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Abstract: Machine learning (ML) is increasingly used by various user groups to analyze product errors with data 
recorded during production. Quality engineers and production engineers as well as data scientists are the main 
users of ML in this area. Finding a product error is not a trivial task due to the complexity of today’s production 
processes. Products have often many features to check and they are tested in various stages in the production 
line. ML is a promising technology to analyze production errors. However, a key challenge for applying ML 
in quality management is the usability of ML tools and the incorporation of domain knowledge for non-
experts. In this paper, we show results from using our AutoML tool for manufacturing. This tool makes the 
use of domain knowledge in combination with ML easy to use for non-experts. We present findings obtained 
with this approach along with five sample cases with different products and production lines. Within these 
cases, we discuss the occurred error origins that were found and show the benefit of a supporting AutoML 
tool. 

1 INTRODUCTION 

In recent years machine learning (ML) has been 
progressively used in manufacturing to predict errors 
(Li et al., 2019; Caggiano et al., 2019; Hirsch et al., 
2019). Modern explainable ML approaches open new 
possibilities to analyze a product error. The objective 
is to use ML as support to find the origin of a 
production error. There are already data-driven 
approaches for complex production systems (Ren et 
al., 2020). Data‑driven quality prediction methods are 
growing in various areas (Kirchen et al., 2019; 
Tangjitsitcharoen and Ratanakuakangwan, 2017; Liu 
et al., 2019a; Li et al., 2019), thanks to the rapid 
development of artificial intelligence (AI) technology 
and tools. Quality engineers are the main users to 
analyze a product error in the manufacturing domain. 
However, this is often not a trivial task, as there are 
many test stations in today’s complex production 
lines and products have a large number of features to 
be tested. Also, quality engineers are often having 
deep knowledge in the manufacturing domain but 

have no expertise in data science techniques. This 
impedes to the exploitation of ML potential in error 
analysis. In (Wilhelm et al., 2020), we can find a brief 
overview of problems and challenges of data science 
approaches for quality control in manufacturing. 
Further, we can find a description of the use of ML in 
production lines in (Gerling et al., 2020). 

As ML techniques and tools keep maturing, we 
see the opportunity to combine data science 
techniques with domain expert knowledge to create 
applications for non-experts in the field of ML. The 
aim is to make the use of ML accessible to quality 
engineers. The key concept to enable this use of ML 
for error analysis is Automated Machine Learning 
(AutoML). AutoML is used to create an application 
of ML, which is more feasible for a user and reduces 
the required level of expertise. Examples for AutoML 
solutions can be found in (Candel et al., 2016; 
Golovin et al., 2017; Kotthoff et al., 2019; Feurer et 
al., 2019). Within these solutions, we already benefit 
from automating several steps of the data science 
pipeline, like hyperparameter tuning of an algorithm. 
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Figure 1: Cutout from Figure 7 (Seiffer et al., 2020). 

One of the main tasks of a quality engineer is to 
find faults in the production and eliminate them. This 
task is very time-consuming and needs highly 
specialized personnel, as a product often has many 
features and is produced over several test stations. 
Furthermore, an error could be caused by the 
interaction of several features (e.g., overheating due 
to current and voltage). A quality engineer must find 
dependencies across several features, which is hardly 
feasible for a human. Therefore, ML could be a great 
help. To identify errors, we provide an AutoML tool 
that creates various analyses and visualizations. 
These are adjusted for the error analysis of a quality 
engineer. The different types of visualizations can 
further help to understand the error in-depth and get 
more insights. Furthermore, automatic data analyses 
can run along, which can indicate changes in 
production. This can happen by an adjustment of the 
production line or by the occurrence of a new error. 
This information is particularly interesting, as it 
contributes to detecting possible causes of errors 
quickly. 

In previous publications, we evaluated ML 
techniques to reduce the dataset complexity, optimize 
the results, or evaluated different visualizations for 
the quality engineer. That is why, we want to 
investigate in this paper if our ML tool provides the 
important features for the analysis with the associated 
visualizations which lead to the origin of the error. 
Therefore, we would like to answer the following 
research questions (RQ) through this paper: 
• (RQ1) Can we provide important features for the 

error analysis and derive target visualizations? 
• (RQ2) Can a quality engineer find plausible 

reasons for the errors? 

The paper is organized as follows: Section 2 
describes the potential of our AutoML tool. In Section 
3 we provide an overview of similar applications or 
approaches in production. The processing pipeline of 
our AutoML tool is described in Section 4. We 
discuss further information about domains 
knowledge in Section 5. In Section 6 we describe five 

investigated cases and the possible solutions for 
identifying the error origin. We use Section 7 to 
conclude our work. 

2 USE CASE 

With our AutoML tool PREFERML (Ziekow et al., 
2019b), we aim to support a quality engineer’s work. 
The objective is that a quality engineer is able to work 
autonomously without the help of a data scientist or 
needs further ML knowledge to achieve results. We 
accomplish this through the automation of processes 
within our AutoML tool and the use of predefined 
domain knowledge. Furthermore, our tool can be 
integrated into the as-is process to reduce product 
errors in the production line (Gerling et al., 2020) and 
to support the quality engineer in his daily work.  

We define the automated parts of our AutoML 
tool by the Cross-Industry Standard Process for Data 
Mining (CRISP-DM) (Chapman et al., 2000). 
CRISP-DM has six phases, and we automate four of 
them. That is, we use an extended notion of AutoML 
which comprises the subsequent phases. (1) Data 
Understanding: Here we model the provided domain 
knowledge from the quality engineer for later use. 
Therefore, we set the predefined key attributes for the 
AutoML tool based on the product information. (2) 
Data Preparation: In this phase, we prepare the data 
with the help of the predefined domain knowledge, so 
that the data could be used by the ML model. Within 
this phase, missing or not usable values are 
automatically removed. Also, the product data gets 
enriched with derived features, by using the 
information from the domain knowledge. Sometimes 
an error is related to other product errors, and it is 
beneficial to analyze them as a group. Therefore, our 
AutoML tool has the possibility to group error 
messages and analyze them as one product error. This 
is especially useful if a product has detected several 
similar faults in a test station. (3) Modeling: We 
automate the feature selection and hyperparameter 
tuning part to train the final ML model. (4) 
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Evaluation: In this phase, we provide selected and 
adjusted visualizations and statistics for the user, 
which is done automatically. Therefore, we improve 
the automation of the analysis pipeline. 

In our earlier work (Seiffer et al., 2020), we 
describe a process to investigate errors using ML 
support with a detailed explanation (see Figure 7 in 
(Seiffer et al., 2020)). The process task is divided into 
four subtasks. In Figure 1 we show a cutout from the 
investigation process. Especially the displayed 
subtasks T6.3 and T6.4 should be highlighted to 
support the quality engineer in the automatic error 
evaluation. Within these two tasks, we provide the 
automatically necessary information and 
visualizations for the analysis. In task T6.4 we 
distinguish two possibilities for the deeper analysis. 
(I) Derivation of Rules: this can be done by ML 
agnostic tools, to explain the decisions of a model. 
Well known libraries like ANCHOR (Ribeiro et al., 
2018), SHAP Plots (Lundberg and Lee, 2017) or a 
Surrogate Model (Pedregosa et al., 2011) are used 
here. Also, a decision tree from the model or a rule 
list based on derived decision rules could be provided 
(II) Visualizations: adjusted visualizations for the 
quality engineer like Scatter Plots and Histograms are 
used to get an overview over the distribution of the 
measured product values. Further, a Correlation 
Diagram can help to understand the correlation 
between a feature and the test result. 

3 RELATED WORK 

In Dogan and Birant (Dogan and Birant, 2021), a 
comprehensive literature review is provided for an 
overview of how machine learning techniques can be 
utilized to comprehend manufacturing mechanisms 
with smart actions. The objective of this review was 
to provide an understanding of the main approaches 
and which algorithms were used to improve 
manufacturing processes in the last years. They group 
previous ML studies and the latest research in 
manufacturing in four main subjects: monitoring, 
quality, failure, and scheduling. Further, existing 
solutions to various aspects of algorithms, tasks, 
performance metrics, and learning types are provided 
by Dogan and Birant. Also, an overview from 
different perspectives about the current literature is 
provided. The advantages of utilizing machine 
learning techniques are provided and how to tackle 
challenges for the manufacturing. Additionally, 
further research directions in this area were provided. 

In Turetskyy (Turetskyy et al., 2021), a battery 
production design to use multi-output machine 

learning models was provided. Lithium-ion battery 
(LiB) cell manufacturing has high production costs 
and a great impact on the environment. This is due to 
the expensive materials, the high process fluctuations 
with high scrap rates. Also, the energy demand for 
this is especially high. Moreover, it is difficult to plan, 
control and execute the production in this area 
because of the lack of profound knowledge of LiB 
cell production processes and their influence on the 
quality. The multi-output approach is based on data-
driven models, which predict the final product 
properties. This was done by the intermediate product 
features. A concept was utilized in a case study within 
the pilot line of the Battery LabFactory 
Braunschweig. For the case study, 155 lithium-ion 
battery cells were used to build an artificial neural 
network model. The final product properties from 
intermediate product features were later predicted by 
the trained model. Within the provided concept, they 
showed how the approach could be deployed within 
the framework of a cyber-physical production system. 
This is targeting for continuous improvement of the 
underlying data-driven model and further, the 
decision support in production. 

In Liu (Liu et al., 2019b), a real-time quality 
monitoring and diagnosis scheme for manufacturing 
process profiles based on a deep belief network 
(DBN) was developed. This is based on the ability of 
DBN to extract the essential features from the input 
data. This is essentially needed because the 
manufacturing process has a large number of real-
time quality data, which are collected through various 
sensors. Further, most of the data are high-dimension, 
nonlinear and high-correlated. Therefore, it is 
difficult to model the process profile, which limits the 
function of a typical statistical process control 
technique. They used the collected profile from a 
manufacturing process and mapped it into quality 
spectra. In this paper, a novel DBN recognition model 
for quality spectra was established for the offline 
learning phase. This can be used to monitor and 
diagnose the process profiles in the online phase. To 
test how effective the DBN recognition model for 
manufacturing process profiles was, a simulation 
experiment and a real injection molding process 
example were used to analyze the performance. As 
result, the proposed DBN model could outperform 
alternative methods. 

Soto, Tavakolizadeh, and Gyulai (Carvajal Soto et 
al., 2019) present a machine learning and 
orchestration framework for fault detection in 
manufacturing. In the context of surface mount 
devices, they propose a system for real-time machine 
learning application. A key component of their work 
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is the introduction of a discrete-event simulation that 
allows failure detection approaches to be evaluated 
without disrupting ongoing production operations. 
The authors evaluate both random forests and 
gradient boosting as alternatives for machine learning 
algorithms. To avoid concept drift, ML models are 
retrained at regular intervals. Both approaches show 
convincing results in a case study. Their developed 
approach fulfills the most important conditions of a 
scalable, reconfigurable, adaptable, and re-
deployable solution. Scalability, acceptance, 
however, have not been measured and generalization 
and security still have to be proven. 

In Olson and Moore (Olson and Moore, 2016), an 
open-source genetic programming-based AutoML 
system named TPOT is explained. This AutoML tool 
automatically optimizes ML models and feature pre-
processors. An objective for the supervised 
classification task is to optimize classification 
accuracy. TPOT designs and optimizes the necessary 
ML pipeline without any involvement of a human 
being for a given problem domain (Olson et al., 
2016). TPOT uses a version of genetic programming 
- an evolutionary computation technique to 
accomplish this. It is possible to automatically create 
computer programs (Banzhaf et al., 1998) with 
genetic programming. For the supervised 
classification, TPOT uses similar algorithms as we 
do. However, our focus lies on tree-based algorithms 
for understandable results, and we do not use e.g., 
logistic regression. After the usage of TPOT, the user 
gets a file with code, which should help to execute the 
ML process. In contrast, we do not deliver any files 
with code but provide results with analyses and 
supporting visualizations. Our AutoML tool further 
provides a pre-processing and feature engineering 
pipeline, which get automatically executed in the 
process.  

Maher and Sherif (Maher and Sakr, 2019) present 
a meta learning-based framework for automated 
selection and hyperparameter tuning for ML 
algorithms (SmartML). The SmartML tool has a 
meta-learning feature which mimics the role of a 
domain expert in the area of ML. The meta learning 
mechanism get used to select an algorithm to 
minimize the parameter-tuning search space. Further, 
the SmartML tool supply the user with a model 
interpretability package to explain their results. In 
contrast to SmartML, we pre-process the data with the 
provided background information of a product. This 
task could be done by a ML expert or a quality 
engineer. Regarding the algorithm, we utilize a 
decision tree-based algorithm to supply the user with 
human recognizable and acceptable decisions. With 

decision tree-based algorithms, we can improve the 
confidence of the user in the given results. A main 
distinction to SmartML is, that our tool is specialized 
for the manufacturing domain. Highly unbalanced 
data or the selection of a specific metric are not 
supported by the SmartML tool. 

Limits and possibilities of applying AutoML in 
production are described by Krauß et al. (Krauß et al., 
2020). Their work provides an evaluation of available 
systems. Further, it shows a comparison of a manual 
implementation from data scientists and an AutoML 
tool in a predictive quality use case. The result of this 
comparison was that currently AutoML still requires 
programming knowledge. Further, it was 
outperformed by the implementation of the data 
scientists. A critical point which led to this result was 
the preparation of the needed data. For example, an 
AutoML system cannot merge the data correctly 
without predefined domain knowledge. Further, the 
extraction from a database and the integration of the 
data is problematic. An expert system could be the 
solution for these problems. A further point was the 
deployment of the results of the models. In summary, 
it can be said that the AutoML system delivers a 
chance to improve the efficiency of an ML project. 
This could be achieved by automating the necessary 
procedure within Data Preparation, Data Integration, 
Modelling, and Deployment. Domain knowledge and 
the expertise of a data scientist should be included in 
this to obtain satisfying results. However, the newest 
developments show evidence for upcoming 
improvements towards the automation of specific 
steps within the ML pipeline. 

Our work represents an AutoML approach for 
manufacturing that is aided by domain knowledge. 
This helps to automate the ML pipeline and further 
can narrow the error root cause analysis. With the 
AutoML approach, data scientists are able to perform 
error-oriented analyses without prior knowledge in 
the field of ML. Further, feature importance statics 
are providing hints to the important feature 
visualizations, which are automatically created. 

4 PROCESSING PIPELINE 

In this section, we discuss the workflow of our 
AutoML tool and the processing pipeline. The first 
step is to merge the data from various test stations. 
From the domain knowledge, we can derive the order 
of the test stations and merge the data. As the next 
step, we read and clean the data e.g., from missing 
values. The next step is to prepare the data by 
removing unnecessary features e.g., features with 
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only one value in the column and check the data 
format. In the following step, we use domain 
knowledge to create the derived features. Afterwards, 
we split the data in a predefined percentage split into 
a train and test set. The test set always contains 33% 
of the errors from the dataset. The next step is the 
training and optimization of the ML model. We use 
the XGBoost classifier (eXtreme gradient boosting) 
(Chen and Guestrin, 2016) as its ML core, as we value 
comprehensibility in our model higher than 
prediction accuracy. The optimization is performed 
on a cost-based metric that maximizes business value. 
To optimize the model training, the user can select 
hyperparameter tuning and feature selection 
separately or together if the user wants to improve the 
model performance further. Feature selection is a 
valid method to reduce the complexity of data and 
reduces the search space for the error origin. 
Therefore, feature selection can be used for the 
analysis. Even if the users cannot achieve a better 
result but can reduce the complexity of the data, they 
can benefit from the reduction of features. After using 
the feature selection method, only the most relevant 
features for the model are left. Feature selection 
requires time and computation power which varies 
depending on the dimensionality of the dataset. Our 
tool can perform feature selection strategies in 
different ways (Gerling et al., 2021b). 

Hyperparameter tuning of the model is a method 
to optimize the model even more and benefit from 
better results. However, hyperparameter tuning is not 
a universal solution to improve the results and uses a 
lot of computation resources. We are evaluating 
possibilities to use highly parallel computation 
methods to reduce the time needed for this step.  

Next, we evaluate the results and check the 
created visualizations. We create multiple adjusted 
visualizations for the error root cause analysis for the 
quality engineer. For example, a scatter plot can be 
used to see in which value area an error appears and 
if there are changes in the measured values over time. 
Moreover, the scatter plot shows indirect the timeline 
of the production and when a product error has 
appeared. An evaluation of possible visualization to 
use for the production can be found in (Gerling al., 
2021a). For the evaluation, we check the model 
performance based on our cost-based metric. Based 
on the model performance, we can identify beneficial 
trained models. Here, a good-performing model can 
indicate the origin of an error and can help to save 
costs. We check the feature importance of each 
feature. To do so, we use various model-dependent 
and independent feature importance techniques e.g., 
total gain, gain, and SHAP Max Main Effect (Ziekow 

et al., 2019a). Also, we check the correlation between 
each feature and the test result with the Kendall's tau 
correlation (Virtanen et al., 2020). Based on the 
importance order of the features, we check 
sequentially the created visualizations of each. A 
further possibility to analysis the product error and to 
inspect the decision from the model are provided by 
a decision tree. The XGBoost classifier uses multiple 
decision trees within the boosting approach. 
Therefore, we use a surrogate model to provide the 
approximate decision rules from the model 
represented by one decision tree. The decision rules 
from the trained model can be further derived and 
directly be used in form of a rule list. This can be done 
by providing the associated rules for the analysis.  

To start it is advisable to let the PREFERML 
AutoML tool run through the complete process 
without making any additional settings like activating 
feature selection. Therefore, we use the standard 
parameter settings for the initial process run. These 
initial results may already highlight features that are 
correlated to the error. Within the provided results, 
the user can check the given statistics of the results 
and features that were weighted most strongly by the 
ML model. The benefit of this initial process is, that 
feasible results can already be quickly achieved with 
this procedure and bring insights into the origin of an 
error. 

5 DOMAIN KNOWLEDGE 

The domain knowledge of a product is represented as 
a simple ontology. An illustration of the ontology can 
be found in (Gerling et al., 2020). To create the 
ontology, the quality engineer is the most suitable 
user. The ontology has pre-defined key attributes 
from a product. The key attributes include 
information about the product, test stations (Test 
System), test specification, and production line. 
Every test station in a production line can be defined 
separately in the ontology and thus offers variable 
adaptation options. For example, the user configures 
the sequence of test stations and further necessary 
information about the product. The ontology - 
respectively a representation of the domain 
knowledge - is crucial to automate the ML tool. 
During the execution of a process, the defined key 
attributes are accessed within the ontology and used 
for specific process execution. One of the key 
attributes is the name of the previous test station. 
With this information, we can derive the order of the 
test stations in the production line. Moreover, we can 
derive and determine a unique product feature to track 
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Figure 2: Simplified ontology (presented as entity relationship model). 

 
Figure 3: Decision tree. 

products across several test stations. With both 
mentioned information, our tool can merge data from 
various test stations and use it later for the analysis. 
Further features to be defined are datetime and 
categorical features. From the datetime feature, we 
can derive time-relevant features. The categorical 
features will be converted into usable information for 
the classifier. Soon, we will extend information of a 
future by additional information like the unit i.e., volt 
or ampere. With this additional information, further 
derivations can be carried out. Moreover, features 
with similar units can be grouped and selected or 
removed for later analyses. This allows a specific 
error to be narrowed down even further and simplifies 
the analysis. 

In Figure 2 we illustrate a simplified UML 
diagram for the ontology for our AutoML tool. We 
show how the three classes are connected and their 
specific attributes. In the Test System class, we have 
the attributes succeeds and proceeds, which helps to 
rebuild the production line structure. This represents 
the Test System and Production Line from our 
ontology (Gerling et al., 2020). In the Product class, 
we have the attributes serial_nr and material_nr. 
These two attributes may be combined and could 
represent one value/attribute to create a unique 
identifier. However, there may be cases in which 
more than two features or even just one can serve as 
a unique identifier. In the Feature class we can use the 

unit attribute to afterwards create feature groups from 
the production data. The unit attribute could 
especially be used to narrow down the origin of an 
error. The Feature class represents the Test 
Specification from our ontology. 

6 RESULTS 

In this section, we show five specific cases from five 
different products. We discuss the reasons for the 
production error and show visualizations from our 
AutoML tool which help to identify them. To protect 
the confidential information of our partner company, 
we only visualize important features with obfuscated 
values and names. 

6.1 Case 1 

In the first case, we analyzed the general error 
probability in four consecutive production steps. The 
production setup for this product is already highly 
optimized, so no quick results could be found by the 
quality engineers anymore. Also, most of the features 
that could possibly correlate to any common error 
were investigated before. In this situation, quality 
engineers approached us with the need to further 
reduce the generally low error probability. This is 
why we did not focus on a specific error.  
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We could achieve a good result for error 
prediction but - at the first glance - no clear 
correlation between the errors with any specific 
feature could be identified. However, a naive 
approach of analyzing the first decision tree of the 
XGBoost model, a user with domain knowledge 
background was able to identify a specific feature. In 
Figure 3 we can see the first decision tree of the model 
and at the lower-left corner the identified feature. This 
visualization is automatically created by our AutoML 
tool and shows the rules that are used by the ML 
Model. Moreover, a decision tree shows multiple 
chains of rules that can be utilized for independent 
error analysis. In this case, the feature identified by a 
quality engineer was generated during data 
preprocessing and was not part of the initial dataset. 
This shows why good feature engineering can 
significantly improve the results and create insights 
that are hard to achieve by a human. 

 
Figure 4: Time difference stage B – stage A. 

As the next step, we took a closer look at the 
histogram of the time difference feature. In Figure 4 
we can see that this error held further hidden 
information. On the x-axis of the histogram, the value 
range is divided into several buckets which represent 
the number of days. The columns are colored darker 
depending on the percentage of corrupt products. As 
an aid, the number of absolute and the percentage of 
corrupt products within the separated value range is 
shown above the column. The y-axis shows the 
number of instances in a natural logarithm to provide 
a better visual representation. In this figure, we can 
recognize that the percentage of corrupt parts is 
significantly too high if the time difference is smaller 
than 5 hours. This means that the product must rest 
longer between to stations to reduce the number of 
errors.  

After a discussion with the quality engineer, we 
found that the product parts are treated with glue at 
the first station. This means, that we possibly 
identified the error root cause and are now evaluating 
a rule to let the product rest longer between the 

stations. The results of this evaluation are still 
pending. In this specific case, the time difference was 
not the origin of the error but provided a direct hint. 
By identifying this feature, a quality engineer was 
able to perform more in-depth and targeted analyses. 

6.2 Case 2 

In the second case, we analyzed the specific error 
message “Measurement Accuracy Distance Value too 
high”. This error cause could be found through 
analyzing the feature importance. Based on the 
feature importance, the “Material number” was the 
most important feature.  

 
Figure 5: Error frequency depending on material number. 

In Figure 5 we can see that all errors correspond 
to the value range of 15 to 18 of the material number. 
As the material number corresponds to a certain type 
of subproduct, we can specify further analyses with 
these. It has turned out that the subproduct types with 
the material number 15 - 18 have different 
specifications regarding range and accuracy. 

 
Figure 6: Measurement accuracy maximum distance  
value 1. 

Figure 6 shows the second most important feature 
for this case. The device accuracy is measured on 
different targets (e.g., reflectors or 5%-black) in 
different distances ranging from very close to very 
far. Measurement 1 is done on a reflecting foil in a 
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very close range, so the detector is near its saturation. 
Measuring with too high accuracy here leads to bad 
results in long range measurements on less reflective 
targets. It might very well be, that the device is 
electrically overcompensating, or emitter and 
detector are not adjusted in a perfect manner. 

Nearly all occurred errors are in the value range 
of approximately 27-29. Whereas good parts range 
from 64 to 68 approx. This information can further 
strengthen the analysis of the product error and lead 
us to a specific feature respectively product part. We 
suggested that, as a first step, all product parts that are 
unique to the material numbers 15+ and that may 
influence the accuracy of the measurements to be 
investigated further. 

6.3 Case 3 

In our third case, we analyze another product error, in 
which we did not optimize the model for one specific 
error but for a general error prediction. We retrieved 
data from a chain of test stations from a production 
line. The following visualizations belong to a specific 
test station. In this case, the most important feature 
was the modulation feature. Modulation is the process 
of adding information to an electrical or optical 
carrier signal. The modulation can change the signal’s 
frequency (frequency modulation, FM) or its 
amplitude (amplitude modulation, AM). In Figure 7 
we can see this feature and the increasing error rate in 
the higher value range.  

 
Figure 7: Error frequency depending on modulation. 

We further create a SHAP dependence plot 
(Lundberg and Lee, 2017) for the modulation feature 
in Figure 8.  

At the x-axis the modulation feature with the 
value range. On the left side of the y-axis, we see the 
associated SHAP value for the modulation feature. 
The right side of the y-axis shows the feature with the 
highest interaction with the modulation feature and 
the associated values of this feature. High feature 
values are colored in red and low feature values are 
 

 
Figure 8: Modulation SHAP dependence plot. 

colored in blue. Therefore, we know that the 
modulation feature has the most interaction with the 
amplitude feature, which is also the second most 
important feature by the feature importance. The error 
probability (high SHAP value) is increased with an 
increasing value of modulation. Furthermore, an 
interaction between modulation and amplitude can be 
seen. A high modulation value goes together with a 
high amplitude value. This correlation between 
modulation and amplitude is already known by a 
quality engineer but the provided visualization 
strengthens the trust in our AutoML tool because it 
shows the real behavior of product features. 

 
Figure 9: Error frequency depending on amplitude. 

Next, the amplitude feature is shown in Figure 9. 
This feature was the second most important based on 
the feature importance list. This visualization shows 
that products with a high amplitude tend to make 
errors more often. If technically possible and 
economically rational, it might be a good idea to 
switch from amplitude to frequency modulation, 
which is a lot more robust against amplitude changes 
of the base signal. 

Based on Figure 8 and Figure 9 it became clear 
that a solution correcting the root cause will not be 
achieved quickly. In the meantime, one could 
implement a control function within the testing 
equipment to detect error-prone combinations of the 
mentioned features. Modules with high amplitudes 
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and / or modulation could be sorted out in the 
production line as early as possible. Even if the error 
will not disappear completely in this case, the 
situation will improve as our tool is optimizing the 
model towards an economic optimum and not 0% 
error rate. 

6.4 Case 4 

For the fourth case, we analyze the specific product 
error “Cosine trace too high”. In this case, we took 
features from one test station to predict errors at the 
subsequent test station in the production line. The 
most important feature here is “vector square carriage 
top”. We first take a look at the histogram of this 
feature in Figure 10. 

 
Figure 10: Modulation of vector square carriage top. 

We can see that the highest error probability is 
related to the value of the feature ranging from 21 to 
29. Here we could restrict the tolerance or only let 
through products with the maximum value of 20. At 
first glance, this amount of error might be acceptable 
if the error is not extremely expensive. However, in 
this case we want to show another relevant factor in 
manufacturing.  

 
Figure 11: Modulation of the vector square carriage top 
scatter plot. 

In Figure 11 we show the time progression of the 
error as it occurred. In this visualization, the latest 
products are represented by a high product instance 
number. It can be seen that the error caused by this 
feature has occurred in two waves and was relevant at 
the time of analysis. Note, that not all good products 
are shown in this visualization to reduce overplotting. 
Specifically, we randomly selected 2000 data points 
of good products and visualized them alongside all 
errors that occurred. Nevertheless, due to the actuality 
of the occurred errors, we could consult with the 
responsible employees about recent changes in the 
production. This could create further conclusion of 
the occurred product error. Through this discussion, a 
solution to the error could be found and as a 
consequence, the production could be corrected. We 
suggested to investigate the change before the start of 
the second wave of errors and the change that led to 
the end of the first wave. 

6.5 Case 5 

In this case, we want to highlight the advantage to use 
model agnostic techniques within our AutoML tool. 
These techniques help to comprehend the model 
decisions and provide an additional way to analyze 
the error cause further. We take advantage of this to 
automatically provide customized visualizations for 
the user. For this purpose, we show two visualizations 
that demonstrate the learned decision of the trained 
ML model. For the sake of demonstration, we 
obfuscated the feature names and values. 

 
Figure 12: SHAP summary plot. 
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For a deeper investigation of the origin of an 
error, a SHAP Summary Plot (Lundberg and Lee, 
2017) is automatically generated by our AutoML 
tool. Here, the features learned from the model are 
sorted from top to bottom in order of feature 
importance. With this plot, we can visualize various 
information to the quality engineer. First, the 
importance of the features and their order. Further, 
the different dots are colored according to the value 
of each instance. Moreover, the SHAP value on the x-
axis shows a tendency if a product instance could be 
good (negative SHAP value) or corrupted (positive 
SHAP value). In Figure 12 we can see that Feature_1 
and Feature_2 both tend to an error when the 
measured value is high with a SHAP value over 3. 
Also, feature Feature_3, Feature_5, and Feature_12 
tend to an error when the measured value is low. 
Feature_5 represents a time difference between two 
test stations, which was derived with the help of 
domain knowledge. As can be seen in the SHAP 
Summary Plot, the product has a higher tendency to 
fail when the value is low. For the explanation, at test 
station A a heat test was performed on a product. 
After that, the product was cooled down in the 
subsequent test station B. If the internal components 
of the product are still too hot, this product will not 
pass the followed check at test station B. In a further 
investigation, we saw that the product should 
approximately cool down about 8 minutes, or else the 
ratio to fail the test station check at test station B will 
be much higher. 

 
Figure 13: SHAP dependence plot of Feature_3. 

In Figure 13 we show the SHAP Dependence Plot 
of Feature_3 from the previous visualization. We 
found the strongest interaction between Feature_3 
and Feature_2. In this visualization, we can see in-
depth, how the values of this feature are distributed in 
three distinguishable regions. One region spanning 
from values of -4.5 to approx. -1.8 and another one in 
range of approx. -1.8 to approx. 5.0. It should be 

investigated what the cause for this behavior is 
especially in the last region of values in the range 
from -4.0 to -4.5 where a high SHAP values are given.  

6.6 Lessons Learned 

With the above-described cases, we demonstrated the 
benefit to use our AutoML tool. First, we can support 
the tasks of a quality engineer with meaningful 
visualizations and further information about the error 
root cause analysis. This speeds up the time between 
the error’s first occurrence and the implementation of 
a solution.  

We provide further visualization technics with the 
help of ML-like in the test case. A further advantage 
is, that a quality engineer can use our tool without any 
knowledge in the field of ML while at the same time 
the data scientist does not need specific domain 
knowledge because this can be easily formalized and 
provided in a single file by the quality engineer. By 
automating the data merging, processing, and 
enhancement, we save the quality engineer time and 
bring helpful information to the analysis like the time 
differences between test stations. The user is provided 
with the most important features for the analysis, 
which often lead to the origin of an error. 
Furthermore, the visualized feature can point to 
hidden causes of errors like in Case 1. Therefore, it is 
important to include as much relevant data for 
analysis as possible. Often, even trivial reasons such 
as the temperature in the production hall or the time 
of production can bring decisive advantages to the 
analysis. 

7 CONCLUSION 

In this paper, we investigate the benefit of AutoML 
for error analysis in manufacturing along with real-
world cases. We describe the difficulties that arise in 
a complex production environment and provide a 
brief overview of the workflow. In five real-world use 
cases, we could provide respectively assist in 
identifying the error origin using AutoML. In these 
five cases, we found clear correlations to a possible 
error origin. Further, we provide domain experts the 
possibility to combine domain knowledge of a 
product or production line with an easy-to-use 
AutoML tool. This leads to a synergy that would 
otherwise be unused. Therefore, we offer a data 
science layperson the possibility, without prior 
knowledge in the field of ML, to use our AutoML tool 
and benefit from the advantages for an analysis. 
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Through this paper, we now can answer the 
research questions from the introduction. First, we 
demonstrated that the PREFERML AutoML tool 
provided useful visualization and further information 
to analyze the origin of an error (RQ1). Even if a 
visualization could not show the direct cause of an 
error, it could point out an important feature that led 
to a possible reason, as in case 1 (RQ2). Furthermore, 
we found that, if the root cause was not found or could 
not be solved, our tool gives easy guidelines on how 
to implement a function or process to sort out 
products with a high error probability. 

In the near future, we want to use domain 
knowledge more efficiently by establishing an 
advantage product ontology. Further, we want to test 
our AutoML tool with more products and gather 
feedback from different user groups to improve it 
even more. We also want to improve the Explainable 
ML part of the AutoML tool to provide further 
analysis to quality engineers and support the ML 
decision with various visualizations. 
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