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Abstract: The trend of connectivity dominates the technological progress. The number of networked devices is 
constantly increasing and the use of smart meters has become more societally relevant. For that reason, 
reliability is an important attribute of related architectures. To calculate reliability, it is required to do a 
specific analysis for the entire system. This paper describes a structured approach for calculating the reliability 
of smart meter architectures considering the limited data availability. For this, we combine Reliability Block 
Diagrams with a Monte Carlo simulation. The result is a realistic approximation of the system reliability, that 
can be used to evaluate optimization methods. 

1 INTRODUCTION 

The Internet of Things is the dominating megatrend 
in current social change (Kaufmann, 2021). The 
number of networked devices and the resulting 
volume of data is constantly increasing worldwide. 
Until 2025 there will be 75 billion networked devices 
worldwide (Statista, 2018) with a data volume of 
approximately 80 zettabytes (O'Dea, 2021). The 
Internet of Things has become a key technology for 
future-oriented scenarios. Driven by Murphy's Law – 
“Anything that can go wrong will go wrong”, the 
reliability of computer systems is becoming even 
more important. The digitalization of civil 
infrastructure facilities in particular is becoming 
especially relevant to society (BSI, 2020). The 
services that are provided like the supply of water or 
electricity are increasingly dependent on available 
and operating information technology. Smart meters 
can record actual consumption data and forward it to 
the higher-level systems so that the resulting 
transparency can increase grid stability. A fault, an 
impairment, or even a complete breakdown can have 
a major impact on public safety or other dramatic 
consequences (BSI, 2020). The dependency of 
modern society on complex information systems, 
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especially in the above-mentioned infrastructures, is 
growing steadily (BSI, 2021). The most significant 
part of this is accounted to smart meters. These are 
being implemented around the world, inter alia, to 
improve the efficiency of power grids for emissions 
control (Mordor Intelligence, 2020). The current 
trend of electromobility and the resulting increase in 
electricity consumption emphasize how important the 
digitalization of the energy transition is for society. 
Until 2023 the penetration rate of electrical smart 
meters in the European Union (EU) is expected to 
grow from 44% to 71% (Kochanski, Korczak,& 
Skoczkowski, 2020). In order to push that forward, 
the German Federal Ministry for Economics and 
Energy (BMWi) has published a roadmap for the 
ongoing digitalization of the energy transformation in 
Germany  (BMWi, 2020). This includes a step-by-
step rollout of smart metering systems for electricity, 
water, and gas.  

The proposed smart metering architecture in 
Figure 1 shall being used as a standard for Europe, 
which is based on a set of technical and data 
protection requirements that are specified in various 
official documents (BSI, 2013; BSI, 2014; BSI, 2015; 
BSI 2016) of the German Federal Office for 
Information Security. The central concept in these 
specifications provides a separate unit called the 
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smart meter gateway (SMGW) as a central 
communication medium. It provides the interfaces 
between the multiple domains and the smart metering 
system. Figure 1 shows the schematic architecture. 
Until 2032 all consumers in Germany should be 
equipped with these modern measuring devices 
(BMJV, 2016). The objective of digital data 
collection is a more efficient and transparent energy 
distribution as well as the sustainable control of 
energy production and the overall network utilization 
(EY, 2013; Huang, Grahn, Wallnerström,& 
Jaakonantti, 2018). 

 
Figure 1: BSI Smart Metering Infrastructure (BSI, 2014). 

Hence, the contribution at hand focuses on the 
reliability of smart metering architectures. The global 
number of smart meters is expected to be 
approximately 188 million in 2025 (Mordor 
Intelligence, 2020). In Germany, the number of smart 
meters is expected to increase to 53 million (BNetzA, 
2021). To guarantee the required objectives of this 
ecosystem the reliability is a fundamental design goal 
(Müller, 2011). Basically, smart metering systems are 
more failure-prone than traditional metering devices, 
because of the more complex interaction between 
hardware and software components (EY, 2013). To 
obtain a validated value for the failure probability of 
SMGWs and smart meters we screened 5 publicly 
available databases and contacted 10 companies. 
These 5 companies submitted a response and 2 
companies were interviewed on a detailed level. The 
investigations and interviews revealed that there are 
currently no validated data for the probability of 
failure or error. There is currently a lack of general 
data from the practice and field level, which can be 
explained by the delayed rollout (OVG NRW, 2020).  

For the reason that analytical approaches of 
general reliability issues at component or system level 
were not available the approximative reliability 
methods respective Monte Carlo simulation (MCS) 
techniques became very popular (Wang, 
Broccardo,& Song, 2019). Compared to other 
reliability Methods MCS have the advantage of being 
accurate and easy to implement. This means that 
MCS is applicable for the reliability analysis of a 
smart metering architecture. It also enables the 

evaluation of the proposed reliability optimization by 
using different methods identified in a literature 
review (Altenburg, Bosse,& Turowski, 2020). Based 
on the previous argumentation we would like to 
answer the following research question: “How could 
a valid reliability analysis on smart metering 
architectures with limited data be facilitated by using 
the Monte Carlo simulation?” 

To answer the aforementioned research question, 
in Section 2 the theoretical basis for reliability theory 
and analysis is presented. Then, in Section 3, the 
approach for the proposed reliability analysis is 
described. The process of reliability simulation and 
the presentation of the results are shown in Section 4. 
Concluding remarks are given in Section 5 that 
summarizes and illustrates the next steps to be taken. 

2 FOUNDATIONS 

This chapter presents the theoretical basis for the 
reliability analysis of a smart metering architecture 
that will be performed. The present paper use the 
Design Science Research (DSR). A key feature of 
DSR is solving social and real-world problems by 
constructing and evaluating a scientific artefact (vom 
Brocke, Hevner,& Maedche, 2020). Artefacts can be 
classified as concepts, models, methods, or 
realizations that contribute to a scientifically useful 
outcome. According to Pfeffers (2008), the design 
science process consists of 6 essential steps, namely 
problem identification and motivation, definition of 
the objectives for a solution, design and development, 
demonstration, evaluation and communication. This 
paper describes a practical problem, which can be 
solved by a predefined reliability analysis based on 
RBD and MCS. This approach will be described and 
executed in the following chapters and the result will 
be interpreted as well. 

2.1 Basics of Reliability 

The research field of reliability was formed by Jean-
Claude Laprié. He established a standard framework 
and general terminology for reliable and fault-tolerant 
systems (Laprié, 1995). According to Bertsche (2008) 
and Laprié (1995), Reliability R(t) is defined as “the 
probability that a system will perform its functions 
satisfactorily and without failures under specified 
functional and environmental conditions over a 
specified period of time”.  

According to a recently conducted literature 
review conducted by Altenburg et al. (2020), the 
design phase offers the highest potential for reliability 
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optimization. In order to demonstrate that these 
identified methods (Altenburg et al., 2020) will 
increase the reliability R(t) of a smart metering 
architecture it is necessary to do a validated reliability 
analysis. Reliability analysis is a methodical approach 
to be able to determine the reliability of a system and 
the number of failures. The approach to calculating 
the system reliability starts with the design of the 
model and ends with the statistical calculation of the 
overall reliability (Yuan, Tang, Wang,& Li, 2019). In 
the literature, there are several techniques for 
quantitative and qualitative analysis of reliability 
(Niknafs, Faridkhah,& Kazemi, 2018). The basis for 
our approach is a combination of quantitative 
methods, because we have limited data as described 
aforementioned.  

In quantitative methods the Reliability Block 
Diagram (RBD) (Bobalo, Seniv, Yakovyna,& 
Symets, 2019), the Network Diagram (Ridzuan, 
Rusli,& Saad, 2020), Markov Modeling (Aggarwal, 
Kumar,& Singh, 2015) and MCS (Wang et al., 2019) 
are the most important methods for reliability 
analysis. To perform the most exact calculation of 
reliability it is also possible to combine these 
techniques (Niknafs et al., 2018; Li& Zhang, 2011). 

2.2 Reliability Block Diagram and 
Monte Carlo Simulation 

Our selected evaluation approach, which is detailed 
in Section 3, uses RBD to model the overall system 
and an MCS to calculate the reliability per 
component. RBD is a schematic illustration of the 
main components in a system, which represents the 
hierarchy and mutual interaction to the overall 
function of a system (Niknafs et al., 2018; Raso, de 
Vasconcelos, Marques, Soares,& Mesquita, 2017). 
After that, we use MCS as a simulation technique. 
The execution of an MCS is based on repeated 
random sampling and statistical analysis to estimate 
results for complex system functions (Harrison, 2010; 
Mason et al., 2008). This approximation can be used 
to generate realistic results, that we will use for the 
reliability analysis of the smart metering architecture. 

3 AN APPROACH FOR 
RELIABILITY ANALYSIS 

To be able to perform a reliability analysis for the 
architecture in Figure 1, it is transformed into a 
simplified model as shown in Figure 2. The Data 
Layer is the equivalent of the Local Metrological 

Network (LMN; cf. Figure 1), which includes all the 
meters in a home or household and can be connected 
or read out by the SMGW in the Gateway Layer 
(Henneke, Freudenmann, Wisniewski,& Jasperneite, 
2017). We have grouped the Home Area Network 
(HAN; cf. Figure 1) and the Wide Area Network 
(WAN; cf. Figure 1) into the Application Layer 
because meter information can be read or configured 
remotely in both domains (Henneke et al., 2017). 

 
Figure 2: Simplified illustration of a smart metering 
architecture for reliability analysis. 

Figure 2 shows the simplification of the overall 
system from Figure 1 into its basic components. We 
assume five smart meters in our reliability analysis, 
because in the future there will not only be smart 
metering for electricity there will be also smart 
metering for water or gas consumption. The next step 
is to convert the simplified model from Figure 2 into 
the logic of the RBD. Depending on the configuration 
the failure of any component can trigger the failure of 
the whole system, so that the required system 
functions are not fulfilled (Ahmeda, Hasana, 
Perveza,& Qadirb, 2016). An RBD design can 
include three basic component connections, which 
can be combined with each other - series connection, 
active redundancy or standby redundancy (Ahmeda et 
al., 2016). The following Figure 3 transformed into an 
RBD from the simplified architecture in Figure 2. 

To be able to calculate the quantitative reliability 
of the overall system, the failure probabilities of each 
component are required. There are currently no 
validated data available for the failure probabilities 
and the characteristic lifetime of a smart meter or 
SMGW. For that reason, we use the failure 
probabilities per component and an MCS to simulate 
the different values. 
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Figure 3: Simulation model based on RBD. 

In addition to the architecture, the Time t is an 
important factor in the reliability domain, because it 
is directly related to the Reliability R(t) (Laprié, 
1995). In many practical use cases the reliability level 
of an intact component depends mainly on the age 
that the component has already reached. The so-
called bathtub curve shown in Figure 4 describes the 
generic time course of the Failure Rate λ(t) (Bonart& 
Bär, 2020). In the literature, the bathtub curve is 
divided into three phases - infant mortality, useful 
lifetime and wear out (Bonart& Baer, 2020; Alvarez-
Alvarado& Jayaweera, 2018). Most studies focus on 
the useful life period (Li, 2014; Kim, Singh,& 
Sprintson, 2015; Li, 2013). In our evaluation, we also 
focus on the mid-period of the bathtub curve. In this 
phase, the Failure Rate λ(t) is constant, which means 
that the focus is on random failures. Furthermore, this 
is usually also the longest time phase in the overall 
lifetime of a system.  

 
Figure 4: Bathtub curve (Neubeck, 2004). 

4 EVALUATION 

This section presents our incremental approach to 
reliability analysis of a smart metering architecture. 
Reliability distributions of systems must be modeled 
with suitable mathematical functions to capture the 
real world. The bathtub curve can be approximately 
described as a sum of Weibull distributions. The 
Weibull distribution is one of the most commonly 

used reliability techniques because of its versatility. 
Its distribution can be used to describe decreasing, 
constant and increasing Failure Rates λ(t) in technical 
systems. With this, it is possible to model different 
failure types and so all phases from the bathtub curve 
(Lienig& Brümmer, 2017). Depending on the life 
phase of a component, the Weibull distribution can be 
an exponential distribution or a logarithmic normal 
distribution (Härtler, 2016).  

As described in Section 3, the focus of our 
reliability analysis is on the useful life phase where 
Failure Rates λ(t) are constant. For this case, the 
reliability distribution equals an exponential 
distribution. The exponential distribution is 
commonly used in the development of electronic 
systems, because it is sufficiently accurate for 
reliability calculations (Lienig& Brümmer, 2017). 
This is the foundation for the following Formulas for 
reliability calculations (Gelman, Martin, Malcolm,& 
Liew, 2021; Ram& Davim, 2018; Dey, Bhale,& 
Nandi, 2020): Reliability Rሺtሻ ൌ  eି୲ (1)

4.1 Smart Meter and Smart Meter 
Gateway 

For an overall reliability analysis, it is necessary to 
split the system into independent components. 
Because of the high technical similarities between 
smart meters and SMGW (EY, 2013; Gährs, Weiß, 
Bluhm, Dunkelberg,& Katner, 2021) it is possible to 
run a common reliability analysis of the components. 
The higher system complexity of smart meter 
architectures implicates a higher Failure Probability 
G(t) of the system. The typical average for this value 
can be set as 2% (EY, 2013; Zhou, Zonghuan,& 
Zhonghua, 2021). It serves as the basic for calculating 
the Failure Rate λ(t) and the Lifetime t: 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 λሺtሻ ൌ 1𝑇 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡 ൌ 𝑇 ൈ 𝐺ሺ𝑡ሻ (2)

Afterward, the e-function can be used, which is an 
exponential function with Euler's constant 
(Humenberger& Schuppar, 2019) as basis to calculate 
the Reliability R(t) for the two components by 
Formula (1): Reliability 𝑅ሺ𝑡ሻ ൎ 𝟗𝟖, 𝟎𝟐% (3)

For a more realistic approximation of the 
reliability, we use the principle of MCS. The 
objective is to repeat the calculation of the Reliability 
R(t) many times and to approximate a realistic result 
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using the law of Large Numbers (Hartbecke& 
Schütte, 2005). For this we use the following function 
(Ji, 2014): 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡 ሺ𝑥, 𝜇, 𝜎ሻ ൌ  1𝜎√2𝜋 𝑒ିሺ௫ିఓሻଶఙమ  𝑥 ∈ ሾ0,1ሿ;  𝜇 ൌ 2081,52 ℎ;  𝜎 ൌ 5256 ℎ 

(4)

This function returns the percentile for a given 
mean and the standard deviation. The parameters for 
the reliability calculation are described below: 

 The parameter x indicates the probability in the 
normal distribution and is created by a random 
number between 0 and 1. 

 The parameter μ indicates the arithmetic mean 
of the distribution and is the Lifetime tMC of our 
calculated Reliability R(t) in Formula 3. 

It is calculated as follows: 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡ெ ൌ 12 𝑎 𝑥 1,98% 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡ெ ൎ 2081,51 ℎ 
(5)

The parameter σ indicates the standard deviation 
of the distribution, which is empirically defined as 5% 
(Zhou et al., 2021) and calculated into the 
corresponding Lifetime t𝜎. 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡ఙ ൌ 12 𝑎 𝑥 5% 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑡ఙ ൌ 5256 ℎ 

(6)

The next step is to run Formula 4 for 80.769 
random samples each to simulate the Lifetime t(x,μ,σ).  
According to the law of Large Numbers (Hartbecke& 
Schütte, 2005) and the paper by Liu (2017), we 
assume that 80.769 random samples are an optimal 
number of trials for the purposed MCS. Each 
simulated Lifetime t(x,μ,σ) is now inserted into 
Formula 1, so that we obtain the reliability RSM and 
RSMGW for 80.769 smart meters and SMGW. In the 
end, we calculate the average of the results and we get 
approximately real reliability of the two components: 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅ௌெ, 𝑅ௌெீௐ ൎ 𝟗𝟔, 𝟗𝟑% (7)

Figure 5 shows the result of the reliability 
calculation based on the procedure described above 
and illustrates the smoothed Reliability RSM and 
RSMGW. Because of the large amount of samples only 
every 741st random sample is included in the diagram 
as these are exactly dividable and so a total of 109 
measurements are presented. The red trend line 
represents the moving average of the random 
samples. As one can note, that the average reliability 
of the component varies strongly, because there are 

for example some early failures in the reliability 
sample or there are also samples without failures. 

 
Figure 5: Smoothed calculation of reliability using an MCS 
of 80.769 samples. 

4.2 Application 

The WAN has the primary impact on system 
reliability because it provides the overall information 
that is needed to stabilize the grid. The services in the 
WAN are operated in a cloud environment (BSI, 
2014). To approximate the Reliability RApp of the 
application that is operated in a cloud environment, 
we can use the characteristic availability of the three 
big cloud providers. This is at least 99.9% (Hauer, 
Hoffmann, Lunney, Ardelean,& Diwan, 2020; Wong, 
Zavodovski, Corneo, Mohan,& Kangasharju, 2021; 
Meinel, Schnjakin, Metzke,& Freitag, 2014) and is 
used in section 4.3. with the consolidation of the 
results. 

4.3 Consolidation of Results 

In this section, we will merge the Reliability RSM and 
RSMGW that we determined above from the RBD 
model defined in Figure 3 to get the Reliability RTotal 
of the overall system.  For the smart meters we 
assumed a “k-out-of-n” dependency. The objective is 
that all of the five smart meters do not fail. Therefore, 
the Formula for the Reliability RSM-Total is as follows: 

𝑅ௌெି்௧ሺ𝑘, 𝑛, 𝑅ௌெሻ ൌ  ቀ𝑛𝑘ቁ 𝑅ௌெሺ1 െ 𝑅ௌெሻି
  

𝑘 ൌ 5; 𝑛 ൌ 5; 𝑅ௌெ ൌ 96,93% (8)

𝑅ௌெି்௧ሺ𝑘, 𝑛, 𝑅ௌெሻ ൎ 𝟖𝟖, 𝟑𝟓% 

The following applies for this: 
 The parameter x indicates the probability in the 

normal distribution and is created, 
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 n is the total number of units that are connected 
in parallel, 

 and Reliability RSM is the determined reliability 
of the smart meter. 

The remaining components are connected in 
series (see Figure 3). Therefore, there is a 
multiplication of the determined reliabilities to 
calculate the Reliability RTotal of the entire system. 𝑅்௧ ൌ 𝑅ௌெି்௧ ൈ 𝑅ௌெீௐ ൈ 𝑅 𝑅்௧ ൌ 88,35% ൈ 96,93% ൈ 99,90% 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅்௧ ൎ 𝟖𝟓, 𝟓𝟓% (9)

Eventually past, we can summarize the 
calculations in Table 1 and compare them with each 
other. It can be seen that the simulated Reliability 
RTotal is about 5% lower than the hypothetical 
Reliability R(t). Following the above definition of 
reliability according to Bertsche (2008) and Laprié 
(1995) the result means that about 15% of smart meter 
architectures could fail within the characteristic 
lifetime of 12 years. As an example, based on current 
forecasts for Germany of approximately 53 million 
smart meters (BNetzA, 2021) that would affect nearly 
660,000 metering installations per year just for 
Germany in particular. In order to counteract this, it 
is necessary to increase the reliability of smart meters 
and smart meter gateways in particular. The design 
phase offers the greatest potential for reliability 
optimization (Altenburg et al., 2020).  This is where 
the diverse methods for reliability optimization can 
already be implemented at the beginning and used 
with sustainable benefits.  

Table 1: Comparison of hypothetical and simulated 
reliability. 

 

5 CONCLUSION AND FUTURE 
WORK 

This paper presented a structured reliability analysis. 
The theoretical foundations and the methodological 
approach were presented at the beginning. After that, 
we calculated the reliability of a smart meter 
architecture based on a limited data set using an RBD 
and an MCS. The result is a realistic reliability 
evaluation of the analyzed overall system. Our 
performed approximation demonstrates the need for 
reliability optimization in the context of smart meter 

architectures. Furthermore, the presented approach 
answers our aforementioned research question and 
verifies that the reliability of a smart metering 
architecture can be calculated with the help of an 
MCS for a limited dataset. 

The largest optimization potential includes the 
design phase of a system (Altenburg et al., 2020). We 
will consolidate popular methods from the literature 
into efficient design strategies. This will provide a 
standard framework that can be used for reliability 
optimization. Based on our presented approach it is 
possible to validate the defined design strategies. 
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