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Abstract: Industrial manufacturing processes often involve a visual control system to detect possible product defects
during production. Such inspection devices usually include one or more cameras and several light sources
designed to highlight surface imperfections under different illumination conditions (e.g. bumps, scratches,
holes). In such scenarios, a preliminary calibration procedure of each component is a mandatory step to
recover the system’s geometrical configuration and thus ensure a good process accuracy. In this paper we
propose a procedure to estimate the position of each light source with respect to a camera network using an
inexpensive Lambertian spherical target. For each light source, the target is acquired at different positions
from different cameras, and an initial guess of the corresponding light vector is recovered from the analysis
of the collected intensity isocurves. Then, an energy minimization process based on the Lambertian shading
model refines the result for a precise 3D localization. We tested our approach in an industrial setup, performing
extensive experiments on synthetic and real-world data to demonstrate the accuracy of the proposed approach.

1 INTRODUCTION

Light source estimation is a crucial task in several
computer vision tasks, especially while performing
visual inspection activities. Indeed, such informa-
tion can be exploited to generate synthetic images
with different illuminations in order to detect possi-
ble defects. Illuminant estimation is also needed in
shape-from-shading techniques, where a scene is re-
constructed observing its features in images acquired
with a changing illumination (Zheng et al., 2002;
Samaras and Metaxas, 2003; Wang et al., 2020).
Light estimation is also beneficial in many other fields
such as cultural heritage (Fassold et al., 2004; Pistel-
lato et al., 2020) or augmented reality, where new ob-
jects can be rendered onto the acquired image simu-
lating realistic shadings (Sato et al., 1999a; Wang and
Samaras, 2003).

The literature counts a number of heterogeneous
approaches for light source estimation, depending on
the target application and its requirements. In some
cases the light source is calibrated in conjunction to
other specialised tasks as dense SLAM (Simultane-
ous Localization And Mapping) (Whelan et al., 2016)
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Figure 1: Picture of our inspection device. It includes five
cameras and sixteen punctual lights uniformly distributed in
a rectangle around the central camera.

or camera calibration (Cao and Shah, 2005). Some
tasks require the localisation of directional sources,
as in (Pentland, 1982), where the direction of lights at
infinity are estimated (e.g. daylight). Several shape-
from-shading approaches adopt this kind of model,
since the light direction is sufficient for the recon-
struction task (Zheng et al., 2002; Brooks and Horn,
1985; Zhang et al., 1999). In (Zhou and Kamb-
hamettu, 2002) multiple light sources are estimated
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using a stereo camera setup and a sphere: the method
involves an algorithm to separate Lambertian from
specular intensity and devise direction and intensity
of the light sources. In (Li et al., 2003) the authors
propose an unified framework integrating shading,
shadows and specular cues to devise the light direc-
tion. In some scenarios the directional assumption is
not valid: for instance if we have artificial illumina-
tion in a small room. These situations require the light
to be modelled as a point source, so its exact position
in 3D space is to be recovered. Most of these tech-
niques exploit some priors on the scene geometry, as
in (Debevec, 2008; Sato et al., 1999a). This is limiting
in many scenarios, since the knowledge of the scene is
often not available or requires a significant computa-
tional effort. Moreover, several methods estimate the
illumination as a radiance map, losing the information
about light location (Sato et al., 1999b; Kim et al.,
2001). In (Powell et al., 2001; Powell et al., 2000)
the authors propose to use three spheres with known
relative positions as a target for light position estima-
tion, while in (Takai et al., 2009) both point and di-
rectional light sources are estimated employing a pair
of spheres and computing the intensity difference of
two regions of such objects. The work in (Langer and
Zucker, 1997) tries to unify different kinds of light
sources, introducing a 4-dimensional hypercube rep-
resentation where different types of lights can be em-
bedded, while the method proposed in (Jiddi et al.,
2016) exploits and RGB-D sensor to estimate the lo-
cation of light sources using only the specular re-
flections observed on the scene. Recently, some au-
thors proposed learning-based methods to perform the
same task. In (Kán and Kafumann, 2019) the authors
propose a CNN (Convolutional Neural Network) to
devise lighting information exploiting a dataset of im-
ages with known light sources. Other examples are
(Gardner et al., 2017; Elizondo et al., 2017).

In our approach we propose a light calibration pro-
cedure for a multi-camera network using a Lamber-
tian spherical object with uniform albedo as light cal-
ibration target. First, the sphere is detected in each
camera in order to compute its accurate 3D position,
then we carry out a coarse initialisation exploiting the
intensity isocurves extracted from the sphere’s sur-
face. After that, we refine the light position formu-
lating an optimisation over the observed intensity val-
ues based on the Lambertian shading model. Our ap-
proach is particularly suitable in scenarios where the
device setup is mutable and thus an inexpensive (in
terms of both time and convenience) light calibration
approach is required.

2 LIGHT CALIBRATION
TECHNIQUE

Our surface inspection device is shown in Figure 1.
It is composed by a network of five 12-Megapixels,
grayscale cameras pointing towards the same direc-
tion and mounted on a rigid structure. The illumina-
tion system includes 16 punctual led lights, uniformly
distributed in a rectangle around the central camera,
approximately at the same height of lateral cameras.
In order to correctly simulate scene illuminations and
identify surface anomalies, we are interested in esti-
mating the light locations with respect to the camera
network. However, the cameras are mounted around
and below the main frame and are subject to modi-
fications, thus it is not possible to accurately locate
the lights according to the original device blueprint.
For this reason, we assume to know only the network
imaging model and we aim to infer the light sources
positions by observing an object with a characteristic
shading model.

Our calibration procedure works for each light
source independently. A matte white sphere is sus-
pended in front of the cameras at N different posi-
tions, keeping only the desired light source turned on.
Note that the sphere is characterized by a constant
albedo to avoid camera integration problems (Pistel-
lato et al., 2018). The device captures the illuminated
sphere, resulting in a set of N images Ii

1 . . . I
i
N for each

ith camera, with i = 1, ...,T . The sphere reflectance
model is then taken into account to infer the light po-
sition from the observed images, as described in the
following sections.

2.1 Light Position Optimization

The target sphere Sn projects to a circle1 C i
n in each ac-

quired image Ii
n. A RANSAC-based detector is used

to locate the circle in the image, then a least-square fit-
ting approach is applied to accurately locate the centre
with sub-pixel precision.

The rays originating from each camera’s optical
center and passing through the circle centers are then
triangulated using (Pistellato et al., 2016; Pistellato
et al., 2015) to obtain the 3D position of the sphere
(cx,cy,cz)n with respect to the camera network ref-
erence frame (corresponding to the central camera in
our case). Note that, since both intrinsic and extrinsic
parameters are calibrated, the radius of Sn is not im-
portant to recover its position, that can be estimated a-

1The projection is actually a conic, but we believe that
a circle is a fair approximation for this task, excluding ex-
treme cases when the sphere is imaged at camera borders.
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Figure 2: Acquired intensity image (left) and sphere surface remapped in spherical coordinates (right). The isocurve P′
corresponding to the intensity level 160 is shown in red. The blue dashed line is the curve corresponding to the winning bin
in the accumulator.

posteriori comparing the circle radius with the sphere
depth.

We assume that the reflectance of the matte white
sphere used as target can be well approximated by the
Lambertian model (Koppal, 2014), plus some (non-
directional) ambient light scattered from the rest of
the scene. We define the light source as a 3D point L∈
R3; then the intensity of the light IS(p) reflected from
the point p, lying onto the sphere surface, is modelled
as:

IS(p) = N(p)T L(p)IL +a (1)
where N(p) ∈ S 2 is the surface normal at p, L ∈ S 2

is the (unitary-norm) light vector originating from p
and pointing towards the light (ie: L(p) = L−p

‖L−p‖ ), IL

is the light (scalar) intensity and a is the ambient con-
tribution.

When the sphere is imaged by a camera, each
point p ∈ S is projected to a pixel location p′. If p′ is
given, the corresponding sphere point p is obtained by
intersecting the ray originating from p′ with S. There-
fore, to recover L we can iterate through all the pixels
belonging to the circle on the image and compare their
intensities with the expected intensities given by (1).
However, the image of each camera may differ from
that model for several reasons:

• The Camera Response Function (CRF) is in gen-
eral non-linear;

• Each camera might have a different gain, exposure
and iris setting;

• The image intensity is quantized to 8 bits and
clipped to a range between 0 and 255.

To partially account these problems, we explicitly
model the intensity clipping due to the quantized cam-

era values. Moreover, we let the “apparent” light in-
tensity IL and the ambient contribution a to be image
dependent, defining IL

i
n and ai

n as light intensity and
ambient contribution for nth sphere position and ith

camera.
We formulate light calibration as the following non-
linear minimization problem:

min
β

N

∑
n=1

T

∑
i=1

C i
n

∑
p′

(
C
(
N(p′)T L(p′)IL

i
n +ai

n
)
− (2)

−Ii
n(p′)

)2

+α‖Lz− L̄z‖2

where β = (L, IL
1
1, . . . , IL

5
N ,a

1
1, . . . ,a

5
N) is the vector of

unknowns to be estimated, containing the 3 coordi-
nates of L, the light intensity and ambient contribution
for each separate image.

Since the lights mounting frame is at a fixed ele-
vation with respect to the central camera, the regular-
ization term ‖Lz− L̄z‖ forces the light z-coordinate to
remain between a reasonable elevation L̄z

2. Note that
Lx and Ly can instead freely move. Finally, C models
the camera intensity clipping, and is simply defined
as C(x) = max(min(x,255),0).

In our implementation, Equation 3 is numeri-
cally solved with the BFGS algorithm (Nocedal and
Wright, 2006) using the gradient that is symbolically
evaluated by the TensorFlow library. Being a gradi-
ent descent approach, a reasonable starting condition
for β must be provided to let the optimization process
converge.

2We empirically observed that a value of α = 10−4 is
enough to ensure the convergence of the optimization while
not constraining too much the light elevation.
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Figure 3: Left: initial estimation errors for the light vector increasing the value of additive noise σN . Right: real-world
experiment showing MAE of the distance between two lights varying the number of samples.

2.2 Guessing the Initial Configuration

Due to the interplay between the dot product NT L and
the image-dependent light intensity IL, an initial value
of β can be difficult to guess. However, if the sphere
radius is small compared to the light distance, the vec-
tor L− p is well approximated by L− (cx,cy,cz). In
other words, there is no appreciable difference be-
tween a light L and a light placed infinitely far away
from S in the direction L− (cx,cy,cz). Therefore,
the pixel-dependent L(p) can be substituted with the
image-dependent normalized light direction Ln ∈ S 2.

Since N and Ln are both unit vectors, it is con-
venient to represent them in spherical coordinates as
N(s) = (φs,θs)

T and Ln = (φLn ,θLn)
T , where s is a

point lying on the sphere, φ is the azimuth angle with
respect to the x-axis and θ is the elevation angle with
respect to the y-axis.

From the circle C i
n we choose the isocurve of

points P′ = {s′1 . . .s′m} corresponding to a certain ar-
bitrarily intensity. Note that the intensity value is not
important, as long as the number of extracted points
m is reasonably large. Since the intensity IS(p) is con-
stant for the points in P′, Equation 1 can be rewritten
as k = N(s)T LN or, in spherical coordinates:

k= sin(θLn) sin(θs j)+cos(θLn) cos(θs j)cos(φLn−φs j).
(3)

Equation 3 defines the locus of points s j on the sphere
(corresponding to the image points s′j) for which the
dot product between the surface normal and the light
vector is constant.

The advantage of this formulation is that the range
of values for θ, φ and k is limited to a restricted inter-
val. Specifically, φ ∈ {−π . . .π}, θ ∈ {−π

2 . . .
π

2} and
k ∈ {−1 . . .1} (dot product of unit vectors). For this
reason, we can efficiently create a 3-dimensional ac-

cumulator for (θLn , φLn , k) to accumulate votes from
all the isocurve points.

The procedure works as follows: for each point
s j we enumerate all the triplets (θLn , φLn , k) for
which Equation 3 holds, and the accumulator bin cor-
responding to that parameter combination is incre-
mented by one. Since Ln and −Ln define the same
light ray in space, we restrict the enumeration to the
triplets with a positive value of k (i.e. the angle be-
tween N and Ln is less than π/2). When the accu-
mulator is filled, the location of the maximum gives a
good approximation of the light direction vector Ln
and the parameter k. Figure 2 shows an example
of acquired intensity image (left) and corresponding
remapping in spherical coordinates (right), where an
isocurve is highlighted together with the winning ac-
cumulator bin.

The described procedure is repeated for all the N
images to obtain a set of rays in space passing trough
(cx,cy,cz)n and with direction Ln. Finally, the 3D
point closest to all such rays is used as the initial light
location for the optimisation (3).

3 EXPERIMENTAL EVALUATION

In order to assess the quality and stability of the pro-
posed light calibration method, we performed both
synthetic and real-world experiments presented in this
section.

Since ground truth data for exact position of a light
source is not always available nor accurate, we first
tested the stability of the initialisation step exploiting
synthetic data.
We generated a random light vector and rendered part
of the observed sphere surface according to each cam-
era viewpoint. The intensity values were perturbed
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Figure 4: Qualitative results for the final calibrated system with 5 cameras and 14 lights.

with a zero-mean Gaussian noise of standard devia-
tion σN , then such data is used to extract the isocurves
and compute the light direction.
We used an accumulator of size 50×50×100 to col-
lect the votes from each isocurve point. The curves in
Figure 3 (left) show the mean absolute errors of the
initial guess with respect to the ground truth vector in
terms of azimuth and elevation angles. We increased
the value of σN from 0.005 up to 0.06 and repeated
each test 100 times using random light directions and
sphere areas. The error bars denote the standard error
for each σN .
In general, error values are low for σN smaller than
0.02, then they rise up to 0.4 radians for very high
noise levels. This confirms the stability and accuracy
offered by the proposed initialisation.

3.1 Real-world Experiments

We validated the proposed method using real-word
data acquired with our setup shown in Figure 1. The
whole camera network has been previously calibrated
for both the intrinsics and extrinsics parameters.

We used a target sphere with a radius of 45mm
and acquired the pictures by triggering the cameras
at the same time for each different light separately.
The object was hanged above the device, spanning
the intersection of cameras frustums. We then moved
the sphere in 7 different locations, obtaining 16 (one
for each light) sets of five images for each different
sphere location.

Note that since the sphere slightly moved during
acquisitions, we triangulated its position for each light
independently using the whole camera network. This
was done by first detecting the circular contour in the
images, and then triangulating the 3D position of the
sphere as already described.

According to the previous discussion, accurate
light positions within the cameras reference frame can

not be known a priori. For this reason we tested
the stability of our method in the real-world sce-
nario analysing the relative distance for a specific pair
of lights for which the value is known by construc-
tion. We chose two specific lights (number 5 and
13, displayed in Figure 4) located at opposite sides of
the rectangular structure and computed their positions
with our technique.

In Figure 3 (right) we show the mean absolute er-
ror of the computed distances with respect to the real
distance between the selected lights.

In order to test the impact of the number of sam-
ples on the estimation precision, we varied the num-
ber of images used for the calibration procedure (from
2 to 26, shown in the x-axis) and repeated the exper-
iment 20 times, randomly selecting the images from
the whole dataset. The plot exhibits a clear decreas-
ing trend as the number of samples increases, starting
from an average error of 15mm in the case of two im-
ages, reaching a millimetric precision with more than
15 samples. Also the standard error decreases with
the number of samples, denoting a good algorithm
stability.

Finally, in Figure 3 (second row) we show qualita-
tive results displaying the final configuration obtained
after the optimisation of all the lights (note that the
displayed output does not correspond to the original
light configuration). Lights are plotted as red dots
with their corresponding IDs, together with the five
cameras.
The lights are almost coplanar and follow the rectan-
gular structure mounted on the device around the cen-
tral camera. Small deviations from the frame are due
to local adjustments that bring the lights to be slightly
misaligned with respect to the structure.
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4 CONCLUSIONS

In this paper we presented a light estimation tech-
nique particularly designed for a multi-camera in-
spection system in industrial environments.
Our approach exploits the observed intensities in the
spherical coordinates to easily compute an initial
coarse initialisation with a 3D accumulator, then the
optimal light position is computed via an optimisation
procedure.
Both synthetic and real-world experiments demon-
strated the stability and the precision in the localisa-
tion of multiple light sources.
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