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Abstract: This paper presents a data-driven methodology, named P4T, for the trajectory prediction from long to short 
term before scheduled time of flight, developed within the framework of the PIU4TP project. The 
methodology is aimed to support the Network Manager in the air traffic flow and capacity management, 
allowing the optimization of flight distribution among sectors and flight routes, the anticipation of air traffic 
flow requests and the identification in advance of potential conflicts. The proposed approach applies machine 
learning and data mining techniques to perform data analysis and to correctly identify, from historical data, 
the aircraft expected behaviour, in terms of flight path selection. The main peculiarity of this approach is the 
exploitation of the uncertainties on current forecasts of some relevant mission and aircraft parameters to 
compute trajectory prediction outcomes enriched with associated probabilistic information. The preliminary 
validation of the methodology using simulated data highlighted very promising results. 

1 INTRODUCTION 

Trajectory Prediction (TP) is one of the most relevant 
capability and need of the current and, above all, the 
future management of air traffic, in its expected 
implementation of the Trajectory Based Operations 
paradigm. Indeed, it supports the activities 
concerning demand-capacity balance, identification 
of hotspots and preventive mitigation of potential 
conflicts. Therefore, the TP process is used by several 
actors involved in the traffic planning and 
management, starting even long time before the 
actual flight execution. A lot of efforts have been 
done to develop TP algorithms that can meet the 
stringent safety requirements typical of the aviation 
sector. The traditional approach uses a model-based 
deterministic forecast of the trajectories without any 
quantification of the uncertainty affecting the 
prediction (Engage, 2019). However, the TP process 
is uncertain by its nature, indeed it predicts actual 
trajectories by using models, which are 
approximation of the reality affected by a given 
accuracy, and uncertain input data, such as weather 
forecast, Air Traffic Control (ATC) practices, and 
aircraft actual performance.  
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This paper presents the TP approach developed in 
the PIU4TP project (Zazzaro et al., 2020), financed 
by SESAR within the Engage KTN framework, and 
applicable to the strategic and pre-tactical phases of 
the Air Traffic Management (ATM). It is a data-
driven methodology that builds the predictive model 
of flight trajectories by using Data Mining (DM) and 
Machine Learning (ML) techniques. The innovation 
of the approach consists in the computation of 4-
dimensional (4D) TP enriched with its relevant 
probabilistic information, which is obtained by 
exploiting the uncertainty inherently connected to the 
data used as inputs by the TP process. The prediction 
of the 3D spatial trajectory consists, for the scope of 
this work, in the identification of the most suitable 
flight plan among several possible, whereas the 
prediction of the fourth dimension of the flight plan, 
that is the computation of the time of arrival in each 
waypoint (WP), is performed by solving a regression 
problem. Actually, there is a large number of 
parameters that can affect the optimal flight plan 
selection. Few, among the most relevant ones, have 
been considered in the development of the proposed 
methodology. In fact, the aim is to demonstrate a 
proof of concept and to investigate how the 
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information about significant parameters can be 
exploited in an integrated manner to perform in 
advance a reliable prediction of the flown trajectory. 
Although the method was designed in this simplified 
scenario, all the steps that define the proposed 
approach can be applied to any set of uncertain inputs. 
Indeed, the methodology takes the form of a lifecycle 
model for the analysis and modelling of flight paths 
in the context of TP and allows to add new input 
variables and external parameters by iterating through 
the phases of the lifecycle. The defined methodology 
was preliminarily validated using simulated data and 
the obtained results seem very promising. The use of 
simulated data is due to the lack of comprehensive 
open access datasets of real aircraft trajectories and 
information concerning the parameters that influence 
these trajectories. Moreover, the simulated data allow 
to test the methodology in a controlled environment, 
that is, the value of the parameters of interest and the 
rules and the assumptions that lead to perform the 
flight along a specific flight plan are perfectly known; 
thus, the capabilities and limitations of the proposed 
approach can be fully assessed. 

This paper is structured as follows: Section 2 
summarizes previous works on the TP topic. Section 
3 and Section 4 present the operational scenario 
defined for the methodology design and validation 
and the developed methodology, respectively. 
Section 5 discusses the preliminary methodology 
evaluation results. Conclusions are in Section 6. 

2 RELATED WORK 

The evolution towards trajectory-based ATM has led 
in recent years to a great deal of interest in the 
development of methodologies for predicting aircraft 
trajectories. The position of an aircraft in its trajectory 
can be estimated using physical models of the 
dynamics of the aircraft subject to the different forces 
acting on it (gravity, drag, etc.). These model-based 
methods require the solution of differential equations 
with the precise estimation of a number of parameters 
characterizing the response of the aircraft. Aircraft 
databases provide theoretical model specifications 
and related specific datasets to simulate the behaviour 
of any aircraft and is often used for aircraft TP (Nuic 
et al., 2010). Point mass models are widely used to 
simulate aircraft motion (Schuster, 2015), (Fukuda et 
al., 2010). By combining the calculation model, intent 
of the aircraft and environmental conditions the 
accuracy of the predicted trajectory can be improved 
(Alligier et al., 2013), (Zhang et al., 2018). Most of 
the relevant parameters in model-based TP methods 

are difficult to measure with a satisfying level of 
accuracy, in particular the weather data and the 
aircraft mass change during flight. Instability in the 
predicted position of the aircraft may arise, limiting 
the applicability of these techniques to short-term or 
to portions of the overall flight. 

ML methods are gaining more and more attention 
given the resurgence of interest in the field of AI with 
the successful application of neural nets in the field of 
computer vision, natural language processing, 
automatic translation and others. As an alternative to 
model-based solutions a data-driven approach 
represents a viable solution to the problem of TP 
(Wang et al., 2017), (Fernandez et al., 2017). It uses 
a collection of past flown trajectories to statistically 
predict the behaviour of future flights by exploiting 
all the information implicitly included in the 
historical data. A stepwise regression method may be 
used in TP integrating meteorological data to predict 
the arrival time (de Leege et al., 2013). A direct linear 
regression model using a dataset of radar trajectories 
for short to mid-term aircraft TP has been developed 
and tested on a large database of flights over Europe 
(Tastambekov et al., 2014). Deep Neural Nets also 
have been exploited to address the problem of TP. 
Casting this problem as a flight sequence estimation, 
a recurrent Neural Net can be trained to predict 
aircraft position in discrete time steps (Wu et al., 
2017), (Park et al., 2018). A comparative study 
showed that deep learning algorithms have 
impressive performance when compared with other 
traditional approach (Guan et al., 2016). With the 
improving quality and growing volume of the data 
collected in ATC systems, data-driven methods have 
become mainstream in current aircraft TP research 
and may allow overcoming the limitations of model-
based approach. The problem of TP when 
uncertainties in the input variables are considered has 
emerged in the recent years, and research activities 
are on-going on the topic. It is one of the main 
objectives of this paper. In previous work this 
problem has been faced by using model-based 
approach, coupled with probabilistic or uncertainty 
propagation methodologies (Rodriguez-Sanz et al., 
2019), (Rivas et al., 2017), and data-driven approach 
(Ma and Tian, 2020), (Zeh et al., 2020), (Zhang et al., 
2020). 

3 OPERATIONAL SCENARIO 

The design and validation of the TP methodology 
require the definition of an operational scenario and 
the collection of all the relevant data (historical data, 
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in terms of flown trajectories and related forecasts). 
The scenario definition includes the selection of the 
considered airspace, routes and aircraft, the 
identification of the parameters that affect the flight 
plan, and the definition of the time frame in which the 
TP shall be carried out. All the data that characterize 
the scenario are generated in simulation, providing a 
wide and complete database. The simulated data are 
computed using some assumptions that however do 
not affect the generality of the developed 
methodology. The following subsections detail both 
the considered scenario and the process for simulated 
data generation. 

3.1 Scenario Definition 

Two routes within the European airspace were 
selected: London Heathrow Airport (ICAO code: 
EGLL) to Athens Eleftherios Venizelos Airport 
(ICAO code: LGAV) and London Gatwick Airport 
(ICAO code: EGKK) to Malta International Airport 
(ICAO code: LMML). Both routes are executed by 
several airliners, fly through different national 
airspaces and go across different airspace sectors. It 
is assumed that each route can be performed using 
one out of twelve possible flight plans (three different 
lateral flight plans which can be performed at four 
different cruise flight levels), defined by departure 
and destination airports and a list of waypoints (WPs). 

A generic short/medium range aircraft has been 
chosen to perform the flights, with take-off weight 
varying in the range 50-80 tons. Actually, there is a 
large number and types of parameters that can affect 
flight plan selection and request for a flight plan 
change both during pre-flight planning and flight 
execution. The defined scenario considers two of 
these parameters, that are relevant in the strategic and 
pre-tactical phases, namely actual aircraft take-off 
weight (TOW) and weather conditions. In fact, the 
actual TOW affects the climbing performance of the 
aircraft (Zeh et all., 2020), (Uzun and Koyuncu, 
2017), and the selection of the optimal flight level, as 
described in (AIRBUS, 1998). The effects of weather 
conditions on the performed flight plan are widely 
known and reported in several works in the literature 
(Rivas, Franco and Valenzuela, 2017), (de Leege, van 
Paassen and Mulder, 2013), (Sankararaman and 
Daigle, 2017). For the sake of simplification, other 
effects such as the pilot intent, FMS performance, 
ATC tactical intervention, are not considered in the 
generation of simulated data. 

The methodology shall be applicable in strategic 
and pre-tactical phases, therefore a time window of 
15 days before the scheduled date of flight (denoted 

as Tf) is considered. In details, TP is performed at 
three relevant dates: 15 days, 5 days and 1 day before 
Tf, denoted with Tf-15, Tf-5 and Tf-1, respectively. 
Simulated data concerning meteorological conditions 
and estimated TOW, including related uncertainties, 
are computed in these dates and in the day of flight. 

3.2 Simulated Data Generation 

The information about a huge number of flights shall 
be available to design and validate a data-driven TP 
methodology. For each flight the following data are 
required: 
 the set of possible flight plans that can be flown 

along the selected route; 
 the weather forecasts (and their probabilistic 

characterization) along the flight route, in each 
date of the TP computation and the actual 
weather conditions on the day of the flight; 

 the TOW estimations (and their probabilistic 
characterization) in each date of the TP 
computation and the actual TOW during the 
flight; 

 the actual flown trajectory the day of flight. 

The set of possible flight plans for each route was 
selected through the analysis of the data available on 
the website https://www.flightradar24.com and 
defined by a list of WPs downloaded from the website 
www.flightplandatabase.com. 

The ERA5 database of the European Centre of 
Medium-range Weather Forecast-ECMWF (ERA5, 
2021) was used to get 3D (longitude, latitude, 
pressure altitude) weather data. Several datasets, 
including wind intensity and direction and 
atmospheric temperature, were used; they refer to all 
the days of October and November from 1979 to 2013 
at 2pm. Weather data are evaluated in each WP of all 
the possible flight plans for the selected route, 
through an interpolation of the grid provided by 
ERA5. The ERA5 also provides the uncertainties for 
the weather forecasts (Haiden et al., 2019) that apply 
back till to 15 days before the date, and this is also a 
leading reason for selecting 15 days as the time range 
of our scenario. In the defined scenario, along with 
the forecast at Tf-15, Tf-5 and Tf-1 dates, an 
uncertainty is associated to each variable that 
characterize the weather conditions, as provided in 
(Haiden et al., 2019). It is assumed that the forecast 
of the atmospheric parameters are stochastic variables 
with a Uniform distribution. Once the atmospheric 
parameters are available, the No-Fly Zones can be 
computed as the airspace region where wind intensity 
exceeds a pre-defined threshold. 
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The TOW forecast and actual values vary among 
two precise limits, the Operating Empty Weight 
(OEW) and the Maximum Take-Off Weight 
(MTOW). These values for most of the aircraft are 
available in the literature (AIRBUS, 1998). The TOW 
forecast at each prediction date is obtained through a 
random draw, assuming a Uniform stochastic 
distribution within the allowable range. The 
uncertainty on the estimated value depends on how 
much in advance with respect to the scheduled flight 
date the estimation is computed (it decreases while 
approaching the flight date) and it is defined as a 
percentage of the whole range of variation. 

Computed weather conditions and take-off 
weight on the day of flight are inputs for the selection 
of the flown flight plan among the possible options. 
Specifically, as detailed before, the presence of the 
No-Fly Zones is determined by the weather, whereas 
the TOW defines, for a given aircraft and cost index 
selected by the operator, the climbing performance, 
the optimal cruise altitude and the optimal Mach 
number, denoted as ECON Mach (AIRBUS, 1998). It 
is worthy to remark that the weather conditions could 
also contribute to determine the optimal flight level, 
because the relation between TOW and optimal cruise 
altitude (flight level), for a fixed cost index, varies 
with the atmospheric temperature. Based on these 
considerations, the following rules apply to select the 
most suitable flight plan (among the available ones 
for the considered route): 
 the selected lateral flight plan shall avoid the 

NFZs; 
 the selected flight level shall be the optimal one 

with respect to the take-off weight. 

The definition of the 4D flight plan requires the 
computation of the time of arrival in each WP. It is 
performed through kinematic equations, assuming 
that the flight is executed flying at ECON Mach. In 
computing the time to reach the WPs in the first legs 
of a flight plan, the climb performance of the aircraft 
is also considered by adding to the estimated time an 
additional delay. This climb performance is available 
in the open literature for some aircraft models 
(AIRBUS, 1998). 

Using the data generation process above 
described, 2052 simulated flights were computed for 
the route from London to Athens, and 2023 simulated 
flights for the route from London to Malta. Globally, 
there are 20 variables comprised in the simulated data 
related to aircraft state, weather condition, take-off 
weight and the relative uncertainties. For each 
simulated flight these variables are provided at each 
prediction date (predicted values of the variables and 

related uncertainties) and at the date of flight (actual 
flown values of the variables). Table I shows the list 
of the variables. 

Table 1: List of simulated variables. 

Variable Description Units
WP_ID Waypoint (WP) Identifier -

Lon WP longitude deg
Lat WP latitude deg
T Temperature K

VnW North component of wind 
speed on WP m/s 

VeW East component of wind 
speed on WP m/s 

VdW East component of wind 
speed on WP m/s 

W Take-off weight kg
FL Flight level 100s ft

PrFL Probability associated to the 
flight level - 

M Mach number -

PrM Probability associated to the 
Mach number - 

Vg Speed with respect to the 
ground m/s 

ETime 
Time needed to cover the 
distance between two 
consecutive WPs (ETA) 

s 

4 METHODOLOGY 
DEVELOPMENT 

The development of the methodology, named P4T, 
was carried out in three phases: domain and data 
understanding, data preparation, and training of the 
models. 

4.1 Domain and Data Understanding 

The domain understanding included the fixing of the 
objectives of the data analysis goals and the 
assessment of the situation. In particular, it concerned 
the mapping from domain issues to data analysis 
problems. As a result, the domain objective in the P4T 
methodology, consisting in the prediction of the flight 
path, has been translated into a data analysis 
objective, which consists of a multiclass classification 
with respect to the flight plan prediction (both lateral 
and vertical), and of a regression, regarding the 
estimation of the time of arrival on the WPs of the 
flight plan. 

For the lateral and vertical flight plan, the problem 
to address can be stated as: predict which flight plan, 
among N possible ones, will be selected for the 
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execution of the flight. The input variables considered 
are: forecast and related uncertainties of weather 
conditions (temperature and wind speed components) 
at each WP of the flight plan and of take-off weight. 
The prediction of the time of arrival on the WPs 
(ETA) is a classical regression problem having as 
input variables the sequence of the WPs, the forecast 
of temperature and horizontal wind direction (east 
and north components) at each WP, and of take-off 
weight. The examination of the simulated data has 
showed that there is a one-to-one correspondence 
between the flight level and the optimal cruising 
Mach number of the aircraft, so that, once established 
the value of the flight level, the Mach is uniquely 
defined. This is perfectly reasonable in a first 
approximation, taking apart the possible variation due 
to the necessity to compensate for the effects of the 
wind speed along the route. So, temperature and take-
off weight contain all the information to predict the 
cruising airspeed. For this reason, in the regression 
model for the estimation of ETA, these variables are 
considered as input to the model and not the estimated 
cruising speed or flight level. 

4.2 Data Preparation 

Different strategies were used to construct the 
datasets needed in the modelling phase for lateral 
flight plan and flight level classifications and for the 
estimation of the time of arrival. 

Regarding the prediction of the lateral flight plan, 
separate datasets were built for each of the selected 
route and for each time frame before the estimated off 
block time (EOBT). Since it is assumed that the 
definition of the lateral flight plan and the choice of 
the cruise flight level may be taken as independent, 
different datasets for the prediction of these two target 
variables were built. Once fixed the route and the time 
frame, the simulated dataset provides for each flight, 
the alternative flight plans along with the related 
forecasted weather conditions, as well as the 
estimated take-off weight. The datasets for the 
prediction of the lateral flight plan contain vectors 
with the following structure: ൫𝑇(ଵ), 𝑉ே(ଵ), 𝑉ா(ଵ), 𝑉஽(ଵ), … , 𝑇(௅), 𝑉ே(௅), 𝑉ா(௅), 𝑉஽(௅)൯ (1)

where 𝐿 is the number of WPs in the flight plan. The 
components of these vectors are only the weather 
variables, i.e. the temperature 𝑇  and the three 
components of the wind speed along the three 
directions north 𝑉ே, east 𝑉ா, and down 𝑉஽.  

In order to consider the uncertainties, the value of 
the weather variables used to construct the input 
vectors for modelling is drawn from a gaussian 

distribution centred on the simulated value and with 
standard deviation σ=∆/3, where ∆ is the associated 
uncertainty. The choice of σ is made to have a 
gaussian ample enough to take all the interval of 
uncertainty of the weather variable, i.e. 6 σ=2 ∆. This 
sampling is repeated for a fixed number of times. 
Then, for the components of the vector (1), we have: 𝑇(௜)~𝒩(𝑇଴(௜), ∆𝑇(௜)/3) (2)𝑉௝(௜)~𝒩(𝑉଴௝(௜), ∆𝑉௝(௜)/3) (3)

where 𝑖 = 1, … , 𝐿 , 𝑗 = 𝑁, 𝐸, 𝐷 , and 𝑇଴(௜)  and 𝑉଴௝(௜)  are 
the values of T and Vj at WP i-th as provided by the 
available input data. The target variable for the training 
of the models is the label corresponding to the lateral 
flight plan used for the execution of the flight. 

The procedure used to construct the dataset for the 
prediction of the flight level is similar. The flight 
level is a characteristic of the flight, not of the single 
flight plan, and it is assumed that the choice of the 
flight level depends mainly on the take-off weight and 
on the mean temperature in the zone of flight. 

The dataset for the training of the models for the 
prediction of the flight level is made up of vectors 
with the following simple structure: (𝑇௠, 𝑊) (4) 

where 𝑇௠ is calculated by taking all the WPs of all the 
possible lateral flight plans, and 𝑊  is a value 
repeatedly drawn from a gaussian distribution centred 
on the value of the take-off weight, denoted as 𝑊଴, as 
provided by the input data and having 1/3 of the 
uncertainty  ∆𝑊 as standard deviation. Then, for the 
target variable, to each possible flight level is given 
as label an integer from 1 to the number of possible 
flight levels. The target variable for the training of the 
model is the label corresponding to the flight level 
used for the execution of the flight. 

The dataset for the regression problem of 
estimating the time of arrival on the WPs of the lateral 
flight plan was built starting from the data of the 
simulated flights, i.e. those referring to the day of 
flight (see Table 1). These variables refer to the flight 
plan used during the execution of the flight and carry 
no uncertainties. Therefore, a data-driven model of 
the aircraft dynamics was built by exploiting one 
dataset for each of the two routes considered. Each 
dataset contains rows with the following structure: (𝑑, 𝑏, 𝑇, 𝑉ே, 𝑉ா, 𝑊) (5)

where 𝑑  is the distance between two consecutive 
WPs of the same flight calculated along a loxodrome, 
b is the track angle between the two WPs, 𝑇, 𝑉ே and 
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𝑉ா are evaluated at the starting WP. The dependency 
on other estimated parameters, such as the flight level 
or the Mach number, is not introduced into the 
regression model since the temperature and the take-
off weight should contain enough information to let 
the model gain a knowledge about the cruise speed of 
the aircraft. The analysis focused on the cruising 
phase of the flight, leaving out the climbing from the 
departure airport to the cruising flight level and the 
descending phase to the arrival airport. 

The modelling datasets obtained with these 
procedures are split into training and test sets. The 
training sets are used for the construction and 
optimization of the predictive models, while the test 
sets are kept apart for the final evaluation of the 
performance of the models. 

4.3 Modeling 

In order to select the best model for the problem at 
hand, part of the available training dataset is used as 
a validation dataset useful for tuning the model’s 
hyperparameters. 

In the development of the methodology both 
holdout and a k-fold cross-validation (with k=10) 
have been used, obtaining very similar results, so in 
the following only the results for the cross validation 
are reported, separately for the prediction of the flight 
plan and the prediction of the ETAs. 

The three timeframes in which TP is carried out 
have been dealt with the same procedure and there 
were not special difficulties and limitations 
encountered during the training of the models. 

An information-gain based filter has been used to 
reduce the number of input variables to the most 
significant ones. Several different models were tested 
in the development of the methodology varying their 
specific hyperparameters: inductive decision trees 
with variable depth, random forests with variable 
number of decision trees, Bayesian Networks with 
different number of parent nodes and Neural 
Networks with variable number of units in the hidden 
layer. We found that the models showing the best 
performance in classification were inductive decision 
trees and random forests (Tan et al., 2019). Decision 
trees were used for both the route and for almost all 
the timeframes for the prediction of both the 
horizontal flight plan and the flight level with three 
exceptions, all regarding the prediction of the lateral 
flight plan: a random forest with 20 decision trees was 
used for the London-Malta route at Tf-5 and two 
random forests with 250 decision trees were used for 
both the routes one day before EOBT. In Table 2 and 
3 are reported the results obtained for the accuracy in 

the prediction of the lateral flight plan. The training 
datasets are substantially balanced, especially the one 
for the London-Malta route, while the one for the 
London-Athens route presents a slight imbalance in 
favour of the first lateral flight plan, as highlighted in 
Table 4. As can be seen from the tables, the ability of 
the models to make correct predictions for the long 
term, 15 days before take-off, is better than that of a 
classifier that assigns labels randomly. In this time 
frame, for the London-Athens route, the model tends 
to prefer the first plane of lateral flight, this could be 
a further sign of imbalance in the dataset. The results 
improve, however, rapidly as the temporal distance 
from EOBT decreases, a sign that the models have 
been able to effectively learn the information useful 
for the classification. 

Table 2: Results for horizontal flight plan prediction. 

Route Accuracy 
Tf-15 Tf-5 Tf-1 

London – Athens 38.5% 53.4% 99.9%
London – Malta 35.8% 81.2% 99.9%

Table 3: Results for flight level prediction. 

Route Accuracy 
Tf-15 Tf-5 Tf-1 

London – Athens 46.7% 69.9% 88.7%
London – Malta 44.2% 72.3% 90.3%

Table 4: Composition of the training dataset for horizontal 
flight plan prediction. 

Flight plan London – Athens London – Malta 
1 36.6% 32.2%
2 30.1% 33.0%
3 33.3% 34.8%

Table 5: Composition of the training dataset for flight level 
prediction. 

Flight level London – Athens London – Malta 
330 23.5% 25.0%
350 31.7% 29.6%
370 27.1% 27.7%
390 17.7% 17.7%

For the flight level, the training datasets show a 
more marked imbalance (see Table 5), once again 
lower in the case of the London-Malta route. The 
models perform better than the random classifier 
starting from 15 days before EOBT and the rate of 
correct classification increases steadily approaching 
the day of the flight. 

Using one-hot encoding the components of the 
output vectors are all positive numbers that sum to 1 
and thus may be interpreted as a probability 
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distribution over the possible lateral flight plans (flight 
levels) given the vector of inputs. The output of the 
model is the lateral flight plan or flight level to which 
corresponds the highest probability. Since the choice 
of the lateral flight plans and of the flight level are 
considered as independent, the product of these proba-
bilities gives the overall probability for the selection of 
a flight plan (lateral + vertical), that can be represented 
as a heat-map (Figure 1) or a bar plot graph (Figure 2). 

 
Figure 1: Heat-map representation of the joint probability. 

 
Figure 2: Bar plot representation of the joint probability. 

As said above, the dataset used for the prediction 
of the time of arrival was built starting from the data 
relative to the executed flight and carry no 
uncertainties. The datasets were almost balanced in 
terms of the flight plan used for the flights, for both 
the two selected routes (Table 6). 

Table 6: Composition of the training dataset for prediction 
of the time of arrival. 

Flight plan London – Athens London – Malta 
1 36.2% 32.0%
2 30.1% 33.0%
3 33.7% 35.0%

Table 7: Training results for prediction of the time of 
arrival. 

Route MSE (s2) MAE (s) 
London – Athens 10.5 1.8
London – Malta 4.8 1.4

Also, four different regression algorithms were 
tested, optimizing their respective hyperparameters 
against a validation dataset: decision trees with 

variable depths, random forests with different number 
of decision trees, AdaBoost regressors based on 
decision trees by varying the depth of the trees and 
the number of estimators, artificial Neural Networks 
with variable number of hidden layer units. The 
models giving the best performance for both the 
London-Athens route and the London-Malta route 
were two random forest regressor models with 150 
estimators, the MSE (Mean Squared Error) and MAE 
(Mean Absolute Error) are reported in Table 7. 

5 METHODOLOGY 
EVALUATION 

The evaluation of the performance of a model is of 
paramount importance to assess the real capability of 
the model to be used in a production environment. To 
this end part of the available data is to be kept apart 
in a test dataset not used in any step of the 
training/validation process. 

Table 8: Test results for the route London-Athens. 

Time 
before 
EOBT 

Horizontal 
flight plan 

Flight 
level 

Flight plan 
(horizontal + 

vertical) 
Tf-15 31% 48% 12% 
Tf-5 63% 67% 42% 
Tf-1 78% 88% 68% 

Table 9: Test results for the route London-Malta. 

Time 
before 
EOBT 

Horizontal 
flight plan 

Flight 
level 

Flight plan 
(horizontal + 

vertical) 
Tf-15 34% 48% 13% 
Tf-5 76% 66% 50% 
Tf-1 83% 89% 74% 

The test dataset for the evaluation of the models 
trained in the P4T methodology comprise 100 
randomly chosen flights for each of the selected 
routes, with data referring to 15 days, 5 days and 1 
day before the EOBT and to the day of execution of 
the flight. It is worth pointing out a major difference 
between the training/validation dataset and the test 
dataset. As described in the previous paragraph, the 
training dataset is built by sampling the input 
variables from certain distributions defined by their 
respective uncertainty, so from each simulated flight 
in the training set we get M different records 
corresponding to the same target flight plan. The 
dataset obtained by this procedure is then split 
randomly into a training and a validation dataset, 
these two sets are disjoint but it may be possible that 
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records referring to the same flight may be present in 
both sets. The test dataset, instead, is made up by all 
the records of all the flights taken apart for the 
evaluation of the models. Since the choice of the 
lateral flight plan and of the flight level are considered 
as independent, the prediction of the flight plan is a 
two steps process that can be performed in parallel. 
The M vectors obtained through the sampling 
procedure are used as input to the model for the 
prediction of the lateral flight plan to obtain M 
different predictions, the final output of the model is 
the one recurring most often (majority voting). For 
the prediction of the flight level there is a unique 
vector as input to the model and the output is the most 
probable flight level (one-hot encoding). 

The performance of the predictive models on the 
test dataset are presented in Table 8 for the route from 
London to Athens and in Table 9 for the route from 
London to Malta. It is worthy to note that a classifier 
that chooses the lateral flight plan and the flight level 
completely randomly should have an accuracy of 
about 8.33%, so even in the long-term case Tf-15 the 
accuracy in predicting the flight plan (horizontal and 
vertical) is still significantly better than a random 
classifier. These results confirm the overall good 
performance of the models, in particular the accuracy 
of the prediction increases remarkably as the time of 
the departure closes in and the forecast values of the 
input variables get closer to the values experienced 
during the execution of the flight and the 
corresponding uncertainties get smaller. 

A sequence of WPs is needed as input to test the 
performance of the regression model for estimating the 
arrival times. These WPs are provided by the model for 
the lateral flight plan prediction. The same flights used 
to test the models for the prediction of the flight plans 
were considered. To assess the performance of the 
regression model, the predicted and actual flight times 
were compared. But, since the predicted flight plan 
may differ from the actual flight plan, instead of 
comparing the arrival times on the individual WPs, the 
overall duration of the cruise phase was compared. 

In Figure 3 there are the histograms of the 
absolute values of the difference between the actual 
and the predicted duration of the cruise flight for the 
route from London to Malta for all the considered 
time frames before the EOBT. For this route, the 
cruise flight extends for 21 WPs with a duration that 
ranges from about 1.5 to about 2.5 hours. It is evident 
that the performance of the model gets better 
approaching the day of the flight. A similar pattern is 
obtained for the route London-Athens: approaching 
the EOBT the number of flights with a prediction 
error in the range 0-5 minutes increases steadily, with 

a corresponding reduction in the number of flights 
with high prediction errors. It is expected that the 
error in time prediction is related to the error in the 
prediction of the horizontal flight plan. In fact, to give 
an idea of the improving performance of the 
regression model when the horizontal flight plan is 
correctly predicted, Figure 4 shows the absolute value 
of the error limited only to the flights with a correct 
prediction of the lateral flight plan for the route 
London-Malta; similar results were obtained for the 
other route. For both the routes, the error doesn’t 
exceed 360 seconds (6 minutes), and the number of 
flights with a value of the error below 120 s increases 
remarkably approaching the day of the flight. 

Another view of the results is presented in Figure 
5, which includes three scatter plots for the London-
Malta route, one for each considered time frame, 
going from left to right, Tf-15, Tf-5 and Tf-1. The 
plots report the actual duration of the cruise phase of 
the flight on the x-axis and the predicted duration on 
the y-axis. Each point represents a flight with a color 
that depends on the correctness of the prediction of 
the 3D flight plan: violet both horizontal and vertical 
flight plan are correctly predicted, blue only the 
vertical flight plan prediction is correct, light blue 
only the horizontal flight plan prediction is correct, 
yellow both are incorrectly predicted. The nearer the 
point to the bisector, line in red, the lesser is the error 
in the prediction of the duration of the cruise flight. 
The figure confirms that if both lateral flight plan and 
flight level or if only lateral flight plan are correctly 
predicted then the error on the predicted duration is 
very low. Very similar results were obtained for the 
route from London to Athens. 

6 CONCLUSIONS AND FUTURE 
WORKS 

This paper presented a data driven methodology for 
trajectory prediction on long, medium and short 
terms, developed within the framework of the 
PIU4TP project. Its main peculiarity is the capability 
to manage the uncertainties that by nature affect the 
input data to the trajectory prediction process. 

The proposed approach was developed and tested 
using a simplified use case, based on simulated data. 
Specifically, only two factors that influence the 
selection of the optimal flight plan were considered, 
that is, weather conditions and take-off weight. Indeed, 
the objective is to demonstrate a proof of concept and 
to provide evidences of the proposed methodology 
applicability and potential benefits arising from its use. 
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Figure 3: London-Malta route, histograms of the absolute difference between actual and predicted duration, in minutes (m), 
of the cruise flight. 

 
Figure 4: London-Malta route, histograms of the absolute difference between actual and predicted duration, in seconds (s), of 
the cruise flight limited only to the flights with a correct prediction of the flight plan. 

 

Figure 5: London-Malta scatter-plots of the actual vs. the predicted duration of the cruise flight. 

The simulated data were produced within the 
framework of the PIU4TP project by defining suitable 
simulation models and exploiting the data found in 
the open access databases. Preliminary assessment of 
the methodology highlighted that it is able to catch 
the information that are available in the input data, 
including the related uncertainties, and to exploit 
them to reliably predict in advance the flown 
trajectory. The methodology’s output includes a 
complete spatial prediction of the flight plan 
(horizontal and vertical) enriched with an estimation 
of the time of flight (limited to the cruise phase of the 
flight). The probability of the prediction is provided, 
too. The accuracy of the prediction depends on the 
time in advance with which it is computed and 
increases sharply as the time approaches the day of 

the flight, reaching values around 70% one day before 
the EOBT. This behaviour is due to the weather 
forecasts improve and the uncertainties on the input 
data reduce as the EOBT approaches. When the three-
dimensional spatial flight plan is correctly predicted, 
the estimation of the duration of the cruise phase of 
the flight is very accurate, too, with a worst-case error 
less than 6 minutes also on long term prediction. 

Finally, the achieved percentage of correct 
predictions for the horizontal flight plan at Tf-1 (from 
78% to 83%) is in line with the ones presented in 
(Cordero et al., 2018), where the success rate of the 
predictions performed 8 hours before EOBT varies 
between 82% and 90%. It shall be considered that in 
the two works the predictions are performed at 
different time frames (24 hours versus 8 hours before 
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flight schedule) and that different scenarios are 
considered. 

In order to further mature the concept, future 
research shall focus on more complex use cases, 
which consider a wider set of input parameters, and 
analyze actual flight data. 
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