 43rd International Con-
vention on Information, Communication and Elec-
tronic Technology (MIPRO), pages 1758–1763.

Tse, K.-W. and Hung, K. (2019). Behavioral biometrics
scheme with keystroke and swipe dynamics for user
authentication on mobile platform. In 2019 IEEE
9th Symposium on Computer Applications Industrial
Electronics (ISCAIE), pages 125–130.

Vyazigin, A. A., Tupikina, N. Y., and Sypin, E. V. (2019).
Software tool for determining of the keystroke dy-
namics parameters of personal computer user. In
2019 20th International Conference of Young Special-
ists on Micro/Nanotechnologies and Electron Devices
(EDM), pages 166–171.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

628


