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Abstract: With the development of technology and building materials, the world is moving towards creating a better and 
safer environment. One of the main challenges for reinforced concrete structures is the capability to withstand 
the seismic loads produced by earthquake excitations, through using the fundamental period of the structure. 
However, it is well documented that the current design formulae fail to predict the natural frequency of the 
considered structures due to their inability to incorporate the soil-structure interaction and other features of the 
structures. This research work extends a dataset containing 475 modal analysis results developed through a 
previous research work. The extended dataset was then used to develop three predictive fundamental period 
formulae using a machine learning algorithm that utilizes a higher-order, nonlinear regression modelling 
framework. The predictive formulae were validated with 60 out-of-sample modal analysis results. The numerical 
findings concluded that the fundamental period formulae proposed in this study possess superior prediction 
ability, compared to all other international proposed formulae, for the under-studied types of buildings. 

1 INTRODUCTION 

The soil-structure interaction (SSI) phenomenon is a 
typical structural and geotechnical engineering issue, 
still open regarding its practical applications. Further 
investigation is required to develop simplified but 
reliable methods to account for such a phenomenon 
in routine structural analyses (Ceroni et al., 2012). In 
calculating the appropriate seismic loads, the 
fundamental period serves as one of the most critical 
dynamic characteristics. In the event of a seismic 
excitation, the interaction between the superstructure 
(building) and substructure (soil) becomes critical as 
it commences to alter the distribution of stresses and 
strains within the superstructure, which alters the 
expected results (Mourlas et al., 2019).  

It is well known that computing the fundamental 
mode of fixed-base structures through design code 
formulae has its challenges (Mourlas et al., 2019). 
Furthermore, some shortcomings exist in the stiffness 
distribution of the structure due to a lack of adequate 
consideration of the effects of shear walls, especially 
in the Eurocode 8 design code (Gravett et al., 2019). 

These considerations can cause a considerable 
amount of over or under designing of reinforced 
concrete (RC) structures, which can lead to 
inadequate designs liable to seismic conditions. Thus, 
it is crucial to establish a design tool that can 
successfully predict the dynamic properties of a 
variety of different RC structures.  

It is usually not in favour of safety to analyse the 
response of a fixed-base structure by neglecting the 
SSI effect. In some cases, codes provide seismic 
design provisions by reducing the base shear of the 
fixed-base structures. In others, they suggest 
performing advanced analysis to investigate the 
overall effect (Mourlas et al., 2020). As a result, there 
is a need for more accurate design expressions for RC 
structures that can accurately predict their 
fundamental period while accounting for SSI effects. 

When it comes to the SSI effect, the reaction of a 
building to a seismic event is evaluated in conjunction 
with the compressibility of its surrounding soil. The 
flexibility of the soil can impact its stress distribution 
and displacement profiles, which can be distinguished 
from standard fixed-base systems (Saadi, 2018, 
Markou et al., 2018).  
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A study conducted by Gravett et al. (2019) 
determined that the current design code formula 
assumes that all reinforced concrete structures have a 
fixed base, resulting in errors of up to 85% for 
international codes such as Eurocode 8. Upon further 
investigation, it was concluded that a RC structure's 
dynamic response could be significantly affected by 
SSI and stiffness redistribution when susceptible to 
seismic activity (Mourlas et al., 2019). See Table 1 
below for a few design code formulae found in the 
international literature. 

Table 1: International design codes in practice. 

Relevant Code Formulae 

NEAK (New Greek 
Antiseismic Code) 

𝑇ோ= 0.09 𝐻√𝐿 ඨ 𝐻𝐻 + 𝜌𝐿 

Old Cyprus Code 𝑇௬௨௦ = 𝑁10 

Eurocode 𝑇ா = 𝐶்𝐻.ହ 

In order to conduct this research report, the 
application of finite element modelling, using 
advanced modelling software, was utilised to 
construct models representing various RC structures. 
The finite element method (FEM) is frequently used 
in computing engineering, and mathematical models, 
the FEM allows for the numerical solution of 
differential equations.  

For this research project, the constructed FEM 
models were analysed using modal analysis to get 
results that would help the researcher identify and 
understand the dynamic response of the various RC 
structures. Eigen-value problems are common in 
engineering. The parameter calculates the 
fundamental periods of a structural system (Felippa, 
2004). The solution method used for this research 
project is called the subspace iteration algorithm 
(Bathe et al., 1980). The solution is ideally suited for 
large-scale structures. 

By utilising HYMOD (Markou et al., 2015), one 
can decrease the computational demands of the 
numerical model, allowing us to perform any type of 
analysis of various RC buildings at full-scale. With 
Reconan FEA (2020) software, analyses are 
performed to capture the complete nonlinear 
structural response, either with or without the SSI 
effect., while this was software used to perform the 
modal analyses. It must be noted here that the modal 
algorithm of Reconan FEA was validated through 
numerous experimental data.  

Based on the procedure described in Taljaard et 
al., 2021 and Gravett et al., 2021, developing a dataset 
through the use of 3D detailed modeling and then 
using machine learning (ML) algorithms to develop 
closed form solutions can be a very powerful tool in 
developing new fundamental period formulae. 
Therefore, the objective of this research work is to 
extend the initial dataset developed by Gravett at al., 
2021, and use the extended dataset in developing a 
more accurate fundamental period formula. 

2 MACHINE LEARNING  

This research work used the Julia ML framework. 
Similar to Python, this is an open-source, high-level 
language for dynamic programming. A mathematical 
model in ML is designed to develop generalised 
relationships between independent and dependent 
variables due to their nonlinear characteristic. As 
stated above, the focus of this research work is 
developing software generated data that is used to 
train ML algorithms to determine the fundamental 
period of RC structures. 

Table 2, shows the high-order nonlinear 
regression algorithm that was used in this research 
work to develop the improved formulae. This 
algorithm was adopted from Gravet et al., 2021. 

Table 2: Higher-Order Nonlinear Regression Algorithm 
(Gravett et al., 2021). 

Input: XX (matrix of Independent Variables), YY 
(Vector of Dependent Variable), nlf (number 
of nonlinear features to be kept in the model)

Output: Prediction Formulae 
1. Create all nonlinear features (anlf)
2. For i from 1 to nlf, do: 
3.      For j from 1 to anlf, do: 
4.           Add jth feature to the model
5.           Calculate Prediction Error, MAPEj

6.      END
 7.      Keep in the model the jth feature 

which yields the minimum 
prediction error 

 8. END 
Return: Prediction Formula 

3 NUMERICAL CAMPAIGN 

3.1 Database Development 

In order to construct the extended database that would 
consist of various RC structures, various geometrical 
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parameters of the initial model were modified. These 
parameters include the height of the structures, base 
conditions, stiffness distribution throughout the 
structure, and the plan area of the structure. Figures 1 
and 2 show different RC building models that were 
created for the needs of the dataset development. 

With all the models created and the parameters for 
each model determined, the eigenfrequencies were 
determined, and all the data were stored in an Excel 
spreadsheet. Table 3 summarises the minimum and 
maximum geometrical properties for the models that 
were adjusted in this research work. 

 
Figure 1: Different model geometries. 

 
Figure 2: Different model base conditions. 

Table 3: Minimum and maximum values of the newly 
obtained HYMOD meshes. 

Variables Minimum Maximum 
Soil Depth (m) 1 60 

Soil E (kPa) 65,000 700000 
H (m) 3 30 
L (m) 3.4 34.4 
B (m) 3.4 34.4 
ρ (%) 0 85.29

3.2 Modal Analyses 

For each of the numerical models, a modal analysis 
was performed to determine the eigenfrequencies of 
each model. For each model, only the two 
translational modes were used to construct the 
dataset. Translation oscillations along the global x- 
and y-axis directions.  

Figure 3 shows the effect of shear walls on the 
computed fundamental period of the under-study RC 
structures. It is evident that when shear walls are 

added to the RC buildings they significantly lower the 
fundamental period of the structure. Figure 4 shows 
the relationship of the period of a structure and how 
it is affected by the soil depth. It is easy to observe 
that the SSI effect reaches a plateau as the depth 
increases. 

 
Figure 3: Shear wall effect on fundamental period. 

 
Figure 4: Soil depth effect on the fundamental period. 

3.3 Proposed Fundamental Period 
Formulae 

The ML algorithm is designed to determine the 
number of features used within the design formulae. 
For this research work, a design formula with 3, 5, 
and 20 features were developed and parametrically 
investigated. It must be noted here that the total 
number of fundamental period results used in the 
dataset to train and test was 790. Each fundamental 
period formula is constructed through the use of the 
following variables: 

H the building's height (m) 
ρ the percentage shear walls (%) 
Es the soils' modulus of elasticity (kPa) 
L the length of building parallel to the 

oscillating direction (m) 
B the width of the building perpendicular to the 

oscillating direction (m) 
D the soil depth (m) 

0,1

0,3

0,5

0,7

0,9

1,1

5 15 25 35

Pe
rio

d 
[s

]

Structural Height [m]

No Shear Walls

Added Shear Walls

0,552

0,554

0,556

0,558

0,56

0,562

0 20 40 60 80

Pe
rio

d 
[s

]

Soil Depth [m]

Improved Predictive Fundamental Period Formula for Reinforced Concrete Structures through the Use of Machine Learning Algorithms

649



3.3.1 3-Feature Formula 

It should be noted that the three feature formulae do 
not consider any SSI parameters. However, this 
formula still yielded an absolute mean error of 3.43%. 
The relationship can be seen in Eq. 1. 𝑇 = ሺ0.0310197 ∙ 𝐻ሻ − ሺ0.00011254 ∙ 𝜌 ∙ 𝐻ሻ +ሺ0.0000129093 ∙ 𝐻 ∙ 𝐵ଶሻ + 0.0110165  (1)

 
Figure 5: 3-Feature formula prediction vs numerically 
predicted results. 

 
Figure 6: 5-Feature formula prediction vs numerically 
predicted results. 

3.3.2 5-Feature Formula 

Eq. 2 shows the 5-feature formula as it derived from 
the training and testing of the extended dataset. The 
absolute mean error for the 5-feature formula was 
calculated as 2.70%, which is more accurate 
compared to the 3-feature formula. This is attributed 
to the inclusion of additional parameters that affect 
the final predictions. 𝑇 = ሺ0.0296602 ∙ Hሻ − ሺ0.000154717 ∙ ρ ∙ Hሻ +ሺ0.0000210854 ∙ L ∙ B ∙ Hሻ + ሺ0.0000042983 ∙ 𝐻ଶ ∙ρሻ − ሺ0.00000785228 ∙ ρ ∙ B ∙ Hሻ + 0.0229  

(2)

 

3.3.3 20-Feature Formula 

Finally, the most accurate formula is presented in Eq. 
3. The absolute mean error of the 20-feature formula 
was calculated as 1.49%. It is evident that the use of 
SSI related parameters in this relationship, makes this 
formula the most accurate when used on the training 
and testing datasets. Fig. 7 shows the comparison 
between the predictions derived from the proposed 
formula and the numerical results. 𝑇 = ሺ0.0292939 ∙ Hሻ − ሺ0.000150825 ∙ ρ ∙ Hሻ +ሺ0.00000582242 ∙ H ∙ Bଶሻ + ሺ0.00000330369 ∙ ρ ∙𝐻ଶሻ + ሺ0.000215881 ∙ H ∙ Lሻ − ൫1.89375x10ିଵହ ∙𝐸௦ଶ ∙ D൯ + ሺ0.00000323855 ∙ L ∙ H ∙ Dሻ −ሺ0.00000646154 ∙ ρ ∙ B ∙ Hሻ −ሺ0.0000000000925478 ∙ 𝐻 ∙ 𝐸௦ ∙ 𝐷ሻ −ሺ0.0000000000406192 ∙ 𝜌 ∙ 𝐸௦ ∙ 𝐷ሻ + ሺ0.000000194394 ∙ 𝐷 ∙ 𝜌ଶሻ + ሺ0.0037148 ∙ 𝐵ሻ +ሺ0.000000358861 ∙ 𝜌 ∙ 𝐻 ∙ 𝐷ሻ + ሺ0.0000000000662381 ∙ 𝐸௦ ∙ 𝐷ଶሻ −ሺ0.000000278639 ∙ 𝐷ଷሻ −  ሺ0.000000000113737 ∙𝐿 ∙ 𝐸௦ ∙ 𝐷ሻ − ሺ0.0000016727 ∙ 𝐵ଷሻ +ሺ0.0000309934 ∙ 𝐿 ∙ 𝐷ሻ − ሺ0.00178654 ∙ 𝐿ሻ +ሺ0.000000645744 ∙ 𝐿ଷሻ + 0.00239996  

(3)

 
Figure 7: 20-Feature formula prediction vs numerically 
predicted results. 

4 VALIDATIONS OF RESULTS 

To further test the ability of the proposed formulae to 
predict the fundamental period of RC structures, a 
dataset was developed for validation purposes. For 
this reason, 60 out-of-sample building models were 
constructed and used to further validate the ability of 
the proposed formulae in predicting the fundamental 
period of RC buildings with and without SSI effects.  

From Figures 8 - 10 it is evident that comparing 
the proposed formulae manage to predict the out-of-
sample data with high accuracy. The most significant 
improvement was seen with the 3-feature proposed 
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formula that improved with 4.19% from the results 
obtained by Gravett et al., (2021). The 20-feature 
formula also had a significant improvement of 0.22%. 

 
Figure 8: Correlation of 3-feature formula on validation 
dataset. 

 
Figure 9: Correlation of 5-feature formula on validation 
dataset. 

5 CONCLUSIONS AND FUTURE 
WORK 

790 fundamental period results were used to train an 
ML algorithm and develop accurate design formulae 
to calculate the fundamental period of RC structures. 
The three proposed formulae were then tested with 
out-of-sample data comprising 60 new RC models 
constructed in a manner that foresaw the use of new  
parameters compared to the models used to train and 
test the formulae. This served as the validation phase 
in which the design formulae showcased a high 
degree of correlation, effectively proving their 
accuracy and extendibility.  

According to the numerical investigation, the 
most accurate proposed formula on train, test and 
validation data was the 20-feature, which was found 
to be improved compared to the one proposed by 
Gravett et al., 2021.  

 
Figure 10: Correlation of 20-feature formula on validation 
dataset 

Finally, this research work will foresee a further 
dataset extension and also take into account the infill 
walls of RC buildings. The asymmetry of buildings 
should also be investigated in the near future and how 
that affects the fundamental period of RC structures 
when the SSI effect is accounted for. 
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