
Programming in Year 4: An Analysis of the Design Research Process

Ivan Kalas1 a, Andrej Blaho2 and Milan Moravcik3
1Department of Education, Comenius University, 842 48 Bratislava, Slovakia

2Department of Applied Informatics, Comenius University, 842 48 Bratislava, Slovakia
3Edix, Bratislava, Slovakia

Keywords: Primary Computing Education, Programming in Lower Primary, Educational Design Research, Computing
with Emil.

Abstract: In this paper, we analyse the educational design research process in which we looked to develop an evidence-
based intervention and professional development (PD) content for programming in primary Year 4*.bWe ex-
plain how the latest period of the Computing with Emil project extends our previous intervention for Year 3
by exploiting the same constructivist pedagogy and design principles. We recall these principles and the re-
search strategy which we consider appropriate for the current state of knowledge in transforming computing
education in lower primary years. As the concluding phase of the design research, we reflect on the design
process in greater depth and formulate the characteristics of the intervention by focusing on its programming
language and concepts. To frame this effort, we identify five interwoven contexts that shaped the development
cycles of our inquiry, namely: (1) programming environment, (2) programming language, (3) content devel-
opment, (4) workbook for pupils, and (5) teachers’ PD design. Looking back, we analyse the iterative design
process within these contexts through the lens of the five instruments of reflection we were continuously
exploiting to inform our design, namely: (a) observing pupils work, (b) interviewing teachers, (c) analysing
pupils’ workbooks and onscreen content, (d) evaluating Emil Y4 pilot PD sessions, and (e) analysing Emil
Y3 data. Among other findings, which have resulted from the analysis of the design process, we highlight in
particular a thoughtfully designed pulsating range of the command set. Although we had gradually created
the content ourselves, it was not earlier than the concluding retrospective analysis that exposed it so clearly.

1 INTRODUCTION

The interest of various educational systems in extend-
ing the modern concept of computing into lower pri-
mary years is considerable and has been augmented
by (Royal Society, 2012) and other influential publi-
cations. We perceive a strong emphasis on computing
for all (Sentance, 2019), an explicit rejection of re-
ducing computing to developing digital literacy and
computer skills, a broad and almost unanimous agree-
ment on an important role of programming, and re-
newed interest in a better understanding of and ex-
ploiting the connection between the development of
mathematical thinking and computational thinking.

Although we welcome these trends and strive to
promote them, in our view, new computing education

a https://orcid.org/0000-0003-4597-3028
* In our educational system it means for pupils aged approx. 9 to 10. For short, we will often use Y4.

still suffers from the absence of a systematic and com-
prehensive approach to support a holistic learning
process over several years of primary and secondary
stages. The Computing with Emil project (Emil for
short) seeks to address this deficiency and explore the
potential of programming at the primary level. Our
goals are to (a) identify programming concepts and
various operations performed with the concepts by
the learners which are suitable for the age group, (b)
recognise the productive gradation of ‘appropriate
steps’ leading to a deep understanding of the con-
cepts, and (c) design complex interventions to support
the gradation and the learning process in a sustainable
form. We are also interested in formulating and vali-
dating which design principles in the sense of (Van
den Akker, 2013) and pedagogies should be em-
ployed so that a generalist teacher with no special

Kalas, I., Blaho, A. and Moravcik, M.
Programming in Year 4: An Analysis of the Design Research Process.
DOI: 10.5220/0010988000003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 2, pages 425-433
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

425

computing background are willing and confident to
adopt the interventions in their classes.

As we want to support these goals and contribute
to further knowledge, the educational design research
theory (Van den Akker, 2013; Plomp, Nieveen, 2013)
seems the right theory to help us do so. It stresses the
importance of a thorough conclusive analysis of the
process which would identify its design principles
and thus help improve the understanding of the pro-
gramming/algorithmic thinking development at the
lower primary level.

2 BACKGROUND

Undoubtedly, the key concept of our area is compu-
tational thinking, coined by Papert in (1980), which
is being studied more and more intensely nowadays,
see (Grover, Pea, 2013; Brennan, Resnick, 2012) and
others. Much attention is paid to developing compu-
tational thinking in extracurricular activities, after
school clubs, summer camps etc. where participants
are usually voluntary, gifted, or specially selected.
Fewer studies target regular formal classroom set-
tings (Lye, Koh, 2014). And yet, there are compelling
reasons for mandatory computing beyond economics
and employment. Access to a high-quality education
can be seen as an equity issue (Sentance, 2019).
‘Computing for all’ is the highest priority in our pro-
ject as well.

To implement computing in formal education, re-
searchers have focused on studying computational
concepts and their cognitive demand (in the sense of
Blackwell, 2002) (refer to Brennan, Sentance, 2012;
Kalas, Benton, 2017; Meerbaum-Salant et al., 2013).
In their framework for studying computational think-
ing, Brennan and Resnick (2012) identify three key
dimensions: computational concepts (sequences, iter-
ations, events etc.), computational practices (testing,
debugging, reusing, remixing etc.), and computa-
tional perspectives about the world around us.

Another issue frequently studied is the connection
between developing mathematical thinking and com-
putational thinking (see e.g., Benton et al., 2018a;
Benton et al., 2018b) as per the reported findings of
the ScratchMaths project. Three aspects of the
ScratchMaths design process have also played an im-
portant role in our current Emil inquiry:

(i) Design research strategy (DR for short). The
ScratchMaths intervention was subject to cycles of it-
erative design research (Plomp, Nieveen, 2013)
which means that we had to (a) iteratively design an
intervention to obtain an instrument to deal with our

research problem, and (b) iteratively research to con-
tinuously support and inform our design.

(ii) Design principles and 5Es framework. In the
ScratchMaths design, we exploited several innovative
decisions (e.g., pupils always working in pairs with
one computer per pair) and created a new framework
of action comprising of five pedagogical principles,
namely Explore, Explain, Exchange, Envisage, and
bridgE (hence the 5Es) which provide pupils with a
continuous opportunity to construct their experience
and understanding of the computational concepts in
manifold ways (see Benton et al., 2018a; Benton et
al., 2018b).

(iii) ‘From concepts to constructs’ approach. As
we elaborated in depth in (Kalas, Benton, 2017;
Kalas, 2018a; Kalas, Horvathova, 2022), we consider
the vocabulary which is normally used to define
learning objectives in programming that are too
coarsely constructed to capture subtle differences in
grasping the concepts at pupils’ different stages of un-
derstanding. Therefore, we always strive to identify
an appropriate gradation of operations; we want pu-
pils to work with each concept to support a gradual
construction of its meaning. For that, we use the term
constructs to pair a concept with the operations to be
performed with it by the learner.

3 COMPUTING WITH EMIL

Computing with Emil (Emil for short) is an ongoing
design research project, currently in its 5th year. In
April 2017, we initiated the design for Year 3 and
from October that year, we started working regularly
with pupils and their teachers in three partner design
lower primary schools by using an early pilot imple-
mentation of our software and the content. The pro-
cess for Year 3 (Y3 for short) was completed in De-
cember 2018. In February 2019, we continued the
process for Y4, the final analysis of which comprises
the focus of this paper. In (Kalas, 2018a), we pre-
sented in detail the outcomes of Emil Y3, its peda-
gogy, and the design principles, plus some of the find-
ings learnt in that period that were adopted for the Y4
design as well. In short, the main outcomes of the de-
sign for Y3 were:

 a research-based intervention comprising (a) a
programming environment, (b) a learners’ con-
tent implemented as a gradation of tasks partly
presented in the software and partly in (c) a
printed workbook for pupils, (d) teacher materi-
als, and (e) a professional development (PD)

CSEDU 2022 - 14th International Conference on Computer Supported Education

426

process. The gradation1 of the tasks underpins a
validated gradation of the computational con-
cepts and operations developmentally appropri-
ate for Y3 pupils,

 a set of powerful ideas of computing which pri-
mary pupils encounter and explore in Y3, thus,
developing their deep understanding of the con-
cepts and operations that are performed with
them.

In what followed, we set out to explore how the de-
sign principles and pedagogy of Emil Y3 could be de-
veloped and extended in a coherent way to Y4.

4 EMIL FOR YEAR 4

Since February 2019, we continued our development
for Y4. Our first lesson with pupils in our design
school took place on April 2, 2019. Throughout the
period, we proceeded with exploring and better un-
derstanding:

 what programming concepts and operations are
developmentally appropriate for Y4 pupils, hav-
ing had achieved the learning objectives of Emil
Y3 intervention already,

 what curriculum gives pupils adequate opportu-
nities to gradually construct an understanding of
the selected concepts and operations to perform,
and master them (e.g., from the perspective of
the learning objectives of Anderson and Krath-
wohl’s taxonomy of the cognitive process di-
mension, 2000),

 whether our design principles from Y3 can be
extended to underpin a complex intervention in
supporting a systematic learning process of pro-
gramming for lower primary pupils (considering
generalist primary teachers’ perception as well).

4.1 Method

We want to present our research strategy of the pro-
cess of designing Emil Y4 from two perspectives.
First, we briefly elaborate its iterations. Then, we con-
centrate on the concluding analytical phase of the pro-
cess when we reflected on the process in greater depth
by looking for its structure and striving to formulate
the lessons learnt.

1 The reason why we avoid saying progression instead of

gradation is to highlight the subtle difference between
‘progression’ and ‘systematic progression’ in the sense of
(Garrison, D.R., Anderson, T., Archer, W., 2001).

In the process, we were working with two parallel
classes (we refer to them as A and B) of one of our
design schools. At that time, all pupils were already
well familiar with our intervention for Y3. In class A,
we ran 11 lessons with teacher T1 always present.
Three more lessons were run after that by T1 alone,
using and commenting our content. Another three
times, pupils were given some ‘without computer’ pi-
lot worksheets2 to solve as their homework. Intention-
ally, we started working with class B with a lapse of
about eight weeks so that the software interface, pro-
gramming language, and the worksheets would have
already been several iterations ahead of the version
initially used in class A. In class B, we ran eight les-
sons altogether.

All the 11 lessons in A, always observed by T1,
were taught by one of the researchers and sometimes
also by teachers T2 and T3. Teacher T1 was in all the
eight lessons conducted in class B as well. Out of
them, three lessons were run by herself. Two or three
researchers were always present as well: one facilitat-
ing the lesson and other(s) acting as observer(s) with
at least one teacher and one researcher observing.

The pupils were always working in pairs. Each
pair had one tablet (as one of our main pedagogy prin-
ciples), each pupil having their own workbook. As
they were already familiar with the method, solving
the problems in a collaborative way was all natural
for them. Similarly, having regular whole class on-
the-carpet discussions several times during each les-
son was already a common practice.

Immediately after each lesson, T1 (sometimes
also T2 and T3) and our team spent around an hour in
a discussion where we analysed and evaluated the ob-
servations and all the collected materials. After fin-
ishing the visits to school in January 2020, we spent
another two months in finalizing all the components
of the intervention in a close collaboration with teach-
ers T1, T2 and T3 again. The final curriculum and the
workbook were then consulted for with a maths edu-
cation expert and a language expert, and then re-
viewed by two computing education experts from dif-
ferent countries.

As with Emil Y3, we continued using the DR as
our principal inquiry strategy (Van den Akker, 2013;
Plomp et al, 2013; Design-Based, 2003). When the
design process was completed, we identified more
than 30 iterations of the software environment and the
content integrated in it, and an even higher number of

2 We do not consider these paper worksheets to be CS Un-
plugged tasks, as they are integral part of all other screen
+ paper activities. All worksheets were finally collected in
a workbook for pupils.

Programming in Year 4: An Analysis of the Design Research Process

427

iterations of the workbook representing the minor or
major steps of our designing for research and re-
searching for design endeavour (ibid). Only then,
however, we were able to look back on the whole pro-
cess and start thinking about which contexts of the
design were iteratively addressed in these DR cycles
of studying and theorising, developing, deploying and
evaluating, analysing, and finally re-theorising again
(see Design-Based, 2003). In the following section,
we characterise some of the contexts, mostly those
that played a central role in shaping the programming
language of Emil Y4 itself. Then we explain what in-
struments we exploited to inform the design and
guide our decisions.

4.2 Analysis

The process was led by (i) our expertise from the pre-
vious projects 3 , years of teaching computing at all
stages from early education to CS students, and pre-
service teachers of informatics, and (ii) our assumption
that the design principles implemented in Emil Y3 can
be applied productively in Y4 as well. The progression
of the development was driven by regular internal de-
sign meetings of the authors where we tried to identify
appropriate computational concepts and operations and
strived to transform them into a productive gradation
of expected learning trajectories (in the sense of Bak-
ker, 2018), an appropriate content, a programming en-
vironment and a programming language.

In the DR strategy, iterations of the design should
mean improvements leading to the state where re-
searchers conclude that the outcome of the design
serves their need to answer their questions and they feel
confident that the inquiry is validly evidence-based4.

So, what were those improvements in the case of
Emil Y4? First, by analysing the process as a part of
the final retheorising phase, we managed to identify
five contexts that had gone through considerable de-
velopment in our inquiry, namely: (1) programming
environment, (2) programming language, (3) content
development, (4) workbook for pupils, and (5) PD
strategy and teacher materials (see the first column
of Table 1). Each context was interwoven with all
others, influencing them, and being influenced. They
were all iterated in parallel throughout the process
with the last context being intentionally postponed by
several months. In what follows, we characterise only
the first three of them (due to the focus of this paper).

Programming Environment. This context com-
prised the way how the screen was organised, how
users navigated their way in it, how the icons and
other items were presented etc.

We adopted all the main design principles of the
environment of Emil Y3, such as navigation between
small groups of related tasks (again denoted as units
of tasks A, after A, B…), navigation within each unit,
moving from one task to another, running a task anew
etc.

Figure 1. Final design of the Emil Y4 environment, showing task J1 when solved. Pupils are given a simple definition of P1,
see (i) on the left. They explore it and use it to build their own P2. Then they create various ‘bracelets’ (see the stage) by
modifying P1, see (ii), (iii) and (iv).

3 Including Comenius Logo (or Super Logo in some coun-

tries), Thomas the Clown and Imagine Logo. One of the
authors was a member of the ScratchMaths team.

4 Considering its credibility, transferability, dependability,
conformability, and authenticity, as one possible set of
criteria (Lincoln, Guba, 1985). Commenting them, how-
ever, would go beyond this paper.

CSEDU 2022 - 14th International Conference on Computer Supported Education

428

What we intentionally changed and modified in nu-
merous iterations was the visualisation of the panel
with the history of commands given to Emil (see Fig-
ure 1, the green vertical panel on the left of the
screen), an interface for new compound commands
P1, P2 and P3, and several other issues. To illustrate
one of them, we explain why we decided to imple-
ment the onscreen dragging of Emil (with a finger or
a mouse).

When pupils are provided with one or more com-
pound commands, we encourage them to start by ex-
ploring them and only then modify them and use in
their own programs and definitions (see section 5). To
do so, as illustrated in Fig. 1, it is convenient to keep
their experiments separate (see four line-patterns or
‘bracelets’ in the stage of Emil). Therefore, we intro-
duced a possibility to drag Emil in direct manipula-
tion mode (Kalas et al., 2018b), recorded in the panel
of the commands history as a meta-command5

. 7

Programming Language. In this context of the DR
process, we focused primarily on the following three
major categories of the computational concepts6:8

 Relative (‘turtle-style’) frame of reference, i.e.,
controlling the direction of a sprite by turning it
left or right is richly studied in Logo literature
(see e.g., Abelson, diSessa, 1980; Chioccariello
et al., 1993) and is always considered an im-
portant but problematic issue for young learners.
Controlling a physical programmable object us-
ing relative frame of reference by children of
this age is all natural (due to the so-called body
syntonicity (Watt, 1998) principle). However,
most of the on-screen introductory program-
ming environments for lower primary years
choose the absolute frame of reference, as is the
case of Emil Y3, when moving forward one step
is implemented through four different com-
mands – moving up, right, down, and left. In
Emil Y4, we decided to facilitate the transition
from absolute to relative frame by paying spe-
cial attention to both (i) the visual of the left and
right commands (which had been modified con-
siderably throughout the process until getting
the final form, see Table 2), (ii) clear and helpful
animation of Emil when turning, and also (iii)
the supportive gradation of activities of building
this concept.

57 No basic command can do the same, it is being done

“above” the stage.
68In Emil Y4, more computational concepts are being de-

veloped, like programming oblique lines, programming

 Commands-settings and commands with inputs.
While in Emil Y3, each basic command repre-
sents single on-screen action with a visible and
unambiguous reaction and no input. In Emil Y4,
we decided to gradually introduce two settings:
set colour and set size, both manifesting in the
next commands to draw lines and stamp. We
also introduced two commands with inputs:
stamp shape (one of the six shapes) and fill with
colour. In the DR process, all of them have un-
dergone several modifications, based on the data
collected and analysed (see section 5), with the
fill command undergoing the most of all.

 Compound commands P1, P2 and P3. The con-
cept has already been ‘pre-introduced’ in the fi-
nal part of Emil Y3 – as a simple means of ab-
straction. In Emil Y4, we continue the gradation
by having three pre-defined or user de-
fined/modified compound commands which op-
erate as ‘my own blocks’ of Scratch with no in-
put. Any of them can use any basic command or
another compound command(s) in their defini-
tion with no way to end up with a direct or indi-
rect recursion. Similar to other concepts listed
above, the way how this one is presented to the
learners had been considerably modified and re-
shaped in the process.

Content development is strongly connected with
the programming language design and refinements in
the environment. As with Emil Y3, it consists of one
global gradation of more than 90 tasks organized in
18 units. Some tasks are presented only on-screen –
in the software environment. Other tasks are only in
the pupils’ workbooks. However, the majority of the
tasks are presented partly on-screen, with the substan-
tial part appearing in the workbook, such as task J1
illustrated in Figure 1.

All tasks had been authored, designed, rear-
ranged, and refined multiple times during the DR pro-
cess in a special admin mode of Emil Y4. Developing
and refining the content – and systematically analys-
ing it at the final stage of the research endeavour – is
one of the key contexts of the DR process, subject to
dozens of iterations, under-going minor and major
changes, deletions, insertions, and rearrangements.
For the authors, such development must continue, in-
formed and regulated mostly by the observations of
the pupils’ work, interviews with them and their
teachers and analyses of the pupils’ solutions. This is

filled polygons etc. Last line of Table 2 illustrates the
complete programming language of Emil Y4.

Programming in Year 4: An Analysis of the Design Research Process

429

done so until the authors conclude the intervention as
a whole works well in the sense that the class of pupils
involved enjoy it and master the operations with the
concepts implemented in the gradation of develop-
mentally appropriate small steps.

5 EVALUATION AND FINDINGS

During the design process of Emil Y4, we were con-
tinuously collecting multiple evidence to assess the
development cycles and evaluate the interim out-
comes. Nevertheless, as typical in the DR approach,
only in the concluding retheorising and assessment
phase of the inquiry, we succeeded in recognising cer-
tain systems and structure of the overall design pro-
cess. Although it was us who designed and iteratively
revised the intervention until we concluded a suffi-
cient balance between the intended outcome and the
real intervention had been achieved, it required this
final phase to explicitly formulate (i) what had been
modified and (ii) what were the instruments to advise
the process. In this way, we managed to identify five
interwoven contexts (three of them already pre-
sented). ‘Orthogonal’ to them were also five instru-
ments of reflection we were continuously exploiting
to advise and influence our design. These are (a) ob-
serving pupils’ work, (b) interviewing teachers, (c)
analysing pupils’ workbooks and on-screen content,
(d) evaluating Emil Y4 pilot PD sessions, and (e) an-
alysing the data obtained from deploying Emil Y3. In
Table 1, we depict in which context of the process
which instrument advised us as the primary resource
() or as the supplementary one ().

As stated earlier, we worked together with pupils
and their teachers in two design classes during all 19

lessons and considered this having a unique and irre-
placeable impact on the intervention design. Usually
all three of the researchers/authors were present in
running the lesson or observing the pupils, talking to
them, and writing down notes. After each lesson, we
spent an extra time with teacher T1 in her office, an-
alysing and assessing the lesson, activities, pilot
worksheets, and pedagogy. Following the analysis
and redesign (usually taking one or two weeks) sig-
nificantly informed the programming environment
development, programming language and content de-
velopment, and plus, helped us refine the presentation
of the tasks and inspired us in designing the new ones.

Besides the first three instruments of reflection
(observing pupils, working with teachers, and as-
sessing pupils’ solutions of the pilot content), we also
made significant use of the other two. In the later
stage of the project, we initiated the pilot PD sessions
with the generalist primary teachers (already using
Emil Y3 in their classes) as we know that each oppor-
tunity to work with the practitioners in any design re-
search project is a valuable source of feedback and it
might be late to get it only when the development is
completed. During the entire DR process for Y4, the
intervention for Y3 had been used in schools in four
different countries. That provided our research team
with rich and unique opportunities to collect various
data from the teachers and their pupils and exploit
them in our design for Y4.

The most significant finding that resulted from the
concluding analysis of the DR process was when we
looked at the range of the command sets in the indi-
vidual tasks of the overall gradation. In general, the
range enlarges itself from two simple commands at
the beginning to a complete79programming language
of Emil Y4.

Table 1: Contexts of Y4 DR process and different instruments of reflection used to inform it.

79 Naturally, not in the sense of Turing completeness.

CSEDU 2022 - 14th International Conference on Computer Supported Education

430

Table 2: Gradation of the tasks, revealing the ‘pulsating range of the command set’.

 move within the grid;
stamp this shape

 turn left and right; stamp
this shape; set (choose)
colour
for stamp

 draw line; turn; move and
draw; set colour and size
for the draw command

 draw a closed outline of a
polygonal area; fill it with
a chosen colour

 use pin to draw oblique
line in the grid; draw and
fill polygons with oblique
sides

 use compound command,
prebuilt by authors

 use one or two compound
commands plus some other
basic commands

 modify, debug and
finally define from scratch
our own compound com-
mands

 use complete programming
language of Emil Y4

Programming in Year 4: An Analysis of the Design Research Process

431

However, when we lined up the ranges of all the tasks
and reduced repetitive or similar lines, a pulsating
structure was revealed (see Table 2). It clearly illus-
trates one of our key design principles: Every new
and, therefore, cognitively more demanding concept
that pupils are going to explore should be presented
in a way that they can fully focus on with as little dis-
traction as possible. In our context, it means working
with as few commands as necessary. The ‘pulsating
waves’ that have become readable in the analysis
identify exactly these moments: The table shows dis-
tinct segments of the gradation  to , separated by
clear milestones of the intended learning process.
While in Table 2, we explain which commands are
used in each segment, here we characterise the mile-
stones:

 Intuitive entry into the basic moves of Emil. We
make use of stamping so that pupils immediately
create something new on Emil's stage such as a vis-
ible output product.

 Towards the end of  in A3, a kind of cognitive
tension is intentionally built: pupils start comment-
ing the need to make Emil turn. The very next task
(see first line of segment ) will allow the right
turning Emil while the following tasks will help in
turning Emil to the left.

 A new type of moving Emil forward is added,
namely, drawing a line segment. This is high-
lighted in B4 by having only two commands avail-
able: moving forward (to the next grid point) and
drawing a line segment (to the next grid point).

 Pupils discover how to reposition Emil – not by a
command of the language but by dragging. They
also discover how to colour an area they have just
specified by drawing its closed polygonal outline.

 Drawing in direct control mode leads to program-
ming oblique lines within the grid. Pupils discover
that they have to drop a pin to start such a line,
make Emil draw and finally pull the pin at the end.

From segment  until the end of the intervention,
compound commands become the central computa-
tional concept of the gradation. Through all the fol-
lowing tasks, a thread8

10 winds, focused on various
operations with compound commands. We identified
and had a trial of whether these operations were de-
velopmentally appropriate for the pupils. This helped

810 We use this word to denote various sub sequences of the

tasks of the global gradation, not necessarily closely fol-
lowing each other, that step by step develop deep under-
standing of a certain concept. The thread that deals with
compound commands has already started in the last part
of Emil Y3, plays central role in Emil Y4, then continues

in the gradual discovery of this key means of abstrac-
tion in programming. The final analysis of the DR
process helped us articulate those steps in even more
detail than as in milestones  to . They are:

 In direct control mode, pupils use pre-defined
compound command P1 with five basic com-
mands (without settings or inputs).

 In direct control mode, they use P1 plus other
basic commands.

 They use P1 and P2 that, in their pre-definitions,
use basic commands with settings.

 Pupils continue developing their emerging under-
standing of general repetition by repeatedly apply-
ing P1

 Still in direct control, they use the pre-defined P1,
P2 and P3 together with other basic commands.

 They modify the last command in the pre-defined
P1, then use it to solve a problem.

 They modify a command inside the definition of
P2 by analogy with P1 and then use both com-
mands together (plus other basic commands) to
solve a problem.

 They program P2 by analogy with P1 as P2
should draw similar shape as P1.

 They program P1 so that the given sequence of di-
rect control commands (including P1) will draw a
given outcome.

 They program P2 which uses P1 and then use P2
repeatedly.

 Finally, as the ultimate step of the gradation in the
context of my own compound commands, pupils
program P1, then P2 which uses911P1, and then P3
which uses P2 – to solve a complex task.

It is rewarding for the designers/researchers to ob-
serve pupils – and their generalist primary teachers –
solving the tasks that cannot be solved without build-
ing compound commands and exploiting them. The
whole design research endeavour would however re-
main unfinished with its potential unharnessed if we
did not analyse the process thoroughly, strive to un-
derstand and formulate its structure, criteria for itera-
tive revisions, and the lessons learnt. Due to the lim-
ited space, we could not comment on all of those. In-
stead, we decided to focus on analysing the program-
ming language of Emil Y4 and studying some prop-
erties of the duration of the pupils’ learning process.

by using and building my own blocks in Scratch, see
(Kalas, 2017), and later by using and defining functions
in Python.

911 In CS style we say P2 calls P1 plus other basic com-
mands, P3 calls P2 plus other commands but itself.

CSEDU 2022 - 14th International Conference on Computer Supported Education

432

ACKNOWLEDGEMENTS

Our thanks go to several hundreds of teachers whom
we have met lately in countless PD sessions across
different countries, online or in person. Observing
their work and having the interactions together pro-
vided us with unique experiences to help improve the
interventions. Our special thanks belong to the teach-
ers who looked for all possible ways on how to run
their computing lessons despite the pandemic situa-
tion. Our thanks also go to Indicia, the non-for-profit
organisation funding the development.

No research ethical principle (in the sense of Pe-
tousi, Sifaki, 2021) has been breached in the project.
This work has been funded in part by VEGA Slovak
Agency under project Productive gradation of com-
putational concepts in programming in primary
school 1/0602/20, and Slovak Research and Develop-
ment Agency under the Contract no. APVV-20-0353.

REFERENCES

Abelson, H., diSessa, A.A. (1980). Turtle Geometry: The
computer as a medium for exploring mathematics, MIT
Press, Cambridge.

Anderson, L.W., Krathwohl, D.R., Bloom, B.S. (eds.)
(2000). A taxonomy for learning, teaching, and as-
sessing: A revision of Bloom’s Taxonomy of Educa-
tional Objectives. New York, Longman.

Bakker, A. (2018). Design Research in education: A prac-
tical guide for early career researchers. Routledge.

Benton, L. Kalas, I., Saunders, P., Hoyles, C., Noss, R.
(2018a). Beyond jam sandwiches and cups of tea: An
exploration of primary pupils’ algorithm-evaluation
strategies. J of Comp Assisted Learning 5; 590–601.

Benton, L., Kalas, I., Hoyles, C., Noss, R. (2018b). Design-
ing for learning mathematics through programming: A
case study of pupils engaging with place value. Int J of
Child-Computer Interaction 16, 68–76.

Blackwell, A.F. (2002). What is Programming? Proc. of
14th Workshop of the Psychology of Programming In-
terest Group, pp. 204–218.

Brennan, K., Resnick, M. (2012). New frameworks for
studying and assessing the development of computa-
tional thinking. Proc. of the 2012 Annual Meeting of the
American Edu Research Association, Vancouver.

Chioccariello, A., Leccioli, N.C., Oreste, C. (1993). Four
steps to the right. In: diSessa, A.A., Hoyles, C., Noss,
R., Edwards, L.D.: Computers and Exploratory Learn-
ing (eds.), doi.org/ 10.1007/978-3-642-57799-4.

Design-Based Research Collective: Design-based research
(2003). An emerging paradigm for educational inquiry.
Educational Researcher, 32 (1), 5–8.

Garrison, D.R., Anderson, T., Archer, W. (2001). Critical
thinking, cognitive presence and computer conferenc-
ing in distance education. American Journal of Distance
Education, 15 (1), 7–23.

Grover, S., Pea, R. (2013), Computational thinking in K-
12: A review of the state of the field. Educational Re-
searcher 42 (1), 38–43.

Kalas, I., Benton, L. (2017). Defining procedures in early
computing education. In: Tatnall, A., Webb, M. (eds.):
Tomorrow's learning: Involving everyone. Learning
with and about technologies and computing. WCCE
2017. IFIP Advances in Information and Communica-
tion Technology, vol 515. pp. 567–578. Springer,
Cham.

Kalas, I. (2018a). Programming in lower primary years: De-
sign principles and powerful ideas. Proc of Construc-
tionism, Computational Thinking and Educational In-
novation, pp.71–80, Vilnius.

Kalas, I., Blaho, A., Moravcik, M. (2018b). Exploring con-
trol in early computing education. In: Sergei N.
Pozdniakov and Valentina Dagienė (eds.) Informatics
in Schools. Fundamentals of Computer Science and
Software Engineering. ISSEP 2018. LNCS, vol 11169,
pp. 3–16. Springer, Cham.

Kalas, I., Horvathova, K. (2022). Programming concepts in
lower primary years and their cognitive demand, ac-
cepted for IFIP OCCE 2021 DTEL post conference
book.

Lincoln, Y.S., Guba, E.G. (1985). Naturalistic enquiry.
Beverly Hills, CA: Sage, 416 p.

Lye, S.Y., Koh, J.H. (2014). Review on teaching and learn-
ing of computational thinking through programming:
What is next for K-12? Computers in Human Behaviour
41, pp.51–61.

Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. (2013).
Learning computer science concepts with Scratch.
Computer Science Education 23 (3), 239–264.

Papert, S. (1980). Mindstorms. children, computers, and
powerful Ideas, 230 p. Basic Books, New York.

Petousi, V., Sifaki, E. (2021). Contextualizing harm in the
framework of research misconduct. Findings from a
discourse analysis of scientific publications, Int J of
Sustainable Development, 23 (3/4), 149–174.

Plomp, T., Nieveen, N. (eds.) (2013). Educational design
research. Part A: An Introduction, 204 p. SLO, Nether-
land.

Royal Society (2012). Shut down or restart: The way for-
ward for computing in UK schools, royalsoci-
ety.org/education/ policy/computing-in-schools/re-
port/.

Sentance, S. (2019). Moving to mainstream: developing
computing for all. In: Proceedings of WiPSCE 2019,
doi.org/10.1145/3361721.3362117.

Van den Akker, J. (2013). Curricular development research
as a specimen of educational design research. In:
(Plomp, 2013), pp. 52–71.

Watt, S. (1998). Syntonicity and the psychology of pro-
gramming. In Proc of 10th Annual Workshop of Psy-
chology of Programming Interest Group, pp. 75–86.

Programming in Year 4: An Analysis of the Design Research Process

433

