
Saga Pattern Technologies: A Criteria-based Evaluation

Karolin Dürr, Robin Lichtenthäler a and Guido Wirtz b

Distributed Systems Group, University of Bamberg, Germany

Keywords: Microservices, Saga Pattern, Workflow Engine, Criteria–based.

Abstract: One challenge in Microservices Architectures is coordinating business workflows between services, for which
the Saga pattern is frequently mentioned as a solution in the literature. This work presents a criteria cata-
log based on which existing technological solutions that help with Saga implementations can be qualitatively
evaluated to enable an informed decision between them. It considers criteria relevant for the Saga pattern, mi-
croservices characteristics, and for operating a system in production. We use it to evaluate four technological
solutions by implementing an exemplary use case. Due to their different origins, the technologies come with
varying strengths and weaknesses and as a result no solution is superior. The results can help developers decide
which technology to use and provide insights into what to consider when implementing the Saga pattern.

1 INTRODUCTION

The microservices architectural style, popularized
by companies like Netflix or Amazon, distributes
a system into small and autonomous services (Al-
shuqayran et al., 2016; Dragoni et al., 2017) commu-
nicating over the network, each modeled around one
business domain and exclusively owning its data stor-
age. Therefore, microservices can be independently
deployed, scaled, maintained, and evolved (Newman,
2015; Richardson, 2019). For business workflows in-
volving several microservices, however, coordination
between services is required to ensure consistency.
Using distributed transactions, for example with the
2–Phase Commit (2PC) protocol, would be a classical
approach (Al-Houmailya and Samaras, 2009; New-
man, 2019) in this regard. But with 2PC, the over-
all availability and scalability of a system is affected
(Newman, 2015; Richardson, 2019; Helland, 2016),
due to the strict locking requirements (Thomson et al.,
2012) combined with the comparatively slow and un-
reliable network–based communication.

The Saga pattern is therefore mentioned fre-
quently (Richardson, 2019; Newman, 2019; Štefanko
et al., 2019; Garcia-Molina and Salem, 1987) as a
solution. It divides a transaction into multiple local
transactions so that locks for included resources do
not have to be held until full completion. For work-
flows involving multiple services, the Saga pattern

a https://orcid.org/0000-0002-9608-619X
b https://orcid.org/0000-0002-0438-8482

therefore aligns better with the microservices charac-
teristic of autonomy (Dürr et al., 2021).

Nevertheless, the Saga pattern involves complex-
ity, because such independent local transactions need
to be coordinated and compensation must be possible
to take into account different failure scenarios. There-
fore, framework support can be helpful and suitable
technologies have emerged. This work investigates
different existing solutions by comparing their capa-
bilities based on a well–defined criteria catalog. We
acknowledge that the Saga pattern is not suitable for
every use case, but this work does not provide an eval-
uation of when it fits and when it does not. Instead, we
make the assumption that the Saga pattern has already
been identified as suitable for a use case at hand and a
technological solution for supporting the implementa-
tion needs to be chosen. Therefore, we also consider
aspects important when operating a system in produc-
tion, like monitoring or security. We summarize our
aim with the following research questions:

RQ1: What criteria can be used to evaluate and
compare existing technologies that support the
implementation of the Saga pattern?
RQ2: How do recent technological solutions that
support implementing the Saga pattern perform
concerning the defined criteria?

In the following, we shortly describe the Saga pattern
in section 2, review similar evaluations in section 3,
and outline our approach in section 4. We evaluate the
technologies based on our criteria catalog in section 5,
discuss it in section 6 and conclude in section 7.

Dürr, K., Lichtenthäler, R. and Wirtz, G.
Saga Pattern Technologies: A Criteria-based Evaluation.
DOI: 10.5220/0010999400003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 141-148
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

141



 Abort Sagas

 Start Cancel Flights

 Start Sagas

 Start Book Flights

 Start Book Hotels

Flight Service

Saga 

Execution 

Coordinator

 End Cancel Flights

Travel ServiceTravel Service

Begin Saga

Start Book Hotel

End Book Hotel

Start Book Flight

Abort Saga

End Saga

Saga Log

Start Cancel Flight

End Cancel Flight

Start Cancel Hotel

End Cancel Hotel

 End Book Hotels

 Start CancelHotels

 End Cancel Hotels

Hotel ServiceHotel Service

 request/ messages

 writing to logs

Save Trip

Book Hotel

Cancel Hotel

Local transaction

MicroserviceMicroservice Book Flight

Cancel Flight

Figure 1: Execution of a Saga’s failure scenario based on (Dürr et al., 2021) and 1.

2 SAGA PATTERN

In 1987 (Garcia-Molina and Salem, 1987) introduced
the Saga pattern to manage long–lived transactions
(LLT). A Saga designs such a LLT as a sequence of
local transactions instead of a single ACID (Vossen,
2009) transaction as in the 2PC protocol.

Therefore, Sagas prevent the need for extended
locking of resources and allow updating data in mul-
tiple services without using distributed transactions
(Richardson, 2019). But it also means that an ap-
proach is needed to coordinate these independent ser-
vices, control each Saga’s progress, and resolve in-
consistencies eventually through compensation when
needed. Coordination of Sagas can be achieved ei-
ther through choreography (Limón et al., 2018) in
a decentralized way or through orchestration where
coordination is centralized in a so–called Saga Exe-
cution Coordinator (SEC), as proposed by (Garcia-
Molina and Salem, 1987). Because orchestration is
the approach originally proposed by (Garcia-Molina
and Salem, 1987) and it was found to be better suited
for complex business contexts by (Bruce and Pereira,
2018), in this paper we focus on the orchestration ap-
proach. As shown in fig. 1, the SEC is the orchestra-
tor (Newman, 2019; Bruce and Pereira, 2018) and it is
in itself a stateless service that can be realized either
within an existing service or as a separate one. The
SEC relies on the Saga log, a distributed, persistent
log where the status of local transactions of all Saga
instances is tracked to control the progress and en-
able a continuation even if the SEC temporarily fails.
For further clarification, we now discuss the example
shown in fig. 1 of a trip booking which can be con-
sidered as a LLT that includes booking a hotel and a

1https://speakerdeck.com/caitiem20/applying-the-sag
a-pattern?slide=70

flight. This example was also used by Catie McCaf-
frey2 to introduce the Saga pattern in a microservices
architecture including a Travel Service that saves the
booking information and initiates the execution, a Ho-
tel Service responsible for hotel bookings and a Flight
Service for flight bookings.

Here, the SEC is either part of the Travel Service
or an individual service and relies on the services’ in-
terfaces to execute Sagas. Upon a trip request, the
Travel Service initiates the Saga instance and exe-
cutes the Save Trip transaction locally. Then, the SEC
triggers the hotel booking and waits for a response.
Booking a hotel, however, is completely in the re-
sponsibility of the Hotel Service which controls its
own state and has to ensure consistency through local
transactions. Therefore, the SEC relies on the pro-
vided functionality without knowing about details of
such local transactions. If booking a hotel succeeds,
the SEC is informed and triggers the next service to
proceed (Richardson, 2019; Limón et al., 2018) until
all transactions are completed and thereby the Saga
itself is completed. However, in case a local trans-
action fails like the flight booking in fig. 1, all pre-
viously done changes have to be compensated. The
most commonly used strategy uses so–called com-
pensating transactions (Richardson, 2019; Garcia-
Molina and Salem, 1987). A compensating transac-
tion rolls the previous changes back, either entirely or
at least semantically (Newman, 2019; Garcia-Molina
and Salem, 1987). Each service participating in a
Saga has to guarantee the possibility to compensate
state changes introduced by previous transactions.
This might also include additional compensations ex-
ternal to the Saga in focus but required due to such
state changes. However, this remains the responsibil-
ity of the service currently providing compensation.

2https://www.youtube.com/watch?v=xDuwrtwYHu8

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

142



In our example, this means that the Hotel Service has
to ensure the compensation of the hotel booking if the
flight booking fails and therefore has to be canceled.

3 RELATED WORK

Some previous studies have also assessed existing
technologies with regards to the Saga pattern. The
study by (Štefanko et al., 2019) analyzed four dif-
ferent Java–based application frameworks: Axon3,
Eventuate Event Sourcing4 and, like us, Eventu-
ate Tram5 and MicroProfile Long–Running Actions
(LRA)6, but based on the Narayana7 implementa-
tion. Their evaluation focused on assessing the frame-
works’ support for the Saga pattern, its implemen-
tation complexity, and a performance analysis in-
vestigating the system’s behavior under large load
(Štefanko et al., 2019). However, they do not specify
their used quality criteria in detail. As a further con-
tribution, they reported discovered problems for each
framework. (Dürr et al., 2021) used a solely qual-
itative analysis to compare two technological solu-
tions: Eventuate Tram and the workflow orchestration
engine Netflix Conductor8. They consider general
Saga execution characteristics, as well as microser-
vices characteristics and challenges for their evalua-
tion criteria, but do not describe their criteria in detail.
Our work therefore extends their work by consider-
ing additional technological solutions as well as an
extended criteria catalog. Besides these two studies,
(Fugaro and Vocale, 2019) shortly describe different
Saga implementation possibilities in their book and
briefly address some of the challenges of each frame-
work, but without an evaluation according to specific
criteria. In this context, they mention Axon, Eventu-
ate Event Sourcing, and Eventuate Tram, but focus on
an implementation proposal using MicroProfile LRA.

4 METHODOLOGY

While considering the aforementioned evaluations
(Dürr et al., 2021; Fugaro and Vocale, 2019; Štefanko
et al., 2019) in combination with a literature review,
we create a criteria catalog that can be used for a

3https://docs.axoniq.io/reference-guide/axon-framewor
k/sagas

4https://eventuate.io/usingeventuate.html
5https://eventuate.io/abouteventuatetram.html
6https://microprofile.io/project/eclipse/microprofile-lra
7https://narayana.io/lra/
8https://netflix.github.io/conductor/

technological evaluation. As additional resources we
used further literature (Estdale and Georgiadou, 2018;
Gaffney, 1981; Cruz et al., 2006; Confino and La-
plante, 2010) as well as the ISO/IEC 25010 Quality
Models9 to develop a comprehensive criteria catalog.
The catalog realizes a qualitative evaluation since it
does not include quantitative aspects like system load
or performance. We then use this catalog to evaluate
an example Saga pattern implementation using four
different technological solutions. As many criteria of
(Dürr et al., 2021) are adopted, refined but also ex-
tended, their analyzed solutions Eventuate Tram and
Netflix Conductor are re–evaluated. While Eventu-
ate Tram is a framework specifically designed for the
Saga pattern, Netflix Conductor represents a work-
flow orchestration engine designed for distributed
workflows in general. As a third solution, we consider
MicroProfile LRA (backed by the Eclipse Founda-
tion) since it represents a very recent solution explic-
itly designed for LRA in microservices, so also Sagas.
The fourth and last evaluated solution is the work-
flow engine Camunda10 that can execute processes
which are defined using Business Process Modeling
and Notation (BPMN). Since the BPMN language
itself provides the option of defining compensation
events for tasks, Rücker (Rücker, 2021) suggested us-
ing a BPMN–based workflow engine like Camunda to
realize the Saga pattern. In addition, BPMN is an es-
tablished standard, and Camunda was not considered
in similar evaluations yet.

For Eventuate Tram (v0.14.0), Netflix Conductor
(v2.30.3) and Camunda (v7.15.0), we implemented
the sample application’s microservices as Spring11

services. In contrast, our MicroProfile LRA (v1.0) re-
alization, implemented those using the MicroProfile
runtime provided by OpenLiberty12. More informa-
tion concerning the realization can be found online13.

5 RESULTS

To perform a structured evaluation of different tech-
nological solutions for implementing the Saga pat-
tern, clearly described and relevant criteria are
needed. In the following we shortly describe the crite-
ria catalog that we have developed and the evaluation
of the technologies based on this catalog.

9https://iso25000.com/index.php/en/iso-25000-standa
rds/iso-25010

10https://camunda.com/
11https://spring.io/
12https://openliberty.io/docs/21.0.0.6/microprofile.html
13https://github.com/KarolinDuerr/BA-SagaPattern

Saga Pattern Technologies: A Criteria-based Evaluation

143



5.1 Criteria Catalog

Our criteria catalog considers several areas of inter-
est related to characteristics of microservices and the
Saga pattern as well as some quality attributes of the
ISO/IEC 25010 standard. The focus is on how the
Saga pattern can be implemented with the respective
technologies and what they offer in addition for oper-
ating and maintaining a system based on the Saga pat-
tern in production. We have therefore adopted and in
some cases refined the criteria for general Saga char-
acteristics, monitoring, expandability, and fault
tolerance from (Dürr et al., 2021). In addition, orga-
nized by the quality attributes of the ISO/IEC 25010
standard, we have derived criteria considering the ar-
eas of security, testability, and portability. And fi-
nally, we adopted some open–source characteristics
from (Confino and Laplante, 2010), because they can
also be relevant aspects to consider when selecting a
technology. Although some characteristics have to be
treated with caution as they may be subject to differ-
ent interpretations, like repository stars, or since no
generally accepted metrics exist, for example regard-
ing documentation (Confino and Laplante, 2010). We
described all criteria in more detail in order to have
a comprehensive and understandable criteria catalog
that could also be applied to additional technologies.
However, we cannot report the complete catalog due
to space limitations here, but provide it online14. Fur-
thermore, the different criteria are also presented in
the following technological evaluation.

5.2 Technological Evaluation

In the following, we use all criteria from our catalog
to evaluate the implementations15 based on the four
technologies: the Eventuate Tram Saga framework,
Netflix Conductor, Camunda, and MicroProfile LRA.
Table 1 and table 2 summarize our results, of which
some originate from the previous work by (Dürr et al.,
2021) on Eventuate Tram and Netflix Conductor.

Considering general Saga characteristics, Con-
ductor and Camunda offer a bit more flexibil-
ity, because Sagas can be defined in a language–
independent way and for the communication between
participants different options such as HTTP requests
or Kafka16 messages are available. Instead, Even-
tuate provides a Java–based DSL and MicroProfile
LRA requires Java Annotations to define Sagas based
on JAX–RS resources. The communication between

14https://karolinduerr.github.io/BA-SagaPattern/Criteria
Catalog/

15https://github.com/KarolinDuerr/BA-SagaPattern
16https://kafka.apache.org/

participants is prescribed (Kafka messages for Even-
tuate and HTTP requests for MicroProfile LRA).
Only Eventuate and Camunda allow to directly link
the compensating transactions to transactions, which
means only executed ones will be compensated (Dürr
et al., 2021). With MicroProfile LRA, a correspond-
ing compensating transaction needs to be defined in
the same Java class to achieve this effect. Whereas
for Conductor, per workflow, which represents a Saga
as a collection of tasks, only one failure workflow can
be specified which includes all compensating trans-
actions. In case of an abort, the failure workflow is
started and thus also unnecessary compensating trans-
actions might be executed (Dürr et al., 2021). Con-
ductor and Camunda rely on a central engine to or-
chestrate the Saga execution which in the case of Ca-
munda can also be integrated with a service, e.g. the
TravelService. The TravelService only starts a Saga
execution then. With Eventuate and MicroProfile, the
TravelService has the role of the orchestrator, but it
relies on Eventuate’s CDC service and the MicroPro-
file Coordinator respectively. Furthermore, Eventu-
ate limits the Saga process execution to a strictly se-
quential one (Dürr et al., 2021) whereas the others
allow for parallel execution of specified transactions.
In the case of MicroProfile LRA, this is possible be-
cause it is the developer’s responsibility to implement
the Saga sequence. Triggering the compensation pro-
cess for a Saga externally is possible with all tech-
nologies, except Eventuate, using the provided API.
Though with Eventuate Tram participants can be con-
nected directly (Dürr et al., 2021) enabling also an
event–based choreography approach.

Our results for monitoring aspects partly stem
from the previous evaluation by (Dürr et al., 2021).
To retrieve runtime information, Conductor and Ca-
munda provide a UI with several functionalities like
visualizing current workflows. In contrast, with Even-
tuate all transactions and messages can only be ac-
cessed directly via the database, which could however
be used to realize a custom visualization tool. Also
MicroProfile LRA only provides a small set of run-
time insights (LRA status: active/failed/closed) via
the coordinator API. Metrics like average execution
times or the number of failed Sagas can be collected
from an endpoint for all technologies. Additionally,
Eventuate Tram and MicroProfile LRA allow for easy
activation of distributed tracing, using for example
Zipkin or Jaeger17. Furthermore, all technologies pro-
vide sufficient logging. For the expandability crite-
ria subset, we performed an extension of the imple-
mentations and results are again derived from (Dürr
et al., 2021) where suitable. Expandability is facili-

17https://www.jaegertracing.io/

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

144



Table 1: Evaluation overview – Part 1.

Criterion Eventuate Tram Netflix Conductor Camunda MicroProfile LRA

General Saga Characteristics

Saga definition Eventuate DSL JSON /
provided clients

Modeler/
XML / Java DSL Annotations

Orchestrating services CDC Service,
TravelService Conductor server Camunda Engine

in TravelService
MicroProfile Coordinator,

TravelService

Specifying compensating
transactions 3 3 3 3

Compensation transaction
allocation specific transaction entire workflow specific transaction JAX-RS

resource class

Parallel transaction execution 7 3 3 developer’s responsibility

Parallel execution configurable 7 3 3 developer’s responsibility

Participant communication
selectable 7 3 3 7

External compensation trigger not directly via API via API via API

Choreographed Sagas 3 7 7 7

Monitoring

Runtime state of Sagas via database UI visualization UI visualization,
database

partly via
coordinator API

Orchestrator metrics from CDC service from Conductor
server

from embedded
Process Engine

from embedded Coor-
dinator, TravelService

Tracing Zipkin integration not directly
supported

not directly
supported

Zipkin & Jaeger
integration

Logging microservices logs Conductor server
logs microservices logs microservices logs

Expandability

Terminating/Pausing
running Sagas not directly via API / UI via API / UI via API

Versioning Sagas 7 3 3 7

Built–in language support Java Java, Python Java Java

Any language for orchestrator 7 3 3 7

Any language for participant 3 3 3 7

Fault Tolerance

Execution timeouts 7 enforced enforced 3

Reaction to participant fault unsubscribe retry retry developer’s responsibility
& compensation

Saga continuation trigger
after orchestrator crash new Saga instance restart of

Conductor server
restart of

TravelService
7

(developer’s responsibility)

New Sagas while orchestrator
unavailable 3 only with buffering 7 7

Independent compensating
transactions 3 7 3 3

Orchestrator reaction to
duplicate messages detect & ignore detect & ignore log exception

& ignore
developer’s responsibility,

detect & ignore

Orchestrator reaction to
old messages detect & ignore detect & ignore log exception

& ignore
developer’s responsibility,

detect & ignore

High availability through replication through replication through replication –

Saga Pattern Technologies: A Criteria-based Evaluation

145



Table 2: Evaluation overview – Part 2.

Criterion Eventuate Tram Netflix Conductor Camunda MicroProfile LRA

Security

Encrypted Communication* 3 3 3 3

Authentication Support* 7 7 3 MicroProfile JWT

Authorization Support* 7 7 3 MicroProfile JWT

Testability

In–house test framework 3 7 3 7

Unit test Saga definition 3 7 3 successful Saga

Unit test Saga participant 3 3 3 3

Saga integration test* 3 3 3 3

Portability

Containerization Docker Hub image Dockerfile & community
Docker Hub image Docker Hub image Docker Hub image**

Kubernetes examples 7 Kubernetes examples Kubernetes examples**

Cloud Provider 7 7 Camunda Cloud several guides**

OSS Characteristics

Provider Eventuate Netflix Camunda Eclipse

License Type Apache Licence 2.0 Apache Licence 2.0 Apache Licence 2.0 Apache Licence 2.0

Repository Stars*** 781 3664 2350 71

Fork Count*** 180 approx. 1200 approx. 1000 24

Contributor Count*** 2 161 175 18

Support
Issue tracking

Discussion forum
Enterprise support

Issue tracking
Discussion forum

Issue tracking
Discussion forum
Enterprise support

Issue tracking
Discussion forum

Documentation 3 3 3 3

* Not implemented by the prototype ** Depends on chosen MicroProfile runtime, here: OpenLiberty
*** Numbers specific for respective Github repository, as of 2021-11-30

tated the most by Conductor and Camunda, as both
allow to pause or terminate currently running Sagas
either via their API or UI and they support version-
ing Sagas so that Sagas of a new version can start
while a previous version still runs. Also, considering
the usage of different programming languages, Con-
ductor and Camunda do allow both the orchestrator
and the participants to be written in almost any lan-
guage, because the definition of Sagas is language–
independent. MicroProfile LRA is restricted, because
the MicroProfile specification is explicitly for Java–
based microservices, while Eventuate prescribes Java
only for the orchestrator so that participants could be
written in any language. This is possible, although
built–in support is only provided for Java, which is
similar to the others, except for Conductor which also
offers a Python client.

Regarding aspects of fault tolerance to handle
distributed systems challenges, we found that Con-
ductor, Camunda, and Eventuate retry communica-

tions in case of participant crashes. However, Even-
tuate unsubscribes participants responding with a fail-
ure and they are re–registered only after a restart (Dürr
et al., 2021). MicroProfile LRA itself provides no
handling, but it can be combined with MicroProfile
Fault Tolerance18. Execution timeouts are enforced
by Conductor and Camunda and can be defined with
MicroProfile LRA, so that compensation is triggered
if the timeout is reached, whereas Eventuate might
wait indefinitely (Dürr et al., 2021). All technolo-
gies, except Conductor, can tolerate failures during
compensation for participants where no compensation
is necessary, because of their independent specifica-
tion. Orchestrator crashes are tolerated by persisting
the Saga state, only MicroProfile LRA leaves this to
the developer. However, Eventuate needs an external
trigger like a new Saga start to continue (Dürr et al.,

18https://github.com/eclipse/microprofile-fault-toleranc
e

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

146



2021), while Conductor and Camunda continue after
a restart. Starting new Sagas while the orchestrator
is unavailable is only possible when a separate ser-
vice is responsible for the Saga start as in the case of
Eventuate (Dürr et al., 2021) or when the orchestrator
would be a service separate from the TravelService.
Otherwise, buffering requests is another option. All
technologies, except MicroProfile LRA, detect and
ignore duplicated or old messages by default. Fi-
nally, all technologies can be set up to be highly avail-
able by replicating their respective orchestrators, ex-
cept for MicroProfile LRA where the chosen runtime,
OpenLiberty, does not include explicit information
on replication. Regarding security criteria, all tech-
nologies support encrypted communication, although
partly not built–in. Extensive authentication and au-
thorization support, however, is only provided by Ca-
munda for example by defining user groups. Mi-
croProfile LRA can be combined with MicroProfile
JWT Auth19 to include authentication and authoriza-
tion. Because proper Saga implementations should
also include tests (Richardson, 2019), the technolo-
gies should ideally facilitate testability. Of the four
evaluated technologies, only Eventuate and Camunda
provide in–house test frameworks which also allow
testing the Saga definition in isolation. With Micro-
Profile LRA, currently only the success case of a Saga
execution can be tested due to the annotation–based
compensation mechanism. Nevertheless, testing Saga
participants in isolation and writing integration tests
is possible with all four technologies. To support
portability, technologies should be deployable on
different platforms. All support containerization via
Docker and Kubernetes, although for Conductor only
a community image is available and no examples for
Kubernetes are given. In the case of MicroProfile
LRA, deployability depends on the chosen runtime,
in our case OpenLiberty. Deployment instructions for
specific cloud providers are merely available for Ca-
munda with Camunda Cloud20 and MicroProfile LRA
which provides several guides21. Finally, considering
OSS characteristics, it can be stated that Conductor
and Camunda show a higher community interaction,
which might be due to the popularity of the providers
behind them. Instead, Eventuate has a very specific
focus and MicroProfile LRA is very recent (its first re-
lease was in May 2021). Support options are equally
well, only Eventuate and Camunda also offer a paid
enterprise version with additional support. Again, for
MicroProfile LRA, the support depends on the chosen
runtime. Each technology also maintains detailed and

19https://github.com/eclipse/microprofile-jwt-auth
20https://camunda.com/products/cloud/
21https://openliberty.io/guides/#cloud deployment

clear documentation including examples. In terms of
license type, all solutions have opted for the Apache
Licence 2.0 which ranks among the most permissive
licenses (Confino and Laplante, 2010).

6 DISCUSSION AND FUTURE
WORK

With our criteria catalog in Section 5.1 we provide
an answer to RQ1. It covers a comprehensive set
of criteria which can be used to evaluate technolog-
ical solutions for implementing the Saga pattern. The
focus is on how well an implementation of the Saga
pattern is supported, also considering operational as-
pects, like monitoring or expandability. Except for the
criteria Saga definition and Specifying compensating
transactions which are basic requirements, the impor-
tance of the criteria depends on the specific context in
which a system is implemented and no general order
of importance for the criteria can be established. For
example, Authentication Support might not be that
important in a context where all services run in an
isolated network while Containerization is important
for flexibility regarding the execution environment.

To use the catalog for an evaluation of a technol-
ogy, in principle, the documentation of a technology
is sufficient if it provides detailed enough informa-
tion. But to have reliable results, an actual imple-
mentation using the technology is needed, especially
considering the criteria for Fault Tolerance. Our an-
swer to RQ2 is therefore based on the implementa-
tions and presented in Section 5.2. While, in sum-
mary, all four evaluated technologies allow robust im-
plementations of the Saga pattern, we identified the
following differences. Since Netflix Conductor is not
specifically designed for Sagas, it does not represent
the respective characteristics as clearly as the other
frameworks. However, it allows for more configura-
tion options like the chosen communication mecha-
nism. Camunda is somehow similar but represents the
Saga characteristics better due to the usage of BPMN
which provides suitable entities (e.g., service tasks or
compensation events) to design Sagas. While Eventu-
ate Tram and MicroProfile LRA are actually designed
for the Saga pattern, they also come with more lim-
itations concerning configurability. Nevertheless, a
choreographed approach is only supported by Even-
tuate Tram. Good Saga testability support is solely
provided by Camunda and Eventuate Tram, as they al-
low running tests in isolation. When extending an ex-
isting system, Netflix Conductor and Camunda allow
for greater flexibility, among other things, through the
possibility of versioning. Additionally, Conductor’s

Saga Pattern Technologies: A Criteria-based Evaluation

147



and Camunda’s UI are beneficial tools when monitor-
ing a system. On the other hand, the ability to ac-
tivate tracing without additional implementation ef-
fort is only provided by Eventuate Tram and Micro-
Profile LRA. All four technologies offer some porta-
bility support. However, only Camunda and Micro-
Profile LRA (depending on the runtime) provide spe-
cific cloud provider support. Security–related features
are currently only available with Camunda. For Mi-
croProfile LRA, additional MicroProfile extensions
could be used to realize security aspects. All tech-
nologies consider fault tolerance, also with some con-
figuration options. Only MicroProfile LRA leaves
some aspects to the developer’s responsibility. Con-
cerning OSS characteristics, documentation and sup-
port exist for all technologies.

Because the importance of the considered criteria
differs depending on the context and the evaluated so-
lutions differ in how they support the criteria, it is not
possible to make a statement about whether one so-
lution is better than another. Nevertheless, our eval-
uation can be used to make an informed decision on
which solution fits which context. In future work, ad-
ditional solutions can be evaluated or the catalog can
be extended with quantitative measures, for example
considering performance or resource utilisation.

7 CONCLUSION

Because implementing the Saga pattern involves con-
siderable complexity, technologies supporting it have
emerged from which a suitable one can be chosen.
To make such a choice in an informed way, our work
presents a criteria catalog for evaluating Saga pattern
implementation technologies and applies it to four ex-
isting solutions. Based on our findings, the considered
technologies differ according to how they support the
criteria and no technology is superior to the others.
Our evaluation can therefore be used to select a suit-
able technology for a specific context in which the
Saga pattern should be implemented.

REFERENCES

Al-Houmailya, Y. J. and Samaras, G. (2009). Two-Phase
Commit. In Encyclopedia of Database Systems, pages
3204–3209. Springer US.

Alshuqayran, N., Ali, N., and Evans, R. (2016). A Sys-
tematic Mapping Study in Microservice Architecture.
In 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pages 44–51.
IEEE.

Bruce, M. and Pereira, P. A. (2018). Microservices in Ac-
tion. Manning Publ., 1st edition.

Confino, J. P. and Laplante, P. A. (2010). An Open Source
Software Evaluation Model. Int. J. Strateg. Inf. Tech-
nol. Appl., 1(1):60–77.

Cruz, D., Wieland, T., and Ziegler, A. (2006). Evalua-
tion Criteria for Free/Open Source Software Products
Based on Project Analysis. Software Process: Im-
provement and Practice, 11(2):107–122.

Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Maz-
zara, M., Montesi, F., Mustafin, R., and Safina, L.
(2017). Microservices: Yesterday, Today, and Tomor-
row. In Present and Ulterior Software Engineering,
pages 195–216. Springer.

Dürr, K., Lichtenthäler, R., and Wirtz, G. (2021). An
Evaluation of Saga Pattern Implementation Technolo-
gies. In 13th European Workshop on Services and
their Composition (ZEUS), volume 2839, pages 74–
82. CEUR-WS.org.

Estdale, J. and Georgiadou, E. (2018). Applying the
ISO/IEC 25010 Quality Models to Software Product.
In Systems, Software and Services Process Improve-
ment - 25th European Conference (EuroSPI), volume
896 of CCIS, pages 492–503. Springer.

Fugaro, L. and Vocale, M. (2019). Hands-On Cloud-Native
Microservices With Jakarta EE. Packt Publ., 1st edi-
tion.

Gaffney, J. E. (1981). Metrics in Software Quality Assur-
ance. In Proceedings of the ACM 1981 Annual Con-
ference, pages 126–130. ACM.

Garcia-Molina, H. and Salem, K. (1987). Sagas. In Pro-
ceedings of the 1987 SIGMOD International Confer-
ence on Management of Data, volume 16, pages 249–
259. ACM Press.

Helland, P. (2016). Life Beyond Distributed Transactions:
An Apostate’s Opinion. ACM Queue, 14(5):69–98.

Limón, X., Guerra-Hernández, A., Sánchez-Garcı́a, A. J.,
and Arriaga, J. C. P. (2018). SagaMAS: A Software
Framework for Distributed Transactions in the Mi-
croservice Architecture. In 6th International Confer-
ence in Software Engineering Research and Innova-
tion (CONISOFT), pages 50–58. IEEE.

Newman, S. (2015). Building Microservices - Designing
Fine-Grained Systems. O’Reilly Media, 1st edition.

Newman, S. (2019). Monolith to Microservices: Evolution-
ary Patterns to Transform Your Monolith. O’Reilly
Media, 1st edition.

Rücker, B. (2021). Practical Process Automation. O’Reilly
Media, 1st edition.

Richardson, C. (2019). Microservices Patterns. Manning
Publ., 1st edition.

Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao,
P., and Abadi, D. J. (2012). Calvin: Fast Distributed
Transactions for Partitioned Database Systems. In
SIGMOD International Conference on Management
of Data, pages 1–12. ACM.

Vossen, G. (2009). ACID Properties. In Encyclopedia of
Database Systems, pages 19–21. Springer US.

Štefanko, M., Chaloupka, O., and Rossi, B. (2019). The
Saga Pattern in a Reactive Microservices Environ-
ment. In Proceedings of the 14th International Con-
ference on Software Technologies (ICSOFT), pages
483–490. SciTePress.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

148


