
An Authenticated Accumulator Scheme for Secure Master Key Access in
Microservice Architectures

Hannes Salin1 and Dennis Fokin2

1Department of Information and Communication Technology, Swedish Transport Administration, Borlänge, Sweden
2Independent Researcher, Sweden

Keywords: Key Management, Microservices, Cryptographic Accumulators, Pairing-based Cryptography, Secure Key
Storage.

Abstract: We consider the use-case of Internet of Things ecosystems with an API-driven microservice architecture,
where the need for accessing cryptographic functions is crucial. Devices communicate with a microservice
backend, which in turn integrates to a secure key storage in order to compute digital signatures or message
encryption. Access to a secure storage must be executed securely and naive approaches such as passwords
or certificates are used in practice today, which still may be open to impersonation attacks. With the usage
of efficient cryptographic accumulators we therefore propose a secure key access scheme with the microser-
vices ecosystem in mind, and provide initial results from a proof-of-concept implementation in Java and jPBC,
where we show a performance- and communication complexity analysis. Finally, we provide a security anal-
ysis of the scheme in the random oracle model.

1 INTRODUCTION

Standardization of Internet of Things (IoT) Represen-
tational State Transfer (REST) architecture is still on-
going (Keränen et al., 2021) and addresses what is
nowadays a well-known type of architecture in soft-
ware engineering. Using REST API:s is well aligned
with an underlying microservice architecture - it is
far from unusual to adopt a microservices architec-
ture over a monolithic one; with higher demands of
scalability and resilience, it also gives the benefit of
seamlessly combining different modules of a system,
developed with different technology stacks. An API-
driven pattern enables this modularity, but also gives
rise to several security related challenges. Authenti-
cation and authorization seems to be the most com-
monly addressed security mechanisms in a microser-
vices context (Pereira-Vale et al., 2019). However,
despite a range of industry best practices on how
to approach these challenges, not much is scientifi-
cally established for the general case of authenticat-
ing services for secure access. Given an ecosystem
of IoT devices built on a microservices architecture,
where possibly a subset of these need frequent access
to cryptographic functions such as digital signatures
or encryption, requirements for strong authentication
and secret key access are needed. One approach is to

store secret keys on each and every service. However,
that would lead to severe security implications since
an adversary would only have to compromise the ser-
vice in order to gain access to the secret key. In some
cases (e.g. for transaction signatures), a master key is
needed, thus a single point of storage must exist. This
problem is often addressed by using Hardware Secu-
rity Modules (HSM) and/or vaults, for secure storage.
On the other hand, to access an HSM or vault, a pass-
word, key or similar is still needed for authenticated
access; this problem seems unsolvable since regard-
less of how far we apply a layer of security, an entity
still needs to authenticate itself at some point.

1.1 Problem Statement

In an IoT-driven environment with clusters of devices
connecting to backend services, i.e. a microservices-
based ecosystem, with provided functionality that in-
clude cryptographic operations (such as digital signa-
tures or encrypting data), the secret key(s) must be se-
curely stored. We consider particularly high-sensitive
systems in connected environments such as Intelligent
Transport Systems (ITS) where both vehicles and in-
frastructure can be connected. With many types of
IoT devices such as cameras, radars, and other sen-
sory devices, data needs to be transmitted to interme-

Salin, H. and Fokin, D.
An Authenticated Accumulator Scheme for Secure Master Key Access in Microservice Architectures.
DOI: 10.5220/0010989400003194
In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (IoTBDS 2022), pages 119-126
ISBN: 978-989-758-564-7; ISSN: 2184-4976
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

119



diate nodes; different types of traffic data needs to be
exchanged between providers and/or consuming parts
of the backend services (NordicWay, 2021). Also, the
European Commission has initiatives considering the
inclusion of end user smartphone data collection and
distribution for traffic planning purposes, using API-
driven solutions (Joinup, 2021).

We need to investigate a suitable solution for key
access procedures in a HSM, from a microservice
node. The access must have enough security but still
balance between performance and scalability. Typical
REST API:s can have layers of security for the actual
API calls, but we also need to ensure that the protocol
that triggers an HSM operation is authenticated and
sound; TLS is a good way to secure the communica-
tion, but the request procedure of accessing the secret
key/crypto operation within the HSM must also not be
breakable or leak sensitive data that can compromise
a client or HSM.

1.2 Cryptographic Accumulators

A cryptographic accumulator is an efficient algorithm
for proving set-membership. Given an element y in
some set Y , it is possible for a prover to prove for
a verifier that y ∈ Y without revealing any other in-
formation of the elements. By using a (fixed-size)
witness for an element in the accumulator, a verifi-
cation of that element’s set (non)-membership is pos-
sible. The security lies in the hardness of comput-
ing such witness for elements not belonging to the
set Y , i.e. forge a membership proof. The notion
of one-way accumulators was first proposed by Be-
naloh and de Mare (Benaloh et al., 1993), known as
RSA accumulators. To illustrate the idea, we give a
short overview of a simple RSA accumulator func-
tion f (x) = Ax mod N where A is the accumulator
(holding all the elements) and N = pq for primes
p,q. Initially the accumulator consists of the element
A0 = g, then after accumulating x1 we get A1 = gx1 ,
and for a sequence of elements x2,x3, ...,xn we get
An = (gx1)x2x3,...xn = gx1x2x3...xn . Now, to create a wit-
ness for element xi we compute wi = gx1...xi−1xi+1...xn ,
and to prove that xi ∈ An we can simply verify that
wxi

i = gx1...xi−1xixi+1...xn = An.
Cryptographic accumulators can be categorized

into static, dynamic and universal types. Static ac-
cumulators cannot alter the set, i.e adding/removing
elements, whereas dynamic accumulators have this
ability. Universal accumulators provide both alter-
ation and the possibility to perform verification of
non-membership proofs, i.e. prove that y 6∈ Y .

1.3 Related Work

A recent survey indicates that both products and pro-
gramming libraries are available for most types of
key access solutions, e.g. software vaults and cryp-
tographic primitives for Secure Multi-Party Compu-
tations (SMPC) (Salin and Fokin, 2021). Regard-
ing SMPC and similar solutions, nothing has become
widely adopted as of yet in the industry, although
seemingly on the rise. Moreover, identified naive ap-
proaches for key access are storing the secret key em-
bedded in the application (during build), in a database
with stored database credentials in a property file or
storing pointers to the actual key in a configuration
file. These solutions imply direct vulnerability if the
device or node is compromised.

A typical approach in industry is using a tradi-
tional public key infrastructure (PKI) for microser-
vice authentication, hence the usage of certificates be-
tween nodes. In (Pahl and Donini, 2018) a certificate-
based methodology for IoT authentication is pre-
sented, where additional authentication data is em-
bedded in each executable. The proposal shows
promising scalability and could most likely be used
for a microservice authenticated access to a key stor-
age. However, the solution still builds on PKI key
management which handles revocation and key dis-
tribution in a non-efficient way in a large-scale de-
ployment. In some scenarios, authentication could
be a collaborative approach, i.e. a set of microser-
vices that would need to split some access creden-
tial among them and perform a SMPC scheme. Harn
(Harn, 2012) proposed a group authentication proto-
col designed specifically to be a many-to-many au-
thentication system, instead of the more classical ap-
proaches of having a one-to-one relationship, e.g. one
prover and one verifier. This was accomplished by
using Shamir’s secret sharing. We could view this in
a microservice perspective where the group is a set
of IoT backend services, computing access collabo-
ratively. While this solution is efficient, an adversary
could gain access to one of the shares and through a
replay attack become authenticated. A further attack
vector with Shamir’s secret sharing scheme is that a
party could become compromised and send a non-
legitimate secret to the entity collecting the secrets.
This would break the secret sharing protocol. Another
secret sharing approach for key management has been
proposed (Li et al., 2014) with the angle of adding a
layer of data security by including derived convergent
keys for data encryption, secured by a master key.
However, as noted previously, secret sharing schemes
also come with certain drawbacks, and is therefore on
its own not a complete solution for the situation re-

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

120



searched in this paper.

1.4 Contribution

We propose a novel solution to securely provide mas-
ter key access in a microservice ecosystem, construct-
ing an accumulator-based scheme with witness split-
ting and an interactive request access mechanism.
Our contribution consists of:
• a proposed secure master key access scheme with

witness splitting and a dynamic cryptographic ac-
cumulator,

• a security and correctness analysis of the proposed
scheme,

• a proof-of-concept implementation of the scheme
in Java with a performance- and communication
complexity analysis.

2 PRELIMINARIES

We introduce a set of cryptographic primitives nec-
essary for building our proposed scheme. The accu-
mulator is based on a dynamic non-adaptive scheme
in (Karantaidou and Baldimtsi, 2021), which in turn
is proven secure under the q-Strong Diffie-Hellman
Assumption (q-SDH). A secure hash function H is
a collision-free function H : {1,0}∗→G resistant to

preimage attacks. We denote x $←− A to be an element
x chosen randomly (uniformly) from a set A.
Definition 1. Let G1,G2,GT be multiplicative
groups of prime order p. A pairing is a bilinear map
ê : G1×G2→GT with the following properties:
• Bilinearity: For all x ∈ G1,y ∈ G2 then

ê(xa,yb) = ê(x,y)ab for any a,b ∈ Z.
• Non-degeneracy: For generators g1 ∈ G1,g2 ∈
G2 then ê(g1,g2) 6= 1.

• Efficient: The map ê can be efficiently computed.
If G1 =G2 then we call the pairing symmetric.

Definition 2. Let k ∈ N be a security parameter and
G a cyclic group of order q > 2k. Let g be a genera-
tor of G. The Discrete Logarithm Problem (DLP) is,
given a randomly chosen y,g ∈ G, to find the unique
x ∈ Z∗q such that y = gx.
Definition 3 (q-Strong Diffie-Hellman Assump-
tion). Let g be a randomly chosen generator to the
cyclic group G, with prime order p, and a randomly
chosen element x ∈ Zp. Given the set {gxi |i ∈ Zq ∪
{0}} for some integer q, a probabilistic polynomial-
time (PPT) adversary can only compute the pair
(c,g

1
x+c ) ∈ Zp×G with a negligible probability.

The Boneh-Lynn-Shacham (BLS) short signature
scheme (Boneh et al., 2001) is used in our proposed
architecture for creating specific client witness values.
BLS is based on pairings and consists of four proce-
dures where signatures are computed by σ = H (m)sk

with secret key sk. A signature is then validated by
ê(σ,g) ?

= ê(H (m),pk) where pk is the public key of
the signer.

2.1 System Settings

Let ID1, ..., IDn be a set of n microservices; we refer
to each node as a client. Each service is running on a
trusted, hardened (secured) container in an orchestra-
tion platform, handling the communication pipeline
between all nodes. Another node, H SM , is a secure
storage service containing a master key k and can per-
form cryptographic functions fk(·).

We assume an IoT device can trigger implicit ac-
cess to the H SM node by requesting a service at
some IDi, either from an IoT interface integrating di-
rectly with IDi or as part of the microservice ecosys-
tem. Communication is via API:s between the nodes,
assumed securely established using TLS or similar
well-known deployable solutions. The authentica-
tion of the IoT device in the public network, is ab-
stracted on the surrounding system-level, e.g. by to-
kenization/federation or other type of authentication
framework, terminating before IDi requests access to
H SM , thus out-of scope and not relevant for our pa-
per.

3 ACCUMULATOR MASTER KEY
ACCESS SCHEME

Our proposed master key access scheme builds on
a similar accumulator construction given in (Karan-
taidou and Baldimtsi, 2021), but with an interactive
additive witness update mechanism based on the dis-
crete logarithm problem. We use the accumulator to
securely keep track of eligible clients that should have
access, and use the interactive witness mechanism to
ensure forward secrecy and authentication. Clearly,
similar types of accumulator constructions based on
pairings can be used as a cryptographic primitive;
we illustrate the idea with the dynamic non-adaptive
scheme in (Karantaidou and Baldimtsi, 2021). By us-
ing an accumulator, a single value can be stored in the
HSM instead of a database with identities, key val-
ues and so on. This approach would reduce the com-
plexity of key management since revocation is sim-
ply equivalent to removing the key access value for

An Authenticated Accumulator Scheme for Secure Master Key Access in Microservice Architectures

121



a client in the accumulator. Another strength in our
approach is also the ease of implementation and the
increased difficulty for an adversary to simply steal
a password or secret key from a client; since each
access attempt generates an ephemeral intermediate
value, combined with a witness splitting technique,
no replay attacks are possible.

3.1 Overview

A master key k is stored in a secure module H SM .
A client with identity ID needs access to compute a
cryptographic function fk(m), e.g. a signature or en-
cryption over a message m. In order to compute fk(m)
and thereby implicitly accessing k, following proce-
dure will establish an authenticated access:

• ID publish public key pkID.

• ID and H SM agrees on security parameters
par = {G,q,g, ê,H }.

• ID computes registry value σID = H (ID)skID and
sends to H SM .

• H SM derives a client-specific access value kID =
H (ID)skID +H (ID)skH SM .

• H SM accumulates kID into a client access
accumulator and generates a witness wID =
GenWitness(kID).

• H SM splits wID into wID1 and wID2 using
SplitWitness and immediately updates the shares
using the UpdateWitness procedure.

• H SM share wID1 to ID.

• At this stage, H SM is securely storing kID in the
accumulator and the client possess the partial wit-
ness wID1 , thus the client is not storing the com-
plete witness nor the access value (or even has any
knowledge of what that value is).

• When the client wants access, it sends wID1 to
H SM .

• H SM responds with a challenge gzi where zi
$−→

Z∗q for the ith iteration of request.

• The client computes (gzi)skID = gzi·skID and sends
to H SM .

• H SM verifies that ê(gzi·skID ,g−zi) = ê(g,g)skID =
ê(g,pkID), since the inverse to zi is only known to
H SM .

• If successful both parties updates wC′1
= wC1 +

gzi·skID , and H SM also updates wID′2
= (wID2)

zi−
gzi·skID , using the UpdateWitness procedure, thus
invalidates the old shares.

In the last step, when updating the partial witness,
we refer to a mechanism where the witness wID can
be split into wID1 ,wID2 , and later in time gets updated
in such a way that the new shares are bound to an
ephemeral value and the secret key of the client. Rely-
ing on the discrete logarithm problem, the challenge-
response part with gzi·skID ensure that H SM can ver-
ify the authenticity of ID and thereby proceed with the
key updating procedure. We illustrate the complete
sequence of our scheme in Tab. 1.

3.2 Scheme Description

We define our master key access scheme as follows:
Setup(1λ)→ (par): generates secure Diffie-Hellman

groups, pairing function and hash functions, col-
lected into par = {G,q,g, ê,H }. To initialize an

empty accumulator, a random value u $←− Z∗q is
generated and the starting accumulator value is set
to v0 = gu. The H SM itself also generates a pri-
vate signature key skH SM . The client also gener-
ates public and secret keys pkID,skID.

Register(σID, ID)→ (⊥,wID1) : A client with iden-
tity ID register access to the H SM using a signed
proof σID = H (ID)skID and receives the partial
witness wID1 after the H SM has verified against
pkID. Register function is computed as follows:

kID = σID+H (ID)skH SM (1)

= H (ID)skID +H (ID)skH SM (2)
Next, procedures Accumulate and SplitWitness
are used as subroutines in order to finally return
wID1 to the client.

Accumulate(kID)→ wID: accumulates kID and gen-
erates a witness wID for the access key of ID
(eligible for access). If kID is not already in-
serted, the accumulation from state t to t + 1 is
computed as vt+1 = v

kID+skH SM
t and the witness

wID = (vt+1)
1

kID+skH SM .
SplitWitness(wID)→ wID1 ,wID2 : splits the witness

into two shares, using the following formula

where s $←−G1:
wID1 = s (3)
wID2 = wID− s (4)

UpdateWitness(wID1 ,wID2 ,g
z·skID)→ wID1′ ,wID2′ :

updates the witness shares using gz·skID where

z $←− Z∗q:

wID′1
= wID1 +gz·skID (5)

wID′2
= (wID2)

z−gz·skID (6)

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

122



Table 1: Sequence diagram of the accumulator-based secure master key access scheme.

Client ID Message H SM
skID

$←− Z∗q , pkID = gskID par = {G,q,g, ê,H ,v0} k $←− Z∗q,skH SM
$←− Z∗q

σID = H (ID)skID σID −−−−−−−−−−→
kID = σID+H (ID)skH SM

wID,vt = Accumulate(kID)
←−−−−−−−−−− wID1 (wID1 ,wID2) = SplitWitness(wID)

Request access to fk(·) σID,wID1 −−−−−→
←−−−−−−−−−− gz z $←− Z∗q

(gz)skID gz·skID ,m−−−−−−−−−−→
ê(g−z,gz·skID)

?
= ê(g,pkID)

wID = CombineWitness(wID1 ,wID2)
fk(m) = Access(wID,σID,m)

Updates and store wID′1
(wID′1

,wID′2
) = UpdateWitness(wID1 ,wID2 ,g

z·skID)

after successful verification of ê(g−z,gz·skID)
?
=

ê(g,pkID).

CombineWitness(wID′1
,wID′2

)→ wID: combines the
witness shares as follows:

wID′1
+
(

wID′2
+gz·skID

) 1
z

(7)

= wID1 +gz·skI D +((wID2)
z)

1
z (8)

= wID1 +wID2 = wID. (9)

Access(wID,σID,m)→ fk(m): A client accessing
function fk(·) which uses the secret master key
k to perform a cryptographic operation. Uses
the witness and verifies that kID is accumulated.
Witness checking for kID is done by verifying
ê(wID,gkIDgskH SM ) = ê(vt+1,g).

4 SECURITY ANALYSIS

4.1 Security Model and Setup

The underlying accumulator scheme is shown to be
secure under the q-SDH assumption in the appendix
of (Karantaidou and Baldimtsi, 2021). However,
since we use it as a cryptographic building block we
provide an overall security analysis of our scheme
and focus on those parts surrounding the accumula-
tion verification and unforgeability.

We build our security analysis on the random or-
acle model (ROM), using a set of oracles that a prob-
abilistic polynomial-time (PPT) adversary A can uti-
lize. The Combine procedure in the scheme is mod-
eled as an oracle that can be queried a polynomial q
number of times, serving the adversary fresh values.

Definition 4. Let OCombine be a combine oracle which
takes a witness share wID j and outputs a valid
witness w∗ID, i.e. OCombine(wID j) = w∗ID such that
Access(w∗ID,σ

∗,m) = 1 for any message m and cor-
responding signature σ∗.

We also consider a hash (signature) oracle, simi-
lar to OCombine, but instead returns a signature σ∗ =
H (x)skID :

Definition 5. Let OSign,ID be a signature oracle which
returns a BLS signature on any binary input string ID
using the secret key of ID. The signature will validate
successfully, i.e. Access(w∗ID,σ

∗,m) = 1 given a valid
witness w∗ID.

Definition 6. Let sub be a polynomial-time subrou-
tine which extracts a secret key, given σ∗ and a wit-
ness. sub returns the secret key of either the client or
H SM .

Definition 7 (Security Experiment I). We define the
security experiment EXP

OSign,ID

A as follows: the adver-
sary A receives a valid witness w∗ID to use once (i.e.
no updates of shares will leak to the adversary) for re-
questing access. The adversary can only extract one
key during the experiment using sub. A wins the game
if the advantage

ADV A(EXP
OSign,ID

A ) = Pr[(OSign,ID(ID) = σ
∗
ID)

∧
(
sub(σ∗ID,w

∗
ID) = skID∨ skH SM

)
] (10)

is not negligible, i.e. the probability of success for A
to extract one of the secret keys in order to forge kID
and thereby be able to access H SM in any forthcom-
ing requests.
Definition 8 (Security Experiment II). We define
the security experiment EXPOCombine

A as follows: the

An Authenticated Accumulator Scheme for Secure Master Key Access in Microservice Architectures

123



adversary A receives a previous share wID j,i−1 where
j ∈ {1,2} and can query OCombine for a combined wit-
ness q times, except for the latest updated witness con-
taining zi. A is assumed to have access to the client
signature σ = H (ID)skID . A wins the game if the ad-
vantage

ADV A (EXP
OCombine

A ) = Pr[(OCombine(wID1,i−1) = w∗ID)

∧ (Access(w∗ID,σ,m) = 1)] (11)

is not negligible, i.e. the probability of success for A
generating a valid witness given an old witness share.
This would demonstrate the security against replay
attacks with regards to witness shares.

4.2 Analysis

We need to validate that an accumulated value kID is
correctly verified by the witness wID, and that the sub-
routine using Access is correctly executing fk(·) when
the client is authenticated, and rejects otherwise.
Theorem 1. Algorithms Accumulate and Access ver-
ifies correctly.

Proof. We note that Accumulate implicitly validates
by returning the witness for the accumulated value,
e.g. kID will generate wID, bound to ID and H SM in
state t +1:

wID = (vt+1)
1

kID+skH SM = (vt)

kID+skH SM
kID+skH SM = vt (12)

Thus the witness correctly represents the existence of
kID in the accumulator. Next, we consider the correct-
ness of the proof checking mechanism:

ê(wID,gkIDgskH SM ) = ê(vt ,gkIDgskH SM ) (13)

= ê(vt ,g)kID+skH SM (14)

= ê(v
kID+skH SM
t ,g) (15)

= ê(vt+1,g) (16)

Theorem 2. The H SM node verifies the ephemeral
value gz·skID correctly.

Proof. In the intermediate step of the protocol we
need to ensure that the H SM node correctly verifies
the ephemeral value before proceeding with the wit-
ness combination procedure. The check consists of
the pairing ê(g−z,gz·skID)

?
= ê(g,pkID) and we prove

its correctness (note that −z is the inverse element to
z, i.e. z · (−z) = (−z) · z = 1):

ê(g−z,gz·skID) = ê(g,g)(−z)·z·skID (17)

= ê(g,g)skID (18)
= ê(g,pkID) (19)

Theorem 3. Procedures Register and Access pre-
serves the un-forgeability of signatures in the scheme,
i.e. secure under the security experiment of type I.

Proof. The client signature is given by a BLS sig-
nature σID = H (ID)skID , and further the client ac-
cess value is only an addition of the H SM ’s ver-
sion of signature, resulting in kID = H (ID)skID +
H (ID)skH SM . Knowledge of either term in kID will
not give any advantage in finding the secret keys due
to the security of BLS (Boneh et al., 2001). Therefore
the probability

Pr[(OSign,ID(ID) = σ
∗
ID)∧ (sub(σ∗ID) = skID)] (20)

is negligible since sub must then be an algorithm
breaking BLS. Also, knowing both terms and being
able to extract kID will not break the scheme in any
way since the final verification is independent of veri-
fying kID itself, but rather verifies that kID is correctly
accumulated.

Now, let A be an adversary having access to
a signing oracle OSign,ID and a witness w∗ID =

(vt+1)
1

kID+skH SM . It is shown in the appendix of
(Karantaidou and Baldimtsi, 2021) that accumulation
is secure under the q-SDH assumption, hence w∗ID will
not give the adversary any advantage in extracting the
secret keys since both are again secured as BLS sig-
natures and now also in the exponent of the accumu-
lation, thus

Pr[sub(w∗ID) = (skID∨ skH SM )] (21)

is negligible. Finally, above result implies that
ADV A(EXP

OSign,ID

A ) is negligible.

Our scheme uses a split-and-refresh technique for
the witness, often used for lightweight private key
management (Selvi et al., 2019; Ferreira and Da-
hab, 2002). The idea is to split the secret value into
two shares and after every usage, a random value is
generated and used for recomputing the shares in a
way such that the combined value is still the original
one. Afterwards the previous shares are deleted from
memory.

Theorem 4. Algorithms SplitWitness and
CombineWitness correctly split and updates wID,
invalidating any previous, outdated share wIDi , i.e.
secure under the security experiment of type II.

Proof. Consider witness wID, first splitted in the ini-
tial stage by SplitWitness and directly updates, thus
the first time the two shares are wID′1

= wID1 +gz1·skID

and wID′2
= (wID2)

z1 − gz1·skID . Clearly the witness is

combined efficiently as wID1 +gz1·skID +(wID2)
z1· 1

z1 −

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

124



gz1·skID = wID. Next, for the ith consecutive iteration
of updating the key shares, we get

s+
n

∑
i=1

+gzi·skID − s−
n

∑
i=1

gzi·skID +wID = wID. (22)

Assume the ith iteration of H SM access occur and
denote the current key shares as wID1,i and wID2,i .
Next, assume an attacker get access to a previous
key share wID1,i−1 . This implies that the attacker
also lacks the latest gzi since the previous share is
computed on gzi−1 , or explicitly wID1,i−1 = wID1,i−2 +
gzi−1skID . Since CombineWitness combines correctly,
the attacker needs either skID or a value α such that
CombineWitness(α,wID2,i−1) = wID. For the first
case, the attacker need to break the DLP since skID is
only previously used in computations in the exponent
of H (ID)skID and gzi−1·skID . In the second case it must
hold that (assuming the attacker can force H SM to
execute CombineWitness with arbitrarily z’s, i.e. us-
ing oracle OCombine):

α+(wID2,i−1)
zi−1
zi−1 −gzi−1·skID (23)

= α+wID2,i−1−gzi−1·skID (24)
= wID (25)

which implies α = wID + gzi−1·skID thus the attacker
need both witness shares, or again need to solve the
DLP (to extract skID) in order to solve α. The same
argument holds if the attacker have access to a previ-
ous share wID1,i−1 and we conclude that

Pr[OCombine(α) = w∗ID∧Access(w∗ID,σ,m) = 1] (26)

is negligible due to the hardness of DLP, thus we con-
clude that the scheme is secure against replay attacks
of the witness shares.

5 IMPLEMENTATION

Our proof-of-concept implementation includes a scal-
able microservices ecosystem, built on a containeriza-
tion architecture to emulate a typical real-world im-
plementation as closely as possible. Each container
contains a service with a REST API for communi-
cation. The implementation is written in Java and
the Spring Boot framework, together with the Java
Pairing-Based Cryptography library (jPBC). This is a
Java porting of a C library called PBC and provides
the mathematical framework needed for pairing-
based cryptography (De Caro and Iovino, 2011). For
our implementation, the Type A pairings were cho-
sen for its simplicity. These are constructed on the
curve y2 = x3+x over a field Fq for some prime q = 3

mod 4. Group G1 is of prime order r where r is also
a prime factor of q+ 1. Our chosen q was a 318-bit
integer. Note that operations are computed as stan-
dard group element operations on the elliptic curve,
i.e. curve point addition and multiplication.

5.1 Cryptographic Execution Efficiency

The protocol consists of six functions, noted in Tab. 3.
In order to attain a clear understanding of how
the scheme affects efficiency, every function went
through a performance analysis measuring the ap-
proximate time in milliseconds. Each function was
executed 100 times on a MacBook Pro, 2017, with
2.3 GHz Dual-Core Intel Core i5, 16 GB 2133 MHz
LPDDR3 on macOS Big Sur 11.2. An analysis of
each separate mathematical operation was also mea-
sured, given in Tab 2.

Table 2: Performance analysis of mathematical operations
where e are elements (points) on the pre-configured elliptic
curve, and n are 318-bit integers.

Operation Time (ms)
e.pow(n) 17.59
ei.powZn(ej) 8.98
ei.add(ej) 0.04
pairing 4.85
e.mul(n) 17.45
ei.mul(ej) 0.04
hash(n) 0.019
random(e) 2.78
random(n) 0.051

Table 3: Performance analysis of the scheme’s procedures.

Function Time (ms)
setup() 36.79
register() 0.31
accumulate() 26.79
splitWitness() 2.37
updateWitness() 63.17
combineWitness() 104.64
access() 75.38

5.2 Communication Efficiency

We conducted a brief communication analysis in
terms of efficiency of sending and receiving re-
quests/responses between a microservice node and
the H SM node. Using TLS for secure communica-
tion is industry standard; however it will give a signif-
icant overhead in communication complexity due to
TLS handshake procedures and other types of estab-

An Authenticated Accumulator Scheme for Secure Master Key Access in Microservice Architectures

125



lishments for new connections. We measured our im-
plementation (one microservice) repeatedly with TLS
and without TLS, in order to understand the connec-
tion overhead. For 1000 repeated new connections the
mean proportion of using TLS compared to not using
TLS was ∆ = 0.9227, i.e. about 92% of the total con-
nection time is dedicated to the TLS protocol.

Table 4: Communication analysis of the scheme’s API con-
nections.

API no TLS (ms) TLS (ms)
/registerClient 96.657 540.98
/requestAccess 169.18 926.81
/proveAccess 175.54 985.12
Total execution time: 441.38 2452.91

The API consists of three main endpoints:
/registerClient is the initial registration of a client in-
cluding key access value generation, /requestAccess
is for requesting access and thus handle the ephemeral
value gz·skID , and finally /proveAccess will trigger the
actual crypto function fk(·). These HTTP endpoints
take a set of parameters in base64 string format and
are converted into byte streams when handled by the
node. To conclude the experiment, the timing results
for our proof of concept implementation lies within
reasonable timings. As a comparison, a microservice
node in our experiment that only connects to a se-
cure website and receives a HTTP OK response, had
a mean timing of 768.95 ms.

6 CONCLUSION

We have shown a theoretical construction of an
authenticated accumulator-based master key access
scheme, proven its security under type I and II secu-
rity experiments, i.e. secure against forgery and reply
attacks. Our proof-of-concept implementation shows
promising results indicating the feasibility and easy-
to-adopt approach in a microservices context. We ar-
gue that the level of implementation is significantly
easier using wrapper crypto libraries such as jPBC,
than developing code using low-level languages; it
is also closer to real-world microservices applica-
tions where high-level programming languages such
as Java and C# is de facto choice in industry.

REFERENCES

Benaloh, J., de Mare, M., and Automation, G. (1993). One-
Way Accumulators: A Decentralized Alternative To
Digital Signatures. pages 274–285. Springer-Verlag.

Boneh, D., Lynn, B., and Shacham, H. (2001). Short

signatures from the weil pairing. In Advances in
Cryptology–ASIACRYPT ’01, LNCS, pages 514–532.
Springer.

De Caro, A. and Iovino, V. (2011). jpbc: Java pairing based
cryptography. In Proceedings of the 16th IEEE Sym-
posium on Computers and Communications, ISCC
2011, pages 850–855. IEEE. [Online; accessed 08-
February-2022].

Ferreira, L. C. and Dahab, R. (2002). Blinded-key sig-
natures: securing private keys embedded in mobile
agents. In In Proceedings of the 2002 ACM sympo-
sium on Applied computing (ACM SAC’02, pages 82–
86. ACM Press.

Harn, L. (2012). Group authentication. IEEE Transactions
on computers, 62(9):1893–1898.

Joinup (2021). Intelligent transport systems - coopera-
tive, connected and automated mobility (its-ccam) and
electromobility (rp2020). https://joinup.ec.europa.eu/
collection/rolling-plan-ict-standardisation/. [Online;
accessed 27-November-2021].

Karantaidou, I. and Baldimtsi, F. (2021). Efficient construc-
tions of pairing based accumulators. In 2021 2021
IEEE 34th Computer Security Foundations Sympo-
sium (CSF), pages 373–388, Los Alamitos, CA, USA.
IEEE Computer Society.

Keränen, A., Kovatsch, F. M., and Hartke, K. (2021).
Guidance on restful design for internet of things
systems. Internet-Draft draft-irtf-t2trg-rest-iot-08,
IETF Secretariat. https://www.ietf.org/archive/id/
draft-irtf-t2trg-rest-iot-08.txt.

Li, J., Chen, X., Li, M., Li, J., Lee, P. P., and Lou, W. (2014).
Secure deduplication with efficient and reliable con-
vergent key management. IEEE Transactions on Par-
allel and Distributed Systems, 25(6):1615–1625.

NordicWay (2021). Interchange node under the nordic way
project. https://github.com/NordicWayInterchange.
[Online; accessed 08-February-2022].

Pahl, M.-O. and Donini, L. (2018). Securing iot mi-
croservices with certificates. In NOMS 2018 -
2018 IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 1–5.

Pereira-Vale, A., Márquez, G., Astudillo, H., and Fernan-
dez, E. B. (2019). Security mechanisms used in
microservices-based systems: A systematic mapping.
In 2019 XLV Latin American Computing Conference
(CLEI), pages 01–10.

Salin, H. and Fokin, D. (2021). Mission impossible: Secur-
ing master keys.

Selvi, S. S. D., Paul, A., Rangan, C. P., Dirisala, S., and
Basu, S. (2019). Splitting and aggregating signatures
in cryptocurrency protocols. In 2019 IEEE Interna-
tional Conference on Decentralized Applications and
Infrastructures (DAPPCON), pages 100–108.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

126


