
ARTIFACT: Architecture for Automated Generation of Distributed
Information Extraction Pipelines

Michael Sildatke1, Hendrik Karwanni1, Bodo Kraft1 and Albert Zündorf2

1FH Aachen, University of Applied Sciences, Germany
2University of Kassel, Germany

Keywords: Modelling of Distributed Systems, Model Driven Architectures and Engineering, Software Metrics and
Measurement, Agile Methodologies and Applications, Domain Specific and Multi-aspect IS Engineering.

Abstract: Companies often have to extract information from PDF documents by hand since these documents only are
human-readable. To gain business value, companies attempt to automate these processes by using the newest
technologies from research. In the field of table analysis, e.g., several hundred approaches were introduced in
2019. The formats of those PDF documents vary enormously and may change over time. Due to that, different
and high adjustable extraction strategies are necessary to process the documents automatically, while specific
steps are recurring. Thus, we provide an architectural pattern that ensures the modularization of strategies
through microservices composed into pipelines. Crucial factors for success are identifying the most suitable
pipeline and the reliability of their result. Therefore, the automated quality determination of pipelines creates
two fundamental benefits. First, the provided system automatically identifies the best strategy for each input
document at runtime. Second, the provided system automatically integrates new microservices into pipelines
as soon as they increase overall quality. Hence, the pattern enables fast prototyping of the newest approaches
from research while ensuring that they achieve the required quality to gain business value.

1 INTRODUCTION

Many businesses build their services based on prod-
uct information. Amazon, e.g., collects information
about over 350 million products to sell them on their
marketplace platform1. Other examples are compari-
son portals that use product information to offer their
customers a ranking of the most suitable alternatives.

Often, providers publish product information in
PDF documents in which tables contain important
price information. Since these PDF documents are
only human-readable and vary enormously in content
and format, employees must extract the relevant infor-
mation by hand. To gain business value, companies
attempt to automate the process of Information Ex-
traction (IE). Because classic ETL technologies reach
their limits, businesses use the newest technologies
and approaches from research. In the field of table
analysis, e.g., several hundred approaches were intro-
duced in 2019 (Hashmi et al., 2021).

The underlying IE problems are often very com-
plex, so it takes a long time and much effort to develop

1https://www.bigcommerce.com/blog/amazon-
statistics/#amazon-everything-to-everybody

suitable strategies. Moreover, rapidly changing envi-
ronmental requirements result in adjustments to the
software. Manual effort is needed to bring frequently
emerging solutions into productive use.

Due to the great variety of document formats and
the strengths of specific technologies, it is necessary
to develop different extraction strategies. Since com-
pletely unknown formats can occur, the developed
strategies also have to be highly adjustable. This sit-
uation leads to an extensive set of possible strategies.
Thus, identifying the most suitable strategies is chal-
lenging. Furthermore, the reliability of extracted in-
formation is a very critical factor for business success.

These challenges prevent companies from au-
tomating their IE processes.

This paper introduces an architectural pattern that
tackles the challenges mentioned above based on dis-
tributed microservices. The pattern ensures fast pro-
totyping of the newest approaches and the automated
composition of the most suitable strategies. Based
on formalized quality criteria, it guarantees that au-
tomatically extracted information meet business re-
quirements.

Sildatke, M., Karwanni, H., Kraft, B. and Zündorf, A.
ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines.
DOI: 10.5220/0010987000003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 17-28
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

17

Input PDF Document Structured Data

Detail_ID Base_ID Limit_A Limit_B Price_A Price_B

1 1 0 2000 27.20 60.00

2 1 2,001 100,000 25.40 96.00

Base_ID Supplier TariffName
1 Stadtwerke Detmold KlimaStrom Klassik

ETL-Process

Figure 1: Simplified information extraction workflow example from an input PDF document into structured data.

The paper is structured as follows: Section 2 de-
scribes the real-world project which motivates our ap-
proach. Section 3 describes related works. Section 4
introduces Architecture for Automated Generation of
Distributed Information Extraction Pipelines (ARTI-
FACT). Section 5 describes the experimental evalu-
ation of ARTIFACT in the real-world project, while
Section 6 summarizes the paper. Section 7 ends the
paper with an overview of future developments.

2 MOTIVATION

The following section provides an example from the
energy industry that motivates our ARTIFACT pattern
and the importance of (semi-)automatic information
extraction.

In Germany, about 3,150 energy suppliers offer
more than 15,000 different electricity or gas prod-
ucts2. Other service providers use this product infor-
mation as the basis for specific services, e.g., compar-
ison of prices. Figure 1 illustrates a typical part of an
information extraction workflow in a simplified way.

Usually, suppliers adjust their products 1-2 times
a year, so service providers have to process about
25,000 documents annually. Suppliers use custom
formats because there is no standard. These custom
formats may change over time and upcoming suppli-
ers cause completely new ones.

Non-machine readable PDF documents are the
source of relevant information, so employees have to
extract the information by hand. A common manual
IE process typically includes the following steps:

• Matching the Supplier with the Base Data. The
extractor has to match the providing supplier with
the base data. If there is no base data record yet,
the extractor has to create one.

• Identifying the Number of Products. Docu-
ments can describe several products. Therefore,
the extractor has to determine how many different
products they have to consider.

2ene’t Markdaten Endkundentarife Strom & Gas
https://download.enet.eu/uebersicht/datenbanken

• Identifying Relevant Document Parts. Not all
parts of the document contain relevant data. The
extractor identifies only the parts which contain
relevant data.

• Understanding Table Semantics. If the docu-
ment contains several products, maybe one table
will contain all price information. The extractor
has to separate the content of the table according
to every single product.

• Understanding Text Semantics. Some informa-
tion is part of natural text. The extractor has to
examine the relevant text parts and their contexts
to get the relevant information.

• Resolving Different Information Representa-
tions. Usually, there are various ways of price
representation in a document, i.e., gross or net.
The extractor has to consider that they ought to
extract the information only once.

• Inferring Non-explicit Information. Some in-
formation is non-explicit and results from the ab-
sence of specific content. The extractor has to take
this from the context. Figure 1 shows an exam-
ple: If there is no explicit limit B, its value will be
100,000.

The correctness of the extracted data is fundamental
because it forms the basis for downstream services.
Incorrect data causes poor quality and therefore low-
ers the business value.

Since information extraction is complex and sen-
sitive at the same time, automation is challenging to
achieve. Manual extraction is very time-consuming
and expensive. Reducing its effort becomes econom-
ically relevant.

Automation of these processes requires an archi-
tecture that ensures the fast prototyping of the newest
approaches, including a dynamic variation of strate-
gies. Combined with the automated composition of
the most suitable strategies, such an architecture can
help companies to gain business value.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

18

3 RELATED WORK

The challenges mentioned above are especially re-
lated to the fields of flexible software, fast prototyp-
ing, software integration and composition, as well as
software quality metrics.

Rapidly changing environments require flexible
software architectures. Systems that enable evolu-
tion by adding code rather than changing existing
code ensure the adaption for new situations (Han-
son and Sussman, 2021). Furthermore, established
concepts like separation of concerns, bounded con-
text or Domain-driven Design (DDD) emphasize the
need for software modularization (Tarr et al., 1999;
Evans and Evans, 2004). An Microservice Architec-
ture (MSA) is scalable, easy to maintain and extend-
able since each microservice is an independent unit
(Jamshidi et al., 2018). Due to that, microservices
and MSA can be used to implement these concepts
and build flexible software (Newman, 2015).

Ongoing research on new technologies leads to
a vast number of upcoming IE approaches. Agile
development approaches like Extreme Programming
or Scrum allow fast prototyping and are suitable to
create proofs of concept easily (Beck, 2003; Rubin,
2012).

Several frameworks support fast prototyping with
microservices, e.g., Spring Boot for Java or FastAPI
for Python (Walls, 2015; Voron, 2021).

Despite all benefits of MSA, there are also some
challenges. Building dependable systems is challeng-
ing because microservices are autonomous (Dragoni
et al., 2017). Different underlying technologies may
have various means of specifications needed for the
composition of services (Dragoni et al., 2017). Due
to that, the verification of microservice functionalities
is challenging (Chowdhury et al., 2019). Possible fail-
ing compositions of microservices lead to more com-
plexity in the connections between those services and
unexpected runtime errors (Lewis and Fowler, 2014).

These challenges are addressed in the field of
software integration and service composition. Enter-
prise Integration Pattern (EIP) provide theoretical ap-
proaches for software integration (Hohpe and Woolf,
2003). Frameworks like Apache Camel or Spring In-
tegration implement EIP and can be used to bring
theoretical integration approaches into practice (Cam-
poso, 2021; Fuld et al., 2012). Microservice Patterns
describe approaches to transfer the ideas of EIP into
MSAs (Chris Richardson, 2018).

Primarily, there are two approaches handling ser-
vice composition: orchestration and choreography
(Peltz, 2003). The basis for orchestration is a cen-
tralized unit that controls the communication between

microservices. Choreography uses events to realize a
decentralized communication between microservices.
We use orchestration as the basis. Thus, the central-
ized unit can handle the composition of microservices
according to identify the best alternative.

Service discovery allows automatic detection of
services based on provided functionalities and techni-
cal criteria, e.g., response times (Marin-Perianu et al.,
2005). To solve the challenge of service composition,
the Service Registry Pattern combines the concepts of
self-registering services and service discovery (Chris
Richardson, 2018). The patterns mentioned do not fo-
cus on optimizing service composition based on func-
tional criteria, e.g., extraction quality.

Appropriate software metrics should be explic-
itly linked to goals (Fowler, 2013). Metrics Driven
Research Collaboration (MEDIATION) focuses on
the development of research prototypes and uses
business-specific metrics to measure software quality
(Schreiber et al., 2017). (Schmidts et al., 2018) pro-
vide an approach that combines MEDIATION with
containerization of research prototypes. However,
these approaches do not focus on highly distributed
architectures and still require manual management to
decide whether a prototype is used in production.

The known approaches are not suitable for fast
prototyping combined with automated service com-
position based on functional quality criteria.

The motivated problems lay in the field of IE. IE
describes the field of extracting structured informa-
tion from unstructured text (Cardie, 1997).

Since IE applications often deal with non-
deterministic problems, in which boundary conditions
may change, e.g., through changes in data formats,
(Seidler and Schil, 2011) suggest an approach mak-
ing these applications more flexible. This approach is
limited to the extraction from natural text and does not
focus on table analysis. Furthermore, it does not focus
on the complete extraction process and leaves out es-
sential steps, e.g., PDF conversion. This approach is
not evaluated in practice yet and does not completely
address our needs.

4 ARTIFACT PATTERN

The following section introduces the ARTIFACT pat-
tern and its core concepts.

4.1 Artifacts, Components & Pipelines

In the following subsection, we define the basic terms
of the ARTIFACT pattern. The base models of our

ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines

19

pattern are Artifacts. As shown in Figure 2, we distin-
guish three different types of artifacts.

PDF

Document Element Information

Artifact

Figure 2: Artifacts.

Documents form the basis for an information ex-
traction process, e.g., PDF documents or text docu-
ments. Document parts which have a specific struc-
ture are Elements, e.g., paragraphs or tables. Infor-
mation is the result of information extraction and is
part of elements, e.g., product name.

Components are software modules that solve tasks
in an information extraction process. They consume a
specific type of artifact and produce another one (c.f.
Figure 3).

Consumed
Artifact

Component

Produced
Artifact

Figure 3: Component.

Converters consume a document of a specific type
and produce another document. In other words, they
convert a document into another format, e.g., from
PDF to text (c.f. Figure 4).

Converter

PDF

Document Document

PDF

Figure 4: Converter.

Decomposers split a document into its specific
documents parts, e.g., paragraphs or tables (c.f. Fig-
ure 5). For that, they consume a document of a spe-
cific type and produce a list of elements.

Decomposer

Document

PDF

Element

Figure 5: Decomposer.

Extractors consume one or more elements of a
specific type and produce an artifact of type informa-

tion. They perform the actual information extraction
(c.f. Figure 6).

Extractor

Element Information

Figure 6: Extractor.

An ordered combination of specific components is
called a Pipeline and implements a concrete informa-
tion extraction strategy (c.f. Figure 7).

Converters Decomposers Extractors

PDF PDF

Figure 7: Pipeline.

The definition of consuming and producing ar-
tifacts realizes a strict typing. The typing ensures
the reusability of components and the goal-specific
pipeline generation described in Subsection 4.6.

4.2 Gold-Standard & Document
Manager

Automatic information extraction is a non-
deterministic problem because the external re-
quirements frequently change, e.g., through new
upcoming or changing document formats. Therefore,
developers can only make assumptions about the
underlying problem.

So-called gold-standard documents form the basis
for testing the developed components.

Already Processed
Documents

PDFPDFPDFPDFPDFPDFPDFPDFPDFPDFPDFPDF

Corresponding
Structured Data

Gold-Standard
Documents

+
Figure 8: Gold-standard documents.

As shown in Figure 8, a gold-standard document
combines an already processed document and its cor-
responding structured data, i.e., the manually ex-
tracted information.

Developers store these documents in a database
and use them to test the components. For this, devel-
opers compare the expected results with the automat-
ically extracted ones. Testing a component against all
gold-standard documents can produce credible qual-
ity metrics.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

20

The set of gold-standard documents must be bal-
anced. That means that the ratios of documents corre-
sponding to a specific format must correlate to those
of processed documents in reality.

Furthermore, the set of gold-standard documents
has to be up-to-date because there can be fundamen-
tal changes of document formats in reality over time.
To ensure the actuality of the gold-standard document
set, ARTIFACT uses the document manager shown in
Figure 9.

Test-
Document
Database

Centralized
Data Warehouse

Document
Manager

Get X new
PDF Docs

Get X new
Information

Store X new
Gold Docs

Delete X old
 Gold Docs

Figure 9: Document manager.

A centralized data warehouse stores the processed
documents and their corresponding extracted infor-
mation. The document manager frequently checks the
centralized data warehouse for new documents and
corresponding information and automatically updates
the set of gold-standard documents. Therefore, it in-
serts new documents and deletes old ones to keep the
set of gold-standard documents at a manageable size
and always up-to-date.

4.3 Definition of Subgoals

IE problems are often very complex. Therefore, it is
essential to separate the target information model into
independent parts. Each information part represents
a subgoal that can help to increase the degree of au-
tomation successively.

Target Data Model

Information 1

...

Information n

Subgoals

Figure 10: Defining subgoals.

As shown in Figure 10, process experts can split
the target data model into several independent pieces
of information.

Different strategies are suitable for the extraction
of certain information. Developers can, e.g., use rule-
based strategies to extract prices from tables or Nat-
ural Language Processing (NLP) models to extract
product names from text.

As soon as suitable pipelines meet the required
quality criteria for a specific subgoal, the system au-
tomates affected parts of the IE process.

Due to this, the degree of automation increases
successively.

4.4 Formal Definition of Quality
Criteria

Formal and measurable quality criteria are needed to
determine whether the extraction of independent in-
formation can be automated.

Target
Data Model

Independent
Subgoals

Required Quality
Criteria

Defining
Quality
Criteria

Subgoal N1-Limit N2-Limit

Information 1 90% 80%

Information 2 85% 75%

Information 3 95% 85%

Figure 11: Definition of quality criteria.

As shown in Figure 11, process experts can define
several limits for each information, respectively, each
subgoal. The limits represent business requirements.

With the N1-Limit, process experts define which
percentage of passed tests against the gold standard a
pipeline has to reach before the system can use it for
automation.

The N2-Limit supports to bring pipelines into pro-
ductive use that do not reach the N1-Limit and there-
fore would perform not well enough solely. This limit
controls which quality two independent pipelines
each have to achieve for combined extraction. If the
results of the independent pipelines match, the re-
quired confidence is given and the result can be used
for automation. Due to that, the system will process
documents reliably even if single strategies are not yet
entirely suitable.

Nevertheless, employees will have to extract the
affected information by hand if the conditions men-
tioned above are not fulfilled.

The formal and measurable quality criteria ensure
that business requirements will always be met for spe-
cific process parts if they are automated.

4.5 Component Registry

A base concept of the ARTIFACT pattern is the com-
ponent registry shown in Figure 12.

Developed
Component

Containerized
Component

Component
Registry

Converters

Decomposers

Extractors

Automated
Container-

ization

Automated
Registration

Automated Verification

Figure 12: Component registry.

ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines

21

Get extractors
producing artifact

 of type
OutputArtifact

InputArtifact,
OutputArtifact

Initialize
empty

pipelines list

Get decomposers
matching consumed

artifacts of
 extractors

Init pipeline for
each extractor

with extractor as
single component

Combine current
 pipelines with
each matching

decomposer

Get converters
matching consumed

artifacts of
decomposers

Combine current
 pipelines with
each matching

converter

Get converters
matching consumed

artifacts of
converters

Combine current
 pipelines with
each matching

converter

Filter pipelines
starting with

artifact of type
InputArtifact

Repeat until there are
no new combinations

Return Pipelines
producing artifact

of type
OutputArtifact

Figure 13: Concept of the pipeline generation algorithm based on backward matching of consumed and produced artifacts.

Developers implement components to solve spe-
cific tasks, e.g., converting a PDF document into a text
document. Different frameworks and programming
languages are better suited than others to solve partic-
ular tasks. Therefore, developers implement compo-
nents as platform-independent microservices.

They are automatically containerized via CI/CD3

and registered to a central component registry. Each
microservice provides an information endpoint that
returns information about the task type, the consumed
and the produced artifact types.

The component registry sends an example request
to a registering microservice and verifies the response.
Due to that, all registered microservices are valid.

The component registry handles the communica-
tion with the specific microservices and serves as an
intermediary for pipeline generation.

4.6 Goal-specific Pipeline Generation

The complexity of automated information extraction
leads to a vast number of components solving specific
tasks. Different combinations of components can ex-
tract the same information, e.g., the product name.

Possible
Pipelines

Component
Registry

Pipeline
Generator

(Sub-)Goal

Converters

Decomposers

Extractors

Figure 14: Pipeline generation.

Figure 14 shows pipeline generation as one key
concept of ARTIFACT. The pipeline generator per-
forms the automatic generation of possible pipelines
depending on a specific (sub-)goal.

The pipeline generator can build possible
pipelines through the backward matching of con-

3https://docs.gitlab.com/ee/ci/

sumed and produced artifacts. Figure 13 shows the
concept of the algorithm for the automated pipeline
generation.

In the following, we explain the steps of the al-
gorithm using an example. We assume that there
are four artifacts (c.f. Table 1) and five components
(c.f. Table 2). As mentioned in Section 1, there may
be much more components according to the required
strategies.

Table 1: Example artifacts.

Artifact Type
PdfDocument Document
TextDocument Document

Paragraph Element
ProductName Information

Table 2: Example components.
Component Type Input Output
PdfToTextC Converter PdfDocument TextDocument
TextPreProc Converter TextDocument TextDocument
ParagraphD Decomposer TextDocument Paragraph

ProductNameE1 Extractor Paragraph ProductName
ProductNameE2 Extractor Paragraph ProductName

Suppose we want to generate all possible pipelines
for ProductName, the steps of the algorithm look as
follows. Extractors producing ProductName are Pro-
ductNameE1 and ProductNameE2.

Currently, the generated pipelines only contain the
extractors and look as follows:

[ProductNameE1], [ProductNameE2]

All extractors consume a Paragraph as input.
Therefore the only matching decomposer is Para-
graphD. The generated pipelines look as follows:

[ParagraphD, ProductNameE1],
[ParagraphD, ProductNameE2]

All decomposers consume a TextDocument as in-
put. Therefore matching converters are PdfToTextC
and TextPreprocessor. The intermediate results are:

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

22

[PdfToTextC, ParagraphD, ProductNameE1],
[TextPreProc, ParagraphD, ProductNameE1],
[PdfToTextC, ParagraphD, ProductNameE2],
[TextPreProc, ParagraphD, ProductNameE2]

PdfToTextC consumes a PdfDocument, but there
are no converters that produce a PdfDocument.
TextPreProc consumes a TextDocument. Therefore
the only matching converter is PdfToTextC.
The generated pipelines look as follows:

[PdfToTextC, ParagraphD, ProductNameE1],
[TextPreprocessor, ParagraphD, ProductNameE1],

[PdfToTextC, TextPreProc, ParagraphD, ProductNameE1],
[PdfToTextC, ParagraphD, ProductNameE2],
[TextPreProc, ParagraphD, ProductNameE2],

[PdfToTextC, TextPreProc, ParagraphD, ProductNameE2]

There are no more new combinations, so all possi-
ble pipelines are generated. Now filtering only those
pipelines whose first converters consume a PdfDocu-
ment lead to following result:

[PdfToTextC, ParagraphD, ProductNameE1],
[PdfToTextC, TextPreProc, ParagraphD, ProductNameE1],

[PdfToTextC, ParagraphD, ProductNameE2],
[PdfToTextC, TextPreProc, ParagraphD, ProductNameE2]

4.7 Automated Quality Determination

The qualities of possible pipeline variants may differ
widely. According to defined metrics, the system au-
tomatically chooses the best pipelines for each (sub-)
goal to achieve the highest business value.

Quality
Determiner

Possible
Pipelines

Gold-Data

Pipeline
Qualities

Component
Registry

Converters

Decomposers

Extractors

Figure 15: Quality determiner.

Figure 15 shows automated quality determination
as a key concept of ARTIFACT. The quality deter-
miner tests each possible pipeline against the set of
gold-standard documents. Due to that, it finds the best
available pipelines for a specific goal.

The automated quality determination ranks
pipelines for each (sub-)goal ordered by the percent-
age of passed tests. Any change to the component
registry or the set of gold-standard documents
triggers the determination.

The information about each pipeline quality is
sent to the component registry and serves as a ba-

sis for the ad-hoc automation at runtime described in
Subsection 4.8.

4.8 Ad-hoc Automation at Runtime

It is desirable to maximize the degree of automation
and therefore gain business value. At the same time,
the system must meet defined quality criteria. Thus,
ARTIFACT introduces the ad-hoc automation at run-
time shown in Figure 16.

Input PDF
comes in

Information
extracted

Extraction
Pipeline

Data Part 1

Extraction
Pipeline

Data Part 2

Extraction
Pipeline

Data Part n
...

Information Extraction Process

Required Quality Criteria Determined Quality

Request Automated Pipeline

Registry

Compare

Response with
Automated Pipeline or

Call for Manual
Extraction

Figure 16: Ad-hoc automation at runtime.

A process engine controls the overall IE process,
e.g., BPMN-based. A task in the process model rep-
resents the extraction of specific information.

Each step has a decision to determine whether one
or two independent pipelines can handle the extrac-
tion task according to the defined limits. If there are
no suitable pipelines, the process engine will trigger
the manual extraction.

Because every change to the system triggers the
automatic quality determination, the ARTIFACT pat-
tern ensures ad-hoc automation at runtime.

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate the practical appli-
cation of our ARTIFACT pattern introduced in Sec-
tion 4. In the project, we applied our pattern that was
motivated in Section 2.

5.1 Defined Subgoals & Quality Criteria

The project’s overall goal is automated information
extraction of all relevant information from PDF doc-
uments. Since the holistic consideration of all infor-
mation is very complex, we define subgoals following
Subsection 4.3.

We split the target data model into independent
data parts representing our subgoals. The successful

ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines

23

automation of each subgoal increases the degree of
overall automation and therefore gains business value.

From the business point of view, these data parts
are of different importance. While price information
is more critical for downstream processes, the prod-
uct’s name itself is less important. Therefore, we de-
fine different quality criteria for each data part shown
in Table 3.

Table 3: Defined subgoals & quality criteria.

Data Part N1-Limit N2-Limit
DateOfValidity 90% 75%

BasicPrices 90% 75%
CommodityPrices 90% 75%

SupplierName 90% 75%
ProductName 80% 65%

CustomerGroups 80% 65%
MeteringPrices 80% 65%

ProductType 70% 55%
ProductCategory 70% 55%

We, e.g., define DateOfValidity as one indepen-
dent data part. It describes at which point in time a
customer can order a specific product. It is essential
for downstream analysis, e.g., time-based price com-
parisons.

Due to its importance, we define an N1-Limit of
90%. Thus, the system only chooses pipelines for au-
tomation that aim at least 90% correctly extracted re-
sults in the automated gold-standard test.

If there is no pipeline reaching the limit of 90%
in the automated gold-standard test, the system will
use the N2-Limit to find alternatives. There must be
at least two pipelines that aim 75% each in the test. If
two independent pipelines reach this value, the system
will pick them for automation. If their results do not
match, DateOfValidity will have to be extracted by
hand.

5.2 Implemented Components

We are in an early stage of the project so that the num-
ber of implemented components steadily increases.

Currently there are five converters (c.f. Table 4),
five decomposers (c.f. Table 5) and 14 Extractors (c.f.
Table 6)

Table 4: Implemented converters.

Name Input Artifact Output Artifact
PopplerPdfToText PdfDocument TextDocument

TesseractPdfToText PdfDocument TextDocument
LibrePdfToOdt PdfDocument OdtDocument

PopplerPdfToImg PdfDocument ImgDocument
TextPreProcessor TextDocument TextDocument

Table 5: Implemented decomposers.

Name Input Artifact Output Artifact
TableBankDec ImgDocument Table

CamelotTableDec PdfDocument Table
TabulaTableDec PdfDocument Table

TextParagraphDec TextDocument Paragraph
OdtParagraphDec OdtDocument Paragraph

Table 6: Implemented extractors.

Name Input Artifact Output Artifact
SimpleRegexDovEx Paragraph DateOfValidity

ComplexRegexDovEx Paragraph DateOfValidity
RegexBasicPriceEx Paragraph BasicPrice
TableBasicPriceEx Table BasicPrice

RegexCommodityPriceEx Paragraph CommodityPrice
TableCommodityPriceEx Table CommodityPrice

NerSupplierNameEx Paragraph SupplierName
DictSupplierNameEx Paragraph SupplierName
NerProductNameEx Paragraph ProductName

NerCustomerGroupEx Paragraph CustomerGroup
RegexMeteringPriceEx Paragraph MeteringPrice
TableMeteringPriceEx Table MeteringPrice

NerProductTypeEx Paragraph ProductType
NerProductCategoryEx Paragraph ProductCategory

There are several extractors that are based
on modern Named Entity Recognition (NER)
technologies from the field of NLP, i.e., Ner-
SupplierNameEx,NerProductNameEx, NerCustomer-
GroupEx, NerProductTypeEx, NerProductCatego-
ryEx.

DictSupplierNameEx, e.g., provides an alternative
for the extraction of supplier names and is based on
classical Regular Expressions (Regex).

5.3 Goal-specific Pipelines & Qualities

Based on the implemented components, there are sev-
eral possible pipelines per information. The larger the
number of components, the more unmanageable is the
manual detection of possible combinations.

Table 7: Pipelines per information (initial gold-standard
set).

Output Artifact Possible
Pipeline

Best
Pipelines

Reached
Limit

DateOfValidity 10 92% N1
BasicPrice 8 60% -

CommodityPrice 8 55% -
SupplierName 10 77% N2
ProductName 5 50% -

CustomerGroup 5 55% -
MeteringPrice 8 35% -
ProductType 5 55% -

ProductCategory 5 55% -

Table 7 shows the number of possible pipelines
per information and the quality of the best one tested
against the initial set of gold-standard documents.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

24

Table 8 shows the quality of the pipelines after the
first update of the gold-standard set. The qualities
were determined and updated automatically, while
there were small quality changes.

Table 8: Pipelines per information (updated gold-standard
set).

Output Artifact Possible
Pipeline

Best
Pipelines

Reached
Limit

DateOfValidity 10 91% N1
BasicPrice 8 59% -

CommodityPrice 8 54% -
SupplierName 10 77% N2
ProductName 5 51% -

CustomerGroup 5 55% -
MeteringPrice 8 34% -
ProductType 5 55% -

ProductCategory 5 55% -

Since there is a pipeline for DateOfValidity reach-
ing 91% (c.f. Figure 17), the N1-Limit of 90% is ex-
ceeded. Therefore, the system can automate the ex-
traction step for DateOfValidity.

TesseractPdfToText

PDFPDF

TextPreProcessor

TextParagraphDec

ComplexRegexDovEx

DateOfValidity

Figure 17: DateOfValidity pipeline.

For the SupplierName, there is no pipeline reach-
ing the required N1-Limit of 90%, but several
pipelines reaching the N2-Limit of 75% (c.f. Fig-
ure 18 and Figure 19). Hence, the system will auto-
mate the extraction step for the SupplierName if two
different pipelines return the same result. Otherwise,
it triggers manual extraction.

TesseractPdfToText

PDFPDF

TextParagraphDec

NerSupplierNameEx

SupplierName

Figure 18: SupplierName pipeline 1.

PopplerPdfToText

PDFPDF

TextPreProcessor

TextParagraphDec

DictSupplierNameEx

SupplierName

Figure 19: SupplierName pipeline 2.

Due to quality assurance, two employees double-
check the manually extracted information. We have
collected the data shown in Table 9 through double-
checking since the partial automation has been active.

Table 9: Results in production.

Information Documents Matches Correct Quote
DateOfValidity 126 - 117 93%
SupplierName 94 65 60 92%

The results of the independent pipelines for Sup-
plierName matched in 65 of 94 cases so that 29 docu-
ments had to be processed manually. In the case of the
65 matched results, the system extracted 60 correctly.

The extraction step for DateOfValidity is fully au-
tomated and reaches the required quality criteria. In
92% of the cases for SupplierName, the registry de-
cided correctly to return the automatically extracted
result.

5.4 Implementation

In the following subsection, we present an exemplary
implementation of our ARTIFACT pattern.

Due to the nature of microservices, there is no
need to use a unified programming language for
all microservices. We used a Python stack for the
pipeline generator and the conversion, decomposi-
tion and extraction components in our implemen-
tation. For the component registry and the pro-
cess orchestrator we also used a Java 17 stack with
Maven and Spring Boot4. We realize the communica-
tion between microservices via Representational State
Transfer (REST) calls.

To minimize the manual effort for data models,
REST endpoints and client code implementation, we
use OpenAPI5 to define a programming language-
agnostic definition of the information above. Via
Swagger Codegen6, we generate server stubs and
client SDKs for the specified API.

We containerize every microservice with Docker7.
Thus, we ensure that the applications run the same
way, regardless of the surrounding infrastructure. The
containerization also enables us to deploy those mi-
croservices on a container-orchestration system like
Kubernetes8.

Figure 20 shows the currently developed mi-
croservice architecture. In the following, we describe
the most important microservices.

5.4.1 Components

As stated in Subsection 4.1, we divide the extrac-
tion of single information into three different types

4https://spring.io/
5https://swagger.io/specification/
6https://swagger.io/tools/swagger-codegen/
7https://www.docker.com/
8https://kubernetes.io

ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines

25

Process
Orchestrator

Pipeline
Builder

Gold-Standard
Documents

Centralized
Data Warehouse

Components

Document
Manager

Component
Registry

Figure 20: Implemented Microservice Architecture.

of components: converters, decomposers and extrac-
tors. We implemented each component as a separate
microservice that provides an endpoint for the oper-
ation mentioned above. Additionally, every compo-
nent microservice provides an information endpoint.
This endpoint returns the name and version of the mi-
croservice. It also returns which type of task it imple-
ments and which artifacts it consumes and produces.

Code Listing 1 shows the implementation of the
information endpoint of a component. The presented
information signals the component registry that this
component is a converter that consumes a PDF and re-
turns a text document. Internally the component uses
Tesseract9 to extract text from the PDF document us-
ing OCR.

@controller.get("/info",
↪→ response_model=
↪→ ComponentEndpointInfo)

def get_info():
return ComponentEndpointInfo(
name="TesseractPdfToText",
consumes="PdfDocument",
produces="TextDocument",
version="1.0.0",
endpoint="/convert"

)

Code Listing 1: Information endpoint of a component.

5.4.2 Component Registry

As described in Subsection 4.5, we implement a mi-
croservice that manages all components mentioned
above. At first, we need to provide the quality criteria
mentioned in Subsection 5.1. After that, we can start
registering components at the component registry.

Code Listing 2 illustrates the registration of a new
component. When a component tries to register it-
self at the component registry, the registry queries the
information endpoint of the component in order to de-
termine its task type. After that, the registry tests the

9https://github.com/tesseract-ocr/tesseract

component’s endpoint with example data. If this suc-
ceeds, the component will be registered. Afterwards,
the registry informs the pipeline builder about the new
component by forwarding all relevant component in-
formation. Since building and evaluating all possible
pipelines takes some time, the method does not wait
for the pipeline builder’s result. Instead, the pipeline
builder performs a POST after building and evaluat-
ing all pipelines. As a result, the registry is ready for
use.

@SneakyThrows
public void addComponent(String address, int

↪→ port) {
InetAddress inet = InetAddress.getByName(

↪→ address);
InetSocketAddress sock = new

↪→ InetSocketAddress(inet, port);

ComponentEndpointInfo info =
↪→ requestComponentInfo(sock);

if (verifyEndpoint(info, sock)) {
Component com = new Component(sock,info);
allComps.put(com.getName(), com);
pipelineBuilderService.notify(allComps);

}
}

Code Listing 2: Registration of new components.

5.4.3 Pipeline Builder

In our implementation, we combine the goal-specific
pipeline generation from Subsection 4.6 and the auto-
mated quality determination from Subsection 4.7 into
a single microservice called Pipeline Builder.

Pipeline Builder is a FastAPI10 web service. It
provides endpoints for pipeline generation and qual-
ity determination. Code Listing 3 illustrates the deter-
mination.

@controller.post("/determine")
def post_determine():
determined_qualities =

↪→ PipelineBuilderService.
↪→ determine_qualities()

return determined_qualities

Code Listing 3: Pipeline determination endpoint.

Code Listing 4 shows the steps taken to determine
the quality of each pipeline. The endpoint returns the
result.

def determine_qualities():
determined_qualities =[]
gold_documents_request =requests.get(’/gold

↪→ -documents’)

10https://fastapi.tiangolo.com/

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

26

gold_documents =[GoldDocument.parse_obj(
↪→ json_data) for json_data in
↪→ gold_document_request.json()]

for info in Config.get_information():
for pipeline in self.generate_pipelines(

↪→ Document.PdfDocument, info):
passed_tests =0
for gold_document in gold_documents:
expected_info =gold_document.

↪→ get_information(info)
extracted_info =pipeline.process()
if expected_info ==extracted_info:
passed_tests +=1

quality =passed_tests /len(
↪→ gold_documents)

determined_qualities.append(
PipelineQuality(
pipeline=pipeline,
quality=quality

)
)

return determined_qualities

Code Listing 4: Pipeline quality determination.

5.4.4 Process Orchestrator

The process orchestrator is a Java Spring Boot web
service that provides a Camunda11 process engine. As
mentioned in Subsection 4.8, the process orchestra-
tor calls the component registry to extract information
from a given PDF document.

In our current state of implementation, the process
orchestrator acts as the primary user interface. The
user uploads a PDF document via a Camunda form.
For each defined extraction task, the orchestrator up-
loads the document to the component registry with the
request to extract a given type of information. If any
extraction task requires manual actions, the process
orchestrator will prompt the user to enter the missing
data. If all information is available, the process or-
chestrator will store the information in the centralized
data warehouse.

Code Listing 5 shows the implementation of a Ca-
munda Service Task that receives a PDF document
from the DOCUMENT variable and returns the ex-
traction result for a single information type in the vari-
able RESULT. If there is no result, the service task
will set the value of the RESULT variable to null. A
null value marks the document for manual extraction.

11https://camunda.com/

@Override
public void execute(DelegateExecution exec)

↪→ throws Exception {
String resultType = getResultType(exec);

FileValue documentFile = exec.
↪→ getVariableTyped("DOCUMENT");

PdfDocument document = getPdfDocument(
↪→ documentFile);

List<Object> result = sendDocumentToServer(
↪→ document, resultType);

if (result == null || result.isEmpty()) {
exec.setVariable("RESULT", null);

} else {
exec.setVariable("RESULT", result);

}
}

Code Listing 5: Extraction service task.

6 CONCLUSION

With ARTIFACT, we provide an architectural pat-
tern that ensures the automated service composition
into pipelines based on functional business criteria.
The provided system automatically chooses the best
pipeline by determining all possible alternatives. For
that, we adapted the service registry pattern and the
service orchestration.

Due to the use of the quality determiner (c.f. Fig-
ure 15) and the document manager (c.f. Figure 9) we
completely automate end-to-end testing. Thus, we en-
sure the minimization of testing costs and effort. We
have shown that no manual effort is needed to test new
components because the system triggers testing auto-
matically when required. Furthermore, we ensure that
the set of gold-standard documents always represents
current environmental conditions.

The introduced concepts of automated pipeline
generation (c.f. Subsection 4.6) and automated qual-
ity determination (c.f. Subsection 4.7) guarantee that
possible side effects of the systems are automatically
detected, e.g., overall quality loss. Hence, we en-
able fast prototyping and risk-free integration of the
newest approaches from research.

Beyond that, ARTIFACT makes manual manage-
ment reactions to quality changes obsolete. The sys-
tem decides whether it can use a pipeline according to
the required quality criteria or not.

Moreover, through the concept of defining N2-
Limits for quality control, we can bring compo-
nents into productive use that would perform not well
enough solely.

ARTIFACT is not limited to information extrac-
tion sourcing from natural text. Furthermore, we pro-

ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines

27

vide an approach to implement information extraction
for arbitrary documents or data formats, e.g., tables.

Additionally, ARTIFACT addresses more com-
plex IE problems because it includes tasks like con-
verting non-machine-readable into machine-readable
documents, e.g., PDF to text.

Due to the application in a real-world project, we
have shown that our pattern supports companies to
automate their information extraction process succes-
sively and gains business value.

7 OUTLINE

In the course of future development, we would like
to add a classification mechanism to the information
extraction processes. We assume that there are sev-
eral document classes with different characteristics.
Possible pipelines could perform differently to single
document classes.

Additionally, we would like to add caching mech-
anisms to the different pipeline runs. As shown in
Section 5, some pipeline parts are recurring when pro-
cessing a specific document. Due to performance rea-
sons, the system could cache intermediate results of
specific steps.

Beyond that, we would like to optimize the choice
of possible pipelines if the results were nearly equal.
The system should be able to take other metrics like
the expected pipeline performance into account when
choosing.

REFERENCES

Beck, K. (2003). Extreme Programming - die revolu-
tionäre Methode für Softwareentwicklung in kleinen
Teams ; [das Manifest]. Pearson Deutschland GmbH,
München.

Camposo, G. (2021). Cloud Native Integration with Apache
Camel - Building Agile and Scalable Integrations for
Kubernetes Platforms. Apress, New York.

Cardie, C. (1997). Empirical Methods in Information Ex-
traction. page 15.

Chowdhury, S. R., Salahuddin, M. A., Limam, N., and
Boutaba, R. (2019). Re-Architecting NFV Ecosys-
tem with Microservices: State of the Art and Research
Challenges. 33(3):168–176.

Chris Richardson (2018). Microservices Patterns.
Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,

Montesi, F., Mustafin, R., and Safina, L. (2017). Mi-
croservices: Yesterday, today, and tomorrow.

Evans, E. and Evans, E. J. (2004). Domain-driven De-
sign - Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston.

Fowler, M. (2013). An appropriate use of metrics.
Fuld, I., Partner, J., Fisher, M., and Bogoevici, M. (2012).

Spring Integration in Action -. Simon and Schuster,
New York.

Hanson, C. and Sussman, G. J. (2021). Software Design for
Flexibility - How to Avoid Programming Yourself into
a Corner. MIT Press, Cambridge.

Hashmi, K. A., Liwicki, M., Stricker, D., Afzal, M. A.,
Afzal, M. A., and Afzal, M. Z. (2021). Current Sta-
tus and Performance Analysis of Table Recognition in
Document Images with Deep Neural Networks.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns - Designing, Building And Deploying Mes-
saging Solutions. Addison-Wesley Professional.

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., and
Tilkov, S. (2018). Microservices: The Journey So Far
and Challenges Ahead. 35(3):24–35.

Lewis, J. and Fowler, M. (2014). Microservices.
Marin-Perianu, R., Hartel, P., and Scholten, H. (2005).

A Classification of Service Discovery Protocols.
page 23.

Newman, S. (2015). Building Microservices: Designing
Fine-Grained Systems. O’Reilly Media, first edition
edition.

Peltz, C. (2003). Web services orchestration and choreog-
raphy. 36(10):46–52.

Rubin, K. S. (2012). Essential Scrum - A Practical Guide
to the Most Popular Agile Process. Addison-Wesley
Professional, Boston, 01. edition.

Schmidts, O., Kraft, B., Schreiber, M., and Zündorf, A.
(2018). Continuously evaluated research projects
in collaborative decoupled environments. In 2018
IEEE/ACM 5th International Workshop on Software
Engineering Research and Industrial Practice (SER
IP), pages 2–9.

Schreiber, M., Kraft, B., and Zündorf, A. (2017). Metrics
Driven Research Collaboration: Focusing on Com-
mon Project Goals Continuously. In 2017 IEEE/ACM
4th International Workshop on Software Engineering
Research and Industrial Practice (SER IP), pages 41–
47.

Seidler, K. and Schil, A. (2011). Service-oriented infor-
mation extraction. In Proceedings of the 2011 Joint
EDBT/ICDT Ph.D. Workshop on - PhD ’11, pages 25–
31. ACM Press.

Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999).
N degrees of separation: multi-dimensional separa-
tion of concerns. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (IEEE
Cat. No.99CB37002), pages 107–119.

Voron, F. (2021). Building Data Science Applications with
FastAPI - Develop, manage, and deploy efficient ma-
chine learning applications with Python. Packt Pub-
lishing Ltd, Birmingham.

Walls, C. (2015). Spring Boot in Action -. Simon and Schus-
ter, New York.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

28

