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Abstract: Nowadays, the development of smart cities boosts the development of innovative IT technologies based on
Artificial Intelligence (AI), such as intelligent agents (IA), which themselves use new algorithms, complex
software, and advanced systems. However, due to their expanding number and range of applications as well
as their growing autonomy, there is an increased expectation for these intelligent technologies to involve
explainable algorithms, dependable software, trustworthy systems, transparent agents, etc. Hence, in this
paper, we present a new explainable algorithm which uses snakes within trees to automatically detect and
recognize objects. The proposed method involves the recursive computation of snakes (aka parametric active
contours), leading to multi-layered snakes where the first layer corresponds to the main object of interest, while
the next-layer snakes delineate the different sub-parts of this foreground. Visual features are extracted from the
regions segmented by these snakes and are mapped into semantic concepts. Based on these attributes, decision
trees are induced, resulting in effective semantic labeling of the objects and the automatic annotation of the
scene. Our computer-vision approach shows excellent computational performance on real-world standard
database, in context of smart cities.

1 INTRODUCTION

According to the United Nations (UN), more than half
of the World population currently lives in urban ar-
eas, and this trend is only rising (Bhattacharya et al.,
2020). Therefore, there is a need to rethink cities in
efficient and modern ways, leading to smart cities,
which are defined as urban areas that create sustain-
able economic development and high quality of life
by excelling in six key areas, namely, economy, mo-
bility, environment, people, living, and government
(Montemayor et al., 2015).

In smart cities, traditional infrastructures as well
as new services are merged, coordinated, and inte-
grated using innovative digital technologies (Batty
et al., 2012). Hence, IT technologies such Artificial
Intelligence (AI)-based systems are a cornerstone as-
pect of smart cities, with AI acting as a catalyst for
areas such as smart urban modeling, intelligent in-
frastructures, smart transportation, smart governance,
sustainability, smart education, and smart health solu-
tions, to name a few (Bhattacharya et al., 2020).

In particular, computer-vision-based intelligent
systems contribute to smart city’s applications such
as smart surveillance (Ryabchikov et al., 2020), smart
security (Khan et al., 2019), smart traffic management
(Gupta and Sundar, 2020), and smart mobility (Fortes
et al., 2021). Intelligent vision systems can thus im-
prove people’s quality of life by helping drivers with
finding vacant parking space (Bravo et al., 2013) or
aiding visually impaired to safely travel around the
smart city (Nasralla et al., 2019).

Intelligent vision systems are also embedded in a
variety of intelligent agents (Olszewska, 2020) such
as inspection robots (Sui, 2021), cleaning robots
(Narang et al., 2021), etc. They can also be inte-
grated into mobile ground robots for assistive oper-
ations in public spaces (Grzeskowiak et al., 2021) or
into unmanned aerial vehicles (UAV) for data collec-
tion through the smart city (Shirazi et al., 2020).

All these computer-vision-based applications in-
volve automatic object detection (Chen et al., 2021).
Indeed, automatic object detection is used for object
recognition (Wang et al., 2021), scene recognition
(Zeng et al., 2020), activity recognition (Mliki et al.,
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2020), object tracking (Li et al., 2021), or automated
image annotation (Zhang et al., 2012), which in turn
can be applied to pedestrian detection and surveil-
lance (An et al., 2021), car detection and annotation
(Li et al., 2020), license plate recognition (Huang
et al., 2021), robot navigation (Lin et al., 2021), and
many more applications (Calzado et al., 2018), (Ol-
szewska, 2018).

Therefore, the development of transparent and ex-
plainable artificial intelligence algorithms for intelli-
gent vision systems (Olszewska, 2021) deployed in
smart cities is of prime importance, due to the grow-
ing concern of citizens about, on one hand, their data
privacy and security (Chourabi et al., 2012), and, on
the other hand, the behaviour of the surrounding in-
telligent agents (Zhang et al., 2017).

Over the last decade, computer vision systems
have been more and more relying on machine learn-
ing, and especially on deep learning (Camacho et al.,
2021), which is a very popular and efficient approach.
However, the use of deep learning involves most of
the time very large and unbiased training datasets
(Kishida et al., 2021) with high-resolution images
(Wang et al., 2021), time and energy-consuming pro-
cesses (Liu et al., 2021), resource-intensive compu-
tational power (Prakash et al., 2020), with associ-
ated, extensive costs (Chourabi et al., 2012) as well
as sophisticated equipment (Namiki et al., 2021); all
these demands being not always available in real-
world conditions. Besides, deep learning is not cur-
rently considered as an explainable machine-learning
approach (Gunning et al., 2019).

Since explainable artificial intelligence (XAI) is
very important for users (Ferreira, J. J. and Mon-
teiro, M. S., 2020), (Wilding et al., 2020) and regula-
tors (Winfield et al., 2021), (Prestes et al., 2021), ex-
plainability becomes a ‘sought-after’ non-functional
requirement (Kohl et al., 2019) of AI-based sys-
tems such as intelligent vision systems (Olszewska,
2019b).

Explainability can thus be assessed by internal al-
gorithmic auditing (Raji et al., 2020), software testing
(Black et al., 2022), and/or by verification and valida-
tion of the intelligent system (Corso et al., 2021).

Explainability can be also addressed at an ear-
lier stage of the intelligent-vision system development
(Olszewska, 2019a), i.e. during the system design
(Bryson and Winfield, 2017) and its algorithm de-
sign (Mendling et al., 2021), leading to XAI by Design
(Kearns and Roth, 2020).

Thus, in this work, we propose a novel,
explainable-by-design AI-based algorithm for intelli-
gent vision systems. Our algorithm consists mainly
on the recursive computation of both the computer-

vision method called snakes and the machine-
learning-based decision trees.

Indeed, on one hand, object-of-interest’s shape
(Samani et al., 2021) and closed contours (Funke
et al., 2021) are very important visual feature for
object detection and recognition (Lv et al., 2021).
Therefore, computer-vision techniques such as active
contours (Yezzi et al., 2019) are an efficient and ex-
plainable method to locate, segment, and track an
object. In particular, we have selected the active-
contour method known as ‘snake’ (Muralidhar et al.,
2010), which automatically computes parametric ac-
tive contours to delineate the visual-object shape,
since snakes ally explainability with excellent detec-
tion performance (Olszewska, 2017).

On the other hand, we have adopted decision trees
(DT), which are considered as the most explainable
approach to machine learning (Gunning et al., 2019).
Furthermore, decision trees are efficient for visual ob-
ject detection and recognition applications (Nowozin
et al., 2011), (Olszewska, 2015b).

Thence, our explainable-by-design algorithm can
perform object detection and recognition in both static
or dynamic scenes, depending of the type of input
data - still image (Li et al., 2020) or video frame
(Wang et al., 2019), respectively.

Our algorithm can also process different levels of
granularity, which is important for robust object de-
tection and complex scene description (Wang et al.,
2014).

Moreover, snakes allow object recognition with an
open-set domain (Kishida et al., 2021), without re-
quiring any cumbersome training.

Besides, snakes can be coupled with ontolo-
gies such as the Spatio-Temporal Visual Ontology
(STVO) (Olszewska and McCluskey, 2011), and
therefore, they can directly bridge vision systems
and knowledge-based systems. Furthermore, through
STVO, they can be connected to other ontologies
which are suitable for cutting-edge vision-embedded
technologies such as autonomous systems (Olivares-
Alarcos et al., 2019), cloud-robotic systems (Pig-
naton de Freitas et al., 2020), smart manufacturing
(Hildebrandt et al., 2020), or smart cities (Burns et al.,
2018).

Hence, all this algorithmic design leads to a trans-
parent and efficient visual object detection and auto-
mated semantic scene annotation, while provides an
explainable and energy-efficient solution for intelli-
gent vision agents to be deployed in smart cities.

Thus, the contribution of this paper is the new,
explainable algorithm that allies recursive, multi-
layered snakes with recursive, decision trees for
machine-vision object detection and recognition.
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The paper is structured as follows. In Section 2,
we present our XAI approach for automatic, visual
object detection and recognition as well as unsuper-
vised, semantic labeling of an image by means of
multi-layer, recursive snakes within induced decision
trees. The resulting annotation system has been suc-
cessfully tested on a challenging database containing
real-world images as reported and discussed in Sec-
tion 3. Conclusions are drawn up in Section 4.

2 OUR PROPOSED APPROACH

In this section, we present our ‘Snakes-in-Trees’ (ST)
approach, which allows both the automatic visual ob-
ject detection and recognition as well as its automatic
semantic labeling, as exemplified in Fig. 1.

For this purpose, our ST algorithm (Algorithm 1)
computes recursively snakes (S) in an input image (I),
in order to detect an object (O) in a robust way against
occlusions and to map the object’s semantic label (L)
granularity for a precise object recognition and image
annotation.

In this work, each snake S is implemented by
a multi-feature active contour (Olszewska, 2015a)
which is defined as a parametric curve CCC (s) : [0,1]−→
R2 modeled by a B-spline formalism and guided by
both the internal forces (α: elasticity, β: rigidity) re-
sulting from the curve’s mechanical properties and the
external force ΞΞΞ resulting from multiple features of
the input image, as per following dynamic equation:

CCC t(s, t) = α CCC ss(s, t)−β CCC ssss(s, t)+ΞΞΞ. (1)

The recursive computation of snakes Sl+i,k within
the input image I is performed by applying ith−times
the Eq. (1) to I and leads to the multi-layered (l + i)
partition of I in terms of object-of-interest’s back-
ground (at the layer l + i = l, with i = 0), its fore-
ground (at the layer l + i = l + 1, with i = 1) as well
as the foregrounds of semantically meaningful sub-
objects (at the subsequent layers l + i, with i ≥ 2) of
the object of interest delineated by k snakes at the cor-
responding layers l + i.

Hence, this recursive process enables the auto-
matic detection of coherent and consistent visual ob-
jects, which are described by geometric and metric
properties (Olszewska, 2013). These features serve
to the characterization of the regions extracted by the
snakes and contribute to define the objects or their
subparts in terms of both numeric and semantic con-
cepts.

The latter ones are recursively mapped into
natural-language keywords through the pre-order
traversal of rooted trees that are recursively computed

Figure 1: Overview of our ‘Snakes-in-Trees’ process for the
‘car’ tag object.

by the ST algorithm, allowing the efficient object la-
beling as well as accurate object recognition (see Al-
gorithm 1).

It is worth noting that the decision trees, which are
recursively built by the ST algorithm, ensure a granu-
lar and semantic mapping of the visual objects that are
detected in each layer by the snakes, which are them-
selves recursively computed by the ST algorithm, for
an accurate object detection, recognition, and annota-
tion.

Hence, decision trees are induced in order to de-
fine semantic keywords at each level corresponding
to visual feature defined by each layer of the snakes.
Then, a voting mechanism allows for higher semantic
level decisions in order to recognize the object.

3 RESULTS AND EVALUATION

To validate our transparent algorithmic method for
the automatic visual object detection and recogni-
tion as well as automatic image annotation in context
of smart cities, we used the publicly available MIT
CBCL street scenes database, which contains 35,417
jpg images with a resolution of 1280x960.

We carried out experiments consisting in run-
ning our recursive algorithm implemented in Mat-
Lab on a commercial device with a processor Intel(R)
Core(TM)2 Duo CPU T9300 2.50 GHz, 2 Gb RAM
and the MatLab (Mathworks, Inc.) and applied to the
CBCL database.
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(a) (b) (c) (d)
Figure 2: Examples of results of our recursive ‘Snakes-in-Trees’ method, when applied to the CBCL dataset. Best viewed in
color.

Table 1: Average accuracy of object-of-interest recognition, using approaches of 4(Ren et al., 2015), ♦(Lu et al., 2019),
◦(Liu et al., 2008), �(Kim et al., 2004), and our ‘Snakes-in-Trees’ (ST) method.

method 4 ♦ ◦ � ST

average accuracy 65.4% 69.5% 73.1% 84.2% 95.6%

Algorithm 1: ST: Snakes in Trees.

Given O, the object of interest to tag;
Given TO, the Tree related to the object O;
Given Sl+i,k, the kth Snake at the l + ith layer;
Given LO,n, the label of the root n of the tree TO;

Considering
TO,l+i, the l + ith level of the tree TO;
i = 0;
V =∅;
rSl+i,k = 0;

ST(Sl+i,k,TO)
LO,n =label(head(TO,l+i))
Sl+i,k+m← Sl+i,k
Sl+i,k = Sl+i,k+m
if ∃Sl+i,k|(Sl+i,k � LO,n) then

rSl+i,k = 1
V =V ∪{rSl+i,k}

end if

if TO,l+i,le f t 6=∅ then
i = i+1
ST(Sl+i,k,TO,l+i,le f t )

end if

if TO,l+i,right 6=∅ then
i = i+1
ST(Sl+i,k,TO,l+i,right )

end if

if MajorityVote(V ) == 1 then
return label(head(TO))

end if

end

A sample of obtained results, which have been
computed in few ms, can be found in Figs. 2 (a)-(d).
We can observe that the algorithm has well detected
and recognized the objects of interest as well as their
components, delineating and labeling them appropri-
ately.

To quantitatively assess the accuracy of our al-
gorithm, we adopt the standard criterion (Olszewska,
2019b), as follows:

accuracy =
T P+T N

T P+T N +FP+FN
, (2)

with T P, true positive, T N, true negative, FP,
false positive, and FN, false negative.

Table 1 reports the mean average accuracy, which
is computed as per Eq. (2) in the case of our al-
gorithm (i.e. 95.6%), and compares it to the per-
formance of other state-of-the-art machine-learning
methods for object detection and recognition. On one
hand, we can note that current methods (Wang et al.,
2021) based on deep learning and convolutional neu-
ral networks (Fathima and Merriliance, 2020), such
as Faster R-CNN (Ren et al., 2015) and Grid R-CNN
(Lu et al., 2019), achieve only an accuracy of 65.4%
and 69.5%, respectively. As reported by (Khan et al.,
2020), CBCL dataset images are challenging because
of their low resolution for training as well as testing
neural networks (Jimenez-Bravo et al., 2020). On the
other hand, common decision-tree-based methods,
such as (Liu et al., 2008) and (Kim et al., 2004), have
an accuracy of 73.1% and 84.2%, respectively, and
they involve constraining assumptions such as recog-
nition of very distant classes only or detection of only
centered objects of interest, respectively. Therefore,
our ST algorithm features not only explainability, but
it is also low-spec, cost-effective, time-efficient, and
robust, while being more accurate in comparison with
state-of-the-art approaches.
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4 CONCLUSIONS

In this paper, we propose an explainable-by-design
algorithm built on snakes within trees for automatic
object detection and recognition. Indeed, we have
developed an efficient XAI algorithm embedding re-
cursive snakes within the recursive pre-order traver-
sal of rooted trees, where each decision tree’s se-
mantic value has been mapped with the visual infor-
mation provided by a layer of the computed snake.
Hence, based on both semantic and visual proper-
ties of the image content, our ‘Snakes-in-Trees’ (ST)
method provides accurate and robust object detection
and recognition as well as image annotation in real-
world conditions, even in case of pose variations or
occlusions of the objects of interest. The ST algo-
rithm is thus well suited for smart cities’ intelligent-
vision-based applications.
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