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Abstract: The paradigm of granular computing appeared from an idea proposed by L. A Zadeh, who assumed that a key
element of data mining techniques is the grouping of objects using similarity measures. He assumed that sim-
ilar objects could have similar decision classes. This assumption also guides other scientific streams such as
reasoning by analogy, nearest neighbour method, and rough set methods. This assumption leads to the implica-
tion that grouped data, (granules) can be used to reduce the volume of decision systems while preserving their
classification efficiency - internal knowledge. This hypothesis has been verified in practice - including in the
works of Polkowski and Artiemjew (2007 - 2015) - where they use rough inclusions proposed by Polkowski
and Skowron as an approximation tool - using the approximation scheme proposed by Polkowski. In this work,
we present the application of sequential neural networks to estimate the degree of approximation of decision
systems (the degree of reduction in the size) based on the degree of indiscernibility of the decision system. We
use the standard granulation method as a reference method. Pre-estimation of the degree of approximation is
an important problem for the considered techniques, in the context of the possibility of their rapid application.
This estimation allows the selection of optimal parameters without the need for a classification process.

1 INTRODUCTION

1.1 A Few Words of Introduction to
Rough Set Theory and Granular
Computing

As the basic form of collecting knowledge about cer-
tain problems, we use information systems - in the
sense of collecting intelligence needed to solve prob-
lems. The possibility of modelling decision-making
processes is provided by indiscernibility relations,
see (Pawlak, 1992) We define an information sys-
tem (Pawlak, 1992) as In f Sys = (Uni,Attr), where
Uni is the universe of objects, Attr the set of at-
tributes describing the objects. We assume that Uni
and Attr are finite and nonempty. Attributes a ∈
Atr describe the objects of the universe by means
of certain values from their domain (Va) - that is,
a : U → Va. By adding some expert decisions (prob-
lem solutions) to the information system, we obtain
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a decision system that can be defined as a triple
DecSys(Uni,Attr,dec), where dec 6∈ Attr. Problems
u,v ∈Uni are B–indiscernible whenever a(u) = a(v)
for every a ∈ B, for each attribute set B. This assump-
tion is modelled by indiscernibility relation IND(B).

(u,v) ∈ IND(B) iff a(u) = a(v) for each a ∈ B.

The IND(B) relation divides the universe of objects
into classes

[u]B = {v ∈Uni : (u,v) ∈ IND(B)},
Defined classes form B-primitive granules, collec-
tions over In f Sys. Connections of primitive granules
form elementary granules of knowledge. The descrip-
tor language (Pawlak, 1992) is used to describe infor-
mation systems, where a descriptor is defined as (a,v)
with a ∈ Attr,v ∈ Va. Formulas are created from the
descriptors using the connectors ∨,∧,¬, ⇒. Let us
define the semantics of formulas, , where [[p]] denotes
the meaning of a formula p:

1. [[(a,v)]] = {u ∈U : a(u) = v}
2. [[p∨q] = [[p]]∪ [[q]]
3. [[p∧q]] = [[p]]∩ [[q]]

4. [[¬p]] =U \ [[p]].
(1)
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Objects of the universe Uni in attribute terms B are
described by a feature vector in fB(u) = {(a = a(u)) :
a ∈ B}

1.2 Theoretical Introduction to the
Reference Graulation Method

The paradigm of granular computing in the context
of approximate reasoning was proposed by Zadeh
in (Zadeh, 1979) and has been naturally incorpo-
rated into the rough sets paradigm - see (Lin, 2005),
(L. Polkowski, 2001), (L.Polkowski, 1999), (Skowron
and Stepaniuk, 2001).

One direction in the development of granulation
methods in the context of rough sets has been the
use of rough inclusions, formally derived from the
paradigm of rough mereology see (L. Polkowski,
2001), (L.Polkowski, 1999), (Polkowski, 2005),
(Polkowski, 2006).

In this particular work we will consider one of the
approximate inclusions derived from Łukasiewicz t–
norm. Considering a given system (Uni,Attr), the
rough inclusion µL(u,v,r) is defined by means of the
formula,

µL(u,v,r)⇔
|IND(u,v)|
|Attr|

≥ r

IND(u,v) = {a ∈ Attr : a(u) = a(v)}
The formula µL(u,v,r) defines a collection of objects
indiscernible from the central object at some fixed de-
gree r (radius of granulation). The granulation idea
that we use in this work as a base method was pro-
posed by Polkowski in (Polkowski, 2005). It con-
sists in forming for the In f Sys a collection of gran-
ules Gr = mathcalG(Uni), with which the whole uni-
verse of objects Uni is covered, by forming a collec-
tion Cov(U) according to a fixed strategy Str. For
each granule g ∈Cov(Uni), and each attribute a ∈ A,
a value a(g) = S{a(u) : u ∈ g} is determined. The
system is reduced in size as determined by the granu-
lation radius r used and the covering strategy. We use
majority voting as a reference strategy when forming
objects from granules see (Duda et al., 2000).

The hypothesis that information systems can be
approximated by rough inclusions according to the
described scheme - (Polkowski, 2005) - has been ver-
ified in many works by Polkowski and Artiemjew, in-
cluding (Polkowski, 2015).

1.3 Goal of This Work

In this work, we use Polkowski’s approximation
method (standard granulation) as a reference method

to check the possibility of estimating the degree of ap-
proximation (percentage of reduction of decision sys-
tems). For the estimation, we used the internal de-
gree of r-indiscernibility computed as the number of
combinations without repetition of system objects r-
indiscernible from each other - similar at least in de-
gree r. To achieve our goal, we used sequential neural
networks; we used the naive forecasting method as a
reference method. Our aim was not to find the best
existing technique, but to test the initial possibility of
modelling the problem under study.

The rest of the paper is organised as follows. Sect.
2 contains the methodology. Sect. 3 contains the re-
sults of experiments. Section 4 contain the conclu-
sions and future works.

Let us move on to present a toy example of cre-
ating a granular reflection of a decision system using
standard granulation (see Fig. 1).

2 RESEARCH METHODOLOGY

Figure 1: In the figure we have a brief demonstration of the
standard granulation process.

2.1 Standard Granulation - Toy
Example

Assuming that grgran (ui)= {u j ∈Utrn :
|IND(ui,u j)|

|A|
≥ rgran}

IND(ui,u j) = {a ∈ A;a(ui) = a(u j)}
Utrn is the universe of training objects,

and |X | is the cardinality of set

The sample standard granules with a 0.25
radius, derived from decision systems from Tab.

1 look as follows,
g0.25(u1) = {u1,}

g0.25(u2) = {u2,u4,}
g0.25(u3) = {u3,u6,u8,u10,}
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g0.25(u4) = {u2,u4,}
g0.25(u5) = {u5,}

g0.25(u6) = {u3,u6,u8,u10,}
g0.25(u7) = {u7,}

g0.25(u8) = {u3,u6,u8,u10,}
g0.25(u9) = {u9,}

g0.25(u10) = {u3,u6,u8,u10,}

Random coverage of training systems is as
follows, Cover(Utrn) = {g0.25(u1),g0.25(u4),

g0.25(u5),g0.25(u7),g0.25(u8),g0.25(u9),}

To summarise, the example described is the granula-
tion of system from Tab. 1, as an assisting granularity
tool array from Tab. 2 is used. The granular reflection
of the original system is in the Tab. 3.

Table 1: Exemplary decision system: diabetes, 9 attributes,
10 objects.

Day a1 a2 a3 a4 a5 a6 a7 a8 class
u1 6 148 72 35 0 33.6 0.627 50 1
u2 1 85 66 29 0 26.6 0.351 31 0
u3 8 183 64 0 0 23.3 0.672 32 1
u4 1 89 66 23 94 28.1 0.167 21 0
u5 0 137 40 35 168 43.1 2.288 33 1
u6 5 116 74 0 0 25.6 0.201 30 0
u7 3 78 50 32 88 31.0 0.248 26 1
u8 10 115 0 0 0 35.3 0.134 29 0
u9 2 197 70 45 543 30.5 0.158 53 1
u10 8 125 96 0 0 0.0 0.232 54 1

Table 2: Triangular indiscernibility matrix for stan-
dard granulation (i < j), derived from Tab. 1 ci j =

1, i f |IND(ui,u j)|
|A| ≥ 0.25 and d(ui) = d(u j), 0, otherwise.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
u1 1 0 0 0 0 0 0 0 0 0
u2 x 1 0 1 0 0 0 0 0 0
u3 x x 1 0 0 1 0 1 0 1
u4 x x x 1 0 0 0 0 0 0
u5 x x x x 1 0 0 0 0 0
u6 x x x x x 1 0 1 0 1
u7 x x x x x x 1 0 0 0
u8 x x x x x x x 1 0 1
u9 x x x x x x x x 1 0
u10 x x x x x x x x x 1

Let us now turn to the introduction of the architec-
ture and description of the sequential neural network
used to achieve the goal of the work.

Table 3: Standard granular reflection of the exemplary train-
ing system from Tab. 1, in radius 0.25, 9 attributes, 6 ob-
jects; MV is Majority Voting procedure (the most frequent
descriptors create a granular reflection).

Day a1 a2 a3 a4 a5 a6 a7 a8 class
MV (g0.25(u1)) 6 148 72 35 0 33.6 0.627 50 1
MV (g0.25(u4)) 1 85 66 29 0 26.6 0.351 31 0
MV (g0.25(u5)) 0 137 40 35 168 43.1 2.288 33 1
MV (g0.25(u7)) 3 78 50 32 88 31.0 0.248 26 1
MV (g0.25(u8)) 8 183 64 0 0 23.3 0.672 32 1
MV (g0.25(u9)) 2 197 70 45 543 30.5 0.158 53 1

2.2 Forecasting using a Sequential
Neural Network

We used the MSE (Mean Square Error) parameter
to estimate the quality of the presented forecasting
method. Which, when comparing these parameters
on specific data, is an objective solution.

The three-layer sequential neural network archi-
tecture (Szkoła et al., 2011) (Szkola et al., 2011) (Li
et al., 2020) was proposed for predicting the output
data, the first layer contains LSTM cells, in subse-
quent layers full connections between the preceding
layer and the current one. In the first layer, was used
from 50 to 100 neurons for different input datasets, in
the second layer 25 and in the last layer - one neu-
ron. This configuration works well in most cases of
the input datasets. To obtain a sufficiently high qual-
ity of prediction, number of neurons in the network
should be carfully selected. After many attempts, we
can recommend using 2 - 5 times more neurons in
the first layer than the input time samples of the data
from the individual time steps. With this range of in-
put neurons, we could achieve good balans beetwen
genralization and overfiting.

Before the learning process begins, the input data
must be properly processed to the form in which
learning can take place (Szkoła et al., 2011). The
input data supplied to the network should be in the
range in which the training algorithms based on gradi-
ent methods do not cause rapid saturation. In practice,
the input data is converted to the range [0 - 1] or [-1,
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1]. The presented algorithm uses the method of nor-
malizing the input and output data separately, to the
range of values [0 - 1]. Attempts were also made to
transform the input data by means of logarithmic nor-
malization, but it did not improve the classification /
prediction of the data, therefore it was decided that
the classical normalizing algorithm would be used.

The learning process involves the sequential feed-
ing of individual samples to the input of the net-
work, based on a method known as online learning
(batch size = 1). The network is learned through
1000 epochs, if less epochs was used, accuracy
was lower value. As the loss function is used
mean squared error, the optimizer used is the Adap-
tive Moment Estimation algorithm.

A simple pre-processing and post-processing op-
eration was used to match the network response to the
expected output values (Szkoła and Pancerz, 2019).
For the input data we used normalization algorithm.
For the compute output value, in the first step, the
maximum value that is possible on the output for the
training data is calculated. Then this value is multi-
plied by the network response to the given excitation,
as a result of which we obtain the predicted response
in the range of values consistent with the input data.
Due to the range of values that the network can re-
turn, it is not possible to obtain the target value di-
rectly from the network, therefore a simple operation
of multiplying the network response by an appropri-
ate factor is required.

The number of neurons in the first layer has a great
influence on the correct operation of the network. The
number of neurons in this layer should be greater than
the number of data records. The tests show that good
results are obtained if the number of the neurons in
the first layer is at least two or more times greater than
the number of input records. Changes in the number

of neurons in the next layer have a smaller impact on
the functioning of the network.

MSE =
number o f data points

∑
i=1

(observedi− predictedi)
2

Let us move on to discuss the experimental verifi-
cation of the objective defined in Sect. 1.3.

3 EXPERIMENTAL SESSION

3.1 Data Preparation

For the experiments, we selected a few distinctly dif-
ferent datasets from the UCI repository (Dua and
Graff, 2017).

(i) Australian Credit (dims.: 15, items: 690);

(ii) Car (dims.: 7, items: 1728);

(iii) Congressional house votes (dims.: 17, items:
435);

(iv) Fertility (dims.: 10, items: 100);

(v) German credit (dims.: 20, items: 1000);

(vi) Heart Disease (dims.: 14, items: 270);

(vii) Pima Indians Diabetes (dims.: 9, items: 768).

(viii) Soybean large (dims.: 36, items: 683);

(ix) SPECTF (dims.: 45, items: 267);

(x) SPECT (dims.: 23, items: 267);

For simplicity in the standard granulation process,
all attributes are treated as symbolic.

3.2 Results Description

For the Australian Credit Dataset. Consid-
ering the granulation (approximation) radii as:
{ 0
|A| ,

1
|A| , ...,

|A|
|A|}, the size of the granulated (approx-

imated) systems is as follows:1 1 2 3 4 9 24 67
141 355 551 663 682 684 690. A naive predic-
tion solution applying the previous step to the eval-
uation gives an estimate: 1 2 3 5 7 13 33 91 208
496 906 1214 1345 1366 1374. Finally our sequen-
tial neural network which is based on indiscernibil-
ity degrees 237705 237360 233062 215300 178050
125809 73344 33300 10990 2432 351 42 18 9 0 gives
an estimate: 2.954362 -1.041474 0.421173 0.848999
1.51634 5.706955 19.51853 62.379723 138.676437
353.199066 550.998535 660.025024 684.502258
687.227844 686.925232. Calculating the MSE, for
the naive solution is 1827233, and for our approach
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done with a sequential neural network is around 117.
The exact data on which the neural network worked
can be seen in Tab 4.

Table 4: Data for Australian Credit Diabetes: In the table
we have summary information about the values used by the
neural network (input), the expected values, and the values
predicted by the network.

input expected predicted
237705.000000 0.000000 2.954362
237360.000000 0.000000 -1.041474
233062.000000 1.001451 0.421173
215300.000000 2.002903 0.848999
178050.000000 3.004354 1.516340
125809.000000 8.011611 5.706955
73344.000000 23.033382 19.518530
33300.000000 66.095791 62.379723
10990.000000 140.203193 138.676437
2432.000000 354.513788 353.199066
351.000000 550.798258 550.998535
42.000000 662.960813 660.025024
18.000000 681.988389 684.502258
9.000000 683.991292 687.227844
0.000000 690.000000 686.925232

For the Pima Indians Diabetes Dataset. The size
of the granulated systems is as follows:1 23 122 393
633 757 768 768 768. A naive prediction solution:
1 24 145 515 1026 1390 1525 1536 1536. Finally
our sequential neural network gives an estimate: 7.4e-
05 22.028669 121.157761 392.511017 632.823975
756.985718 768 767.999939 768. Calculating the
MSE, for the naive solution is 2323249, and for our
approach done with a sequential neural network is
around 3. The exact data on which the neural network
worked can be seen in Tab 5.

Table 5: Data for Pima Indians Diabetes: In the table we
have summary information about the values used by the
neural network (input), the expected values, and the values
predicted by the network.

input expected predicted
294528.000000 0.000000 0.000074
115994.000000 22.028683 22.028669
38060.000000 121.157757 121.157761
5271.000000 392.511082 392.511017
375.000000 632.823990 632.823975
13.000000 756.985658 756.985718
0.000000 768.000000 768.000000
0.000000 768.000000 767.999939
0.000000 768.000000 768.000000

For the Heart Disease Dataset. The size of the
granulated systems is as follows:1 1 3 3 8 12 25
63 135 214 261 270 270 270. A naive predic-
tion solution: 1 2 4 6 11 20 37 88 198 349 475
531 540 540. Finally our sequential neural net-
work gives an estimate: 2.384996 1.747474 5.694103
4.539211 7.185006 16.565092 35.658192 74.358444
142.456848 216.848175 255.135269 260.954498
261.508392 263.523743 Calculating the MSE, for the
naive solution is 282764, and for our approach done
with a sequential neural network is around 570. The
exact data on which the neural network worked can
be seen in Tab 6.

Table 6: Data for Heart Disease: In the table we have sum-
mary information about the values used by the neural net-
work (input), the expected values, and the values predicted
by the network.

input expected predicted
36315.000000 0.000000 2.384996
36160.000000 0.000000 1.747474
35035.000000 2.007435 5.694103
31203.000000 2.007435 4.539211
24157.000000 7.026022 7.185006
15514.000000 11.040892 16.565092
7882.000000 24.089219 35.658192
3016.000000 62.230483 74.358444
780.000000 134.498141 142.456848
137.000000 213.791822 216.848175
10.000000 260.966543 255.135269
0.000000 270.000000 260.954498
0.000000 270.000000 261.508392
0.000000 270.000000 263.523743

For the rest of the examined data, we only present
the calculated MSE values, which can be seen in the
summary - see Tab. 7.

3.3 Summary of the Results

The results in Tab. 7 show the great advantage of
forecasting with a sequential neural network over the
naive method. Our method allows us to estimate the
degree of approximation (expected reduction of the
original decision systems) in a reasonably accurate
way. The goal we set in section 1.3 has been achieved.
It is worth noting that the estimation presented is a
preview of the possibility of estimating the approxi-
mation degrees and there is a slight overfitting process
on the examined data. The only way to compensate
for this process was to select an appropriate neural
network structure. Certainly, the possibility of esti-
mating successive degrees of approximation is higher
than the efficiency of the naive method.
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Table 7: Summary results of the efficiency of predicting the
size of granular systems vs the efficiency of a naive solua-
tion. A smaller MSE value means better prediction preci-
sion.

dataset MSE naive MSE of neural network
Australian credit 1827233 117

Pima Indians Diabetes 2323249 3
Heart disease 282764 570

Car 126860 133
Fertility 13879 11

German credit 4732593 2239
Hepatitis 108585 789

Congressional house votes 42254 780
Soybean large 477873 6786

SPECT 78780
SPECTF 2596795 116

4 CONCLUSIONS

In this ongoing work, we verified that it is possible to
predict the degree of approximation of decision sys-
tems based on their internal degree of indiscernibil-
ity. To achieve this goal, we used sequential neural
networks, whose efficiency proved statistically supe-
rior to the naive prediction method. In the initial es-
timation model used, we are aware of a slight overfit-
ting process due to the characteristics of the data se-
quences used. Despite promising initial results, much
is left to be done to evaluate the final performance
and determine the application of this new method.
The discovery of the ability to estimate approxima-
tion degrees described in the paper opens up several
new research threads. First, we intend to investigate
whether the estimated degrees allow us to estimate the
behaviour of decision systems in a double granula-
tion process. That is, to verify whether the optimal
approximation parameters can be directly estimated
from the degrees of indiscernibility of the decision
systems. Another horizon of potential research is to
try estimating the course of the approximation on pre-
viously unseen data based on other data with a similar
degree of indiscernibility.
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