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Abstract: The use of curved I-beams has been increasing throughout the years as the steel forming industry continues 
to advance. However, there are often design limitations on such structures due to the lack of recommendations 
and design code formulae for the estimation of the expected deflection of these structures. This is attributed 
to the lack of understanding of the behaviour of curved I-beams that exhibit extreme torsion and bending. 
Thus, currently, there are no formulae readily available for practising engineers to use to estimate the 
deflection of curved beams. Since the design of light steel structures is often governed by serviceability 
considerations, this paper aims to analyse the properties of curved steel I-beams and their impact on deflection 
as well as develop an accurate formula that will be able to predict the expected deflection of these beams. By 
using a combination of an experimentally validated finite element modelling approach and machine learning. 
Numerous formulae are developed and tested for the needs of this research work. The final proposed formula, 
which is the first of its kind, was found to have an average error of 4.11% in estimating the midspan deflection 
on the test dataset. 

1 INTRODUCTION 

A beam is a structural element that has been studied 
extensively for numerous years and is used widely, 
not only in the field of civil engineering but 
mechanical engineering as well. The use of curved 
steel I-beams have been increasing steadily 
throughout the years due to the aesthetically pleasing 
designs that they produce in buildings as well as for 
industrial applications. Horizontally curved steel I-
sections can be found in various applications ranging 
from girders in modern highway bridges, interchange 
facilities as well as in industrial buildings where they 
are used as crawl beams. Due to advancements in 
steel forming technology, almost any section can be 
curved with minimum limitations that relate to the 
beam’s section size or length. Numerous studies have 
been conducted in efforts to understand the behaviour 
of curved beams based on different materials as 
discussed in (Al-Hassaini, 1962), (McManus et al., 
1969), (Hsu et al., 1978, Mansur and Rangan, 1981), 
(Al-Hashimy and Eng, 2005), (Chavel, 2008) and 
(Lee et al., 2017). It is widely known that, unlike 

straight beams, horizontally curved beams subject to 
gravity loads experience a complex system of 
combined effects, namely, shear, flexure and torsion. 
This loading effect causes a complex structural 
response such as warping due to non-uniform torsion. 

The study of curved girders began with Umanskii 
(1948) who obtained solutions for curved beams 
based on several loading conditions by assuming 
initial parameters in the solution procedure (Liew et 
al., 1995). Numerous other studies and experiments 
have been conducted from the 1960s to the present 
day, however, these studies mainly focused on the 
ultimate limit states of the beam and not on the 
serviceability limit states. Those that did focus on 
serviceability limit states design, did not analyse the 
effect various parameters have on deflection, whereas 
those that did analyse the effect on deflection did not 
determine an appropriate formula without using 
Castigliano’s second theorem. Currently, most design 
codes (SANS, AISC, Eurocode 3, etc.) do not have a 
section detailing deflection estimation of curved steel 
I-beams. AISC however does state that the usage of 
finite element modelling (FEM) is appropriate when 
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deflection results are of importance (Dowsell, 2018). 
The issue arises when Engineers conduct a linear 
static analysis on the structure as a whole and check 
deflections in that manner. The issue with that 
approach is that curved beams experience large 
deflections, which leads to nonlinear strain-
displacement and curvature-slope relations, a 
phenomenon that necessitates accounting for 
geometric nonlinearities. Another approach would be 
to use Castigliano’s second theorem which is 
numerically tedious (Dahlberg, 2004). Nevertheless, 
researchers have attempted to provide a formula for 
deflection of curved steel I-beams based on 
Castigliano’s second theorem, however, this formula 
is often not readily available to practising engineers 
and is only applicable for specific support and loading 
conditions. 

This research work attempts to derive an easy to 
use formula to determine the midspan deflection of 
real cantilever types of curved steel I-beams with 
loads applied only at the midspan. A machine 
learning algorithm that uses nonlinear regression is 
implemented herein to create a closed-form equation 
based on midspan deflection results, a dataset 
developed through the use of Reconan FEA (2020) 
(Mourlas and Markou, 2020). Prior to the 
development of the models that were used to train the 
machine learning algorithm, the software was 
validated through the use of experimental results 
found in (Shanmugam et al., 1995). It should be noted 
herein that the final curved beam properties must be 
used because typically beams are curved through a 
cold process known as pyramid roll bending which 
alters the material properties of the steel (Dowsell, 
2018). After developing different formulae through 
training the machine learning algorithm on the 
developed dataset, an investigation on the prediction 
ability of each formula was performed. The factors 
considered for developing the formulae that foresaw 
different numbers of features, were: section area (A), 
curved length of the beam (L), the radius of the beam 
(R), yielding strength (fy), Young’s modulus (E). 

2 MACHINE LEARNING 
ALGORITHMS 

Machine learning has grown in popularity in recent 
years in numerous scientific fields, including civil 
engineering. The power of machine learning 
algorithms is that even though complex nonlinear 
models seem to present no correlation in small sample 
spaces, by considering a large enough sample a 

pattern emerges, which can then be exploited to 
generate a formula to predict out-of-sample data. 
Various machine learning and artificial intelligence 
methods are applied for engineering problems such as 
Random Forests, Gradient Boosting and Artificial 
Neural Networks, amongst others. The issue with 
such models is that their results often cannot be 
interpreted in practical cases unless integrated into 
some software. In this work, a higher-order nonlinear 
regression modelling framework was utilized 
(Gravett et al., 2021) due to its ability to provide an 
explicit closed-form formula. The model is based on 
the creation of nonlinear terms based on the 
independent variables up to the third degree. The 
algorithm automatically selects the nonlinear features 
which would correspond to the minimum error. The 
algorithm found in Table 1 represents the procedure 
that would lead to the development of the desired 
formula: 

Table 1: Higher-Order Nonlinear Regression Algorithm 
(Gravett et al., 2021). 

Input: XX (matrix of Independent Variables), YY 
(Vector of Dependent Variable), nlf (number 
of nonlinear features to be kept in the model)

Output: Prediction Formulae 
1. Create all nonlinear features (anlf)
2. For i from 1 to nlf, do: 
3.      For j from 1 to anlf, do: 
4.           Add jth feature to the model
5.           Calculate Prediction Error, MAPEj

6.      END
 7.    Keep in the model the jth feature 

which yields the minimum 
prediction error 

 8. END 
Return: Prediction Formula 

3 NUMERICAL CAMPAIGN 

This section presents the procedure adopted to 
generate the dataset that will be presented thereafter. 
Initially, a mesh sensitivity analysis was performed to 
determine the optimum mesh size, where the ability 
of Reconan FEA (2020) to calculate the mechanical 
response of these types of beams is investigated. 
Then, beams with varying geometrical and material 
properties were developed and analysed for 
constructing the dataset that was used to train the 
machine-learning algorithm presented in the previous 
section. Finally, the predictive models that were 
developed as closed-form formulae, were 
parametrically tested on additional data to determine 
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their ability to predict the deformation at the midspan 
of the curved steel I-beams.  

3.1 Mesh Sensitivity and Validation 
Analysis 

A mesh sensitivity analysis was conducted to 
determine a mesh size that derives the optimal results 
of an experiment found in Shanmugam et al. (1995). 
It was decided to compare 8 noded and 20 noded 
hexahedral elements with element sizes of 20, 30, 50, 
and 100 mm hexahedral element sizes for this 
investigation. The developed models can be seen in 
Figure 1. The numerically obtained curves were 
compared with the experimental curve found in 
Shanmugam et al. (1995).  

Figure 2 shows the experimental setup of the 
beam tested by Shanmugam et al. (1995) and 
investigated numerically herein. As it can be seen, the 
curved length of the beam (L) is 5 m, the point of load 
application (L1) 3.8 m from the left support and the 
radius (R) is 20 m. 

 
Figure 1: Mesh sensitivity analysis models with mesh sizes, 
(i) 20mm, (ii) 30mm, (iii) 50mm, (iv) 100mm. 

 
Figure 2: Experimental setup (Shanmugam et al., 1995). 

Nonlinear analyses were performed using Reconan 
FEA (2020) that foresaw 100 load increments and an 
energy convergence tolerance of 10-5. It is important 
to note that only material nonlinearities were 
accounted for in the developed models through 
adopting the von Mises yielding criterion. The final 
results of the mesh sensitivity analysis can be seen in 
Figure 3 and Table 2. It is easy to depict that most 
beams managed to come close to the ultimate load as 
found in the experimental data, however, the beams 
with the coarse mesh failed to accurately model the 
ductility of the steel and in general reproduce the 
overall mechanical response of the curved beam. 

 
Figure 3: Graphically comparing load-deflection results of 
various mesh sizes against experimental data. 

Table 2: Numerical comparison of the various mesh sizes 
against experimental data. 

 
The 50 mm, 20-noded isoparametric hexahedral 

finite elements derived the best results with a 1.5% 
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8 noded with 0.1m elements
20 noded with 0.1m elements
8 noded with 0.05m elements
20 noded with 0.05m elements
8 noded with 0.03m elements
20 noded with 0.03m elements
8 noded with 0.02m elements
20 noded with 0.02m elements
Experimental data

Model Pexp/PNL Δexp/ΔNL

Analysis 
time 
(hh:mm:ss)

8 noded with 0.1m elements 1.376 8.588 00:21.9
20 noded with 0.1m elements 1.108 3.049 01:22.6
8 noded with 0.05m elements 1.813 5.040 01:04.5
20 noded with 0.05m elements 0.985 1.199 05:16.3
8 noded with 0.03m elements 0.950 1.288 06:17.0
20 noded with 0.03m elements 1.425 2.371 15:12.3
8 noded with 0.02m elements 0.985 1.218 16:20.9
20 noded with 0.02m elements 1.662 2.874 03:06:05
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error in predicting the ultimate failure load, less than 
20% error for capturing the max deflection at failure 
and 6.33% error in estimating deflection at 50% of the 
total load. It is evident that this experiment did not 
develop any local or global buckling prior to ultimate 
failure, thus the nonlinear detailed model was able to 
capture the overall mechanical response with 
acceptable accuracy. 

3.2 Finite Element Models 

Figure 4 shows the 20-noded hexahedral mesh of one 
of the beams that were analysed in this paper for 
different material properties, while other beams were 
developed with different geometric properties. It was 
chosen to place a fixed support on the left side of the 
beam and a roller support on the right side of the beam 
which closely represents the boundary conditions as 
experienced by crawl beams in industrial buildings. 
The load was placed at the centre span of the beam 
and were divided into 100 load increments to 
accurately determine the midspan deflection. The 
loads were placed on the web of the member to avoid 
local failure of the flange. 

Numerous beams were created to make sure the 
formula encompasses a large variety of parameters. 
The parameters considered in this study included the 
curved length of the beam (L), the radius of the curve 
(R), the Young’s modulus of steel (E), and the section 
sizes. It is also noted that specific combinations of 
these input parameters are of significance in 
analysing curved beams, specifically, the R/L ratio 
which is an indication of the amount of curvature a 
beam experiences. This shall be considered in the 
sensitivity analysis later but will lead to 
complications when developing the formula. A total 
of 270 beams were initially created, where, 3 I-beam 
sections were considered, namely a 305x165x46UB, 
533x210x82UB and a 203x133x25UB. These beam 
sections represent the extreme ends of I-beam 
sections that are commercially available in South 
Africa as well as an intermediate beam size. All 
beams were analysed until failure, where the ultimate 
load was recorded. Various points along the elastic 
load-deflection diagrams were considered which lead 
to a total number of 1890 unique data points to train 
the machine learning algorithm. To ensure that the 
points were on the elastic region, the points that were 
selected foresaw a maximum of 50% load level of the 
maximum load level as computed from the analysis. 

A statistical summary of the various properties 
can be seen in Table 3. Where A is the section area in 
mm2 and Ixx is the second moment of area of the cross-
section about the x-axis in mm4. A large number of 

radii were considered as this was hypothesised to be 
the parameter to have a significant impact on the 
deflection. 

 
Figure 4: General beam undeformed mesh. 

Table 3: Statistical summary of independent variables. 

Metric 
Ixx 

(mm4) 
A 

(mm2) 
L 

(m) 
R  

(m) 
E 

(GPa) 

mean 2.02x108 6.58x103 5.02 58.99 205.10

std 1.99 x108 3.02x103 1.64 47.55 8.38

median 9.93 x107 5.88x103 5.00 60.00 205.10

min 2.35 x107 3.22x103 3.00 3.50 194.85

max 4.75 x108 1.05x104 7 140.00 215.36

 
Figure 5: General beam deformed shape and Von Mises 
stress contour. 

4 RESULTS AND VALIDATION 

Figure 5 shows the general deflected shape that the 
beam experienced as well as the von Mises stresses 
developed throughout the beam at 50% of the 
ultimate load. It is easy to observe that torsion 
dominates the beam while controlling the type of 
failure. This was expected due to the eccentricity of 
the load and shows that the mechanical behaviour of 
the beam is as expected. The maximum stress 
experienced was close to the pin-like support, where 
the failure occurred at the bottom flange of the section 
due to excessive stresses. This was a mechanical 
response that was noted in all understudy curved steel 
I-beams. The beams that had a low R/L ratio (beams 
with lower curvature) failed close to the pin-like  
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Figure 6: Correlation between numerically determined deflection and (i) 40 term, (ii) 25 term, (iii) 20 term, (iv) 15 term, (v) 
13 term, (vi) 10 term, (vii) 7 term and (viii) 5 term formulae. 

support, while failure occurred at the web and not 
within the flange. It should, however, be noted that 
failure analysis was not the subject of this research 
work but rather, the deflection experienced during the 
loading within the elastic region, which is what 
interests Civil Engineering designers. 

Once the models were analysed, a numerical 
database was created that contained the parameters of 
each beam and the respective midspan deflections 
(one row per deflection point). This numerical 
database was then used to train the machine learning 
algorithm, which was able to provide formulae as 
well as other descriptive statistics about the training 
and testing process (sensitivity analysis that will be 
presented in an extended version of this manuscript). 

When generating the formulae, as was seen in the 
machine learning section of this manuscript, the beam 
features are considered as input parameters. A range of 
5 to 40 features were considered when training the 
formulae and the various results were compared to 
determine the most accurate formula in terms of 
predictability. Figure 6 shows the graphs comparing 
the generated formulae to the numerically computed 
deflection. As can be seen, there is a strong correlation 
between the numerically determined deflections and 
the deflections predicted by the various formulae. 

In order to quantify the accuracy of the proposed 
formula on the training and test set, several error 
metrics were used, namely, the correlation coefficient 
(r2), alpha metric (α), the root mean square error 
(RMSE), the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), the max absolute 

percentage error (MAXPE), and the quotient error 
(SR). 

It was seen that as the number of features 
decreases, the error increases, a numerical response 
that is in line with the finding reported by Gravett et 
al. (2021). Some error metrics, such as the r2, barely 
change as the number of features changes (the r2 error 
was seen to be approximately 0.95 regardless of the 
number of features), however, other metrics such as 
MAXPE change drastically as the number of features 
increase (MAXPE ranged from 1.9607 when 5 
features were used to 0.7850 when 40 features were 
used). This shows the importance of considering 
numerous error metrics in determining the optimum 
formula that will show advanced predictive 
capabilities. It must be noted here that the dataset was 
divided into 85% and 15%, training and testing data, 
respectively. 

4.1 Validation 

After training and testing the numerous formulae that 
were discussed in the previous section, the proposed 
formulae were then further validated by creating an 
out of sample model and estimating the midspan 
deflection. The beam considered was a 305x127x42 
UB with a curved length of 5 m and a radius of 20 m. 
The Young’s modulus of the beam was also varied 
(205.1 GPa, 200 GPa and 210 GPa). Various ultimate 
load percentages were also considered in this 
validation process, where a total of 15 new data points 
were developed for the needs of this investigation. It 
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was found that the function that consisted of 10 
features derived the lowest average error, of only 
4.11% in estimating the deflection of 15 out-of-
sample data points, while the model with 40 features 
resulted in the largest error of 13.05%. This is a 
numerical phenomenon that is usually attributed to 
overfitting during the training and testing procedure. 

The proposed formula used to estimate the 
deflections that consisted of 10 terms can be seen in 
Equation 1. The various independent variables are E 
which is the Young’s modulus in GPa, L is the curved 
length of the beam in metres, A is the section area in 
mm2, fy is the yielding stress, Ixx is the second moment 
of area about the strong axis in mm4 and Q is the 
percentage of ultimate loading applied on the beam as 
a number (50% = 50). The resulting deflection from 
the formula is in mm. 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 1.08128 ∗ 10ିଵ ∗ 𝑄 ∗ 𝐿 − 8.41124∗ 10ି଴଺ ∗ 𝑄 ∗ 𝐿 ∗ 𝐴 − 9.81969∗ 10ି଴଺ ∗ 𝑄 ∗ 𝐸 ∗ 𝑅 + 1.82604∗ 10ି଴ହ ∗ 𝑄 ∗ 𝑅 ∗ 𝑅 − 2.71029∗ 10ି଴ସ ∗ 𝑄 ∗ 𝑅 ∗ 𝐿 + 6.22991∗ 10ି଴ଷ ∗ 𝑄 ∗ 𝐿 ∗ 𝐿 + 2.55963∗ 10ିଵଵ ∗ 𝑄 ∗ 𝐿 ∗ 𝐼𝑥𝑥 + 2.99150∗ 10ି଴଺ ∗ 𝑄 ∗ 𝑄 ∗ 𝑓𝑦 + 4.19580∗ 10ି଴଻ ∗ 𝑄 ∗ 𝑓𝑦 ∗ 𝑓𝑦 − 1.07754∗ 10ି଴ସ ∗ 𝑄 ∗ 𝐸 ∗ 𝐿 − 8.95792∗ 10ି଴ଶ 

(1)

5 CONCLUSIONS 

A formula was successfully developed for the 
prediction of the deflection of curved steel I-beams. 
When comparing the proposed formula with the out-
of-sample data, it was found that the formula 
containing 10 features was the most accurate, having 
an average error of 4.11%, while the formula with 40 
features was the least accurate having an error of 
13.05%. The lack of accuracy in the 40 feature 
equation was attributed to an over-fitting 
phenomenon but can also be attributed to another 
phenomenon known as the “interaction effect”, which 
can greatly increase the effect of the independent 
variables on the dependent variable.  

Based on the parametric and sensitivity 
investigation, it was concluded that the variables with 
the largest impact on deflection are the curved length 
and radius of the beams. Due to the page limitations 
of this manuscript, the results of the in-depth 
sensitivity analysis could not be shared, however, 
these will be published at a later stage. Even though 
the results of this study are positive seeing as very low 
error metrics were observed, the study has to be 
expanded in the future by developing additional 

models with a larger spectrum in terms of geometries. 
Various boundary conditions, as well as different 
yield strengths of steel, will also be considered. 
Experimental curved steel I-beams will also be tested 
to validate the proposed formula developed in this 
study. Future research work will foresee the 
development of similar formulae on curved concrete 
beams. Finally, the long-run objective is to develop 
machine learning models that will be able to evaluate 
the response of full scale-structures 
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