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Abstract: Reliably classifying huge amounts of textual data is a primary objective of many machine learning applica-
tions. However, state-of-the-art text classifiers require extensive computational resources, which limit their
applicability in real-world scenarios. In order to improve the application of lightweight classifiers on edge
devices, e.g. personal work stations, we adapt the Human-in-the-Loop paradigm to improve the accuracy
of classifiers without re-training by manually validating and correcting parts of the classification outcome.
This paper performs a series of experiments to empirically assess the performance of the uncertainty-based
Human-in-the-Loop classification of nine lightweight machine learning classifiers on four real-world classifi-
cation tasks using pre-trained SBERT encodings as text features. Since time efficiency is crucial for interactive
machine learning pipelines, we further compare the training and inference time to enable rapid interactions.
Our results indicate that lightweight classifiers with a human in the loop can reach strong accuracies, e.g.
improving a classifier’s F1-Score from 90.19 to 97% when 22.62% of a dataset is classified manually. In
addition, we show that SBERT based classifiers are time efficient and can be re-trained in < 4 seconds using
a Logistic Regression model.

1 INTRODUCTION

Maximizing the accuracy of automatic classifiers is
a key goal of machine learning (LeCun et al., 2015).
State-of-the-art text classifiers reach remarkable ac-
curacy across many domains (Devlin et al., 2018;
Sachan et al., 2019; Yang et al., 2019). Especially,
transformer based classifiers such as BERT (Devlin
et al., 2018) or XLNet (Yang et al., 2019) have
demonstrated to be the best performing approaches in
many text classification tasks. However, such strong
classifiers are usually highly complex and consist
of millions of parameters limiting their applicability
on weak computational infrastructure, i.e. edge de-
vices. The increasing energy consumption of state-of-
the-art classifiers also creates environmental concerns
(Strubell et al., 2019; Schwartz et al., 2020). If such
strong models are not applicable, practitioners are ex-
cluded from their application and have to switch to
less resource-intensive models that come at the cost
of less reliable outcomes. Corazza et al. (Corazza
et al., 2020) for example report a F1-Score of 82%
for detecting hate speech in online forums using a
traditional Word-Embedding-based classifier, which
might not satisfy the demand of forum providers.

The need for reliable and trustful classifiers has
recently risen in attention (Kendall and Gal, 2017;
Holzinger, 2016; Sacha et al., 2015). Human-in-
the-Loop machine learning (Holzinger, 2016) aims to
overcome the obstacles of pure automatic classifiers
by involving domain experts into the machine learn-
ing loop. Letting experts’ correct classification out-
comes during their daily work, e.g. Journalist-in-the-
Loop (Karmakharm et al., 2019), is a promising way
to increase the accuracy of classification outcomes
without re-training (Pavlopoulos et al., 2017). In par-
ticular, uncertainty-based approaches have shown to
be capable of detecting highly unreliable outcomes
which are worth checking manually (He et al., 2020;
Hendrycks and Gimpel, 2016).

The success of Human-in-the-Loop classification
approaches do not only depend on a model’s ini-
tial performance (e.g. F1-Score). An uncertainty-
based semi-automated text classification approach re-
quires accurate uncertainty estimations able to in-
dicate misclassifications. Estimating reliable uncer-
tainty scores in classification models is difficult, es-
pecially using Neural Networks (Hernández-Lobato
and Adams, 2015). The question arises whether sim-
pler models provide more accurate uncertainty esti-
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mations, which lead to higher F1-Scores when a cer-
tain number of the most uncertain instances are de-
cided by a human rather than an automatic classifier.
Furthermore, Human-in-the-Loop machine learning
pipelines require rapid interaction cycles to e.g. re-
train the model from time to time when additional
human feedback is available (Amershi et al., 2014).
Since the applicability of strong classifiers, i.e. BERT,
is very limited on time dependent tasks and on weak
computational infrastructure, we aim for a time effi-
cient use of computational resources to enable rapid
Human-in-the-Loop interactions. Especially, as clas-
sifiers benefit from being frequently re-trained when
additional labeled data-instances are available (Arnt
and Zilberstein, 2003; Haering et al., 2021).

In this paper, we empirically examine the quality
of predicted probabilities and the macro F1-Score of
nine commonly used and lightweight machine learn-
ing text classification models when a certain amount
of the data is decided by humans instead of a ma-
chine. We perform several experiments on four pub-
licly available benchmark datasets in the domain of
text classification. As feature representations, we
use semantic meaningful SBERT encodings (Reimers
and Gurevych, 2019), which have shown to be ef-
ficiently computable while outperforming other re-
cent pre-trained language models such as the Univer-
sal Sentence Encoder (Cer et al., 2018) or averaged
GloVe embeddings (Pennington et al., 2014). To en-
sure rapid interaction cycles, we additionally compare
the time needed to perform training and inference on
a weak computational infrastructure. We focus on the
following research questions:

• RQ1: How accurate do different lightweight clas-
sifiers estimate predicted probabilities?

• RQ2: Which lightweight classifier can capture
the highest proportion of misclassifications via
uncertainty-sampling, which after removal leads
to the highest macro F1-Score?

• RQ3: How much of the most uncertain classifi-
cation outcomes have to be manually annotated to
reach a certain level of macro F1-Score?

• RQ4: How efficient are different classifiers re-
garding their training and inference time?

The remainder of the paper is structured as fol-
lows. Section 2 outlines the task of classification and
its extension to the Human-in-the-Loop paradigm.
Further, several classification models and techniques
to estimate the uncertainty of individual classifica-
tions are described. In Section 3 we outline our re-
search design and Section 4 reports our experimental
results. Section 5 discusses our findings and Section

6 states related work. Finally, in Section 7 we draw
our conclusions.

2 SEMI-AUTOMATIC TEXT
CLASSIFICATION

We first outline the task of text classification (Ras-
mussen and Williams, 2006) and afterwards introduce
the uncertainty-based semi-automatic classification of
text.

The objective of classification is to predict class
labels y ∈ Y ⊂ N for new data instances x ∈ X ⊂ Rn

e.g. text encodings, which are related according to
an unknown conditional class probability p(y = c|x).
Classification models aim to learn a function of the
form f : X → Y or f : X → p(Y |X) from a set of
labeled training examples D ⊂ X ×Y . Given an in-
stance x, a probability based model f reports the label
which receives the highest conditional class probabil-
ity y∗ = f (x) = argmaxc p(y = c|x) over all classes c.
Since not all classifiers are able to report probabili-
ties, fractions of majority votes or scaling techniques
are carried out to transform classification outcomes,
e.g. distance functions, into probability distributions
(Platt et al., 1999).

A common method to assess the uncertainty of
classifiers is by calculating Shannon’s Entropy (Shan-
non, 2001) of the conditional class probabilities, that
is:

H(x) =−∑
c

P(y = c|x) log2 P(y = c|x) (1)

Shannon’s Entropy estimates uncertainty as a lack
of confidence in all class outcomes. The most uncer-
tain instance u can be identified as u = argmaxx H(x).
A prediction f (x) maximizes H(x) when all class out-
comes are equally certain, e.g. p(0|x) = p(1|x) = 0.5
in a binary classification task and minimizes H(x)
when either p(0|x) or p(1|x) are equal to 1. Sampling
a subset of the most uncertain data instances is com-
monly referred as uncertainty sampling (Lewis and
Gale, 1994).

Manually annotating text is a typical labeling task,
where humans are asked to manually infer labels for
some data instances. Since manual labeling is cost
intensive and time-consuming, it makes sense to let
humans only observe instances where a model pro-
vides unreliable and probable wrong outcomes. Hu-
man efforts should be focused on the most uncertain
predictions to maximize the efficiency of their partic-
ipation (Hendrycks and Gimpel, 2016). Especially,
since uncertainty inherent in data instances cannot be
explained by classifiers causing unreliable model be-
haviour (Kendall and Gal, 2017). In order to spend
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human efforts most rewarding and efficient, a classi-
fier has to provide a decent ranking of misclassifica-
tions in regard to the reported uncertainty scores.

2.1 Machine Learning Classifiers

Several classification approaches are successfully
used to classify text documents (Lai and Tsai, 2004;
Liu and Chen, 2017; Stanik et al., 2019). However,
previous work mostly focuses on pure automatic ap-
proaches and does not cover the objective of semi-
automated classification. It remains unclear which
model is most efficient when humans are involved in
the classification process while saving time and com-
putational costs. In our experiments, we consider the
following lightweight machine learning models for
classification (Bishop, 2006; Hastie et al., 2009) and
outline how to obtain conditional class probabilities
for the assessment of uncertainties.

These are: (1) a Decision Tree (DT) which esti-
mates its conditional class probabilities by reporting
pre-calculated fractions of correct class outcomes of
each leaf node during training (Neville et al., 2003).
(2) A Random Forest (RF) which reports conditional
class probability as the fraction of trees voting for a
certain class outcome. Further, we consider (3) a k-
Nearest Neighbour (kNN) classifier where new doc-
uments are classified according to the k most sim-
ilar documents of the training dataset. A majority
vote is carried out to determine the final class out-
come. Analogously to a Random Forest, we consider
the fraction of votes as the conditional class probabil-
ity. Naive Bayes classifiers are a family of conditional
probability models which use Bayes rule to infer con-
ditional class probabilities. Since SBERT encodings
consist of continuous and also negative attributes, we
apply (4) Gaussian Native Bayes (GNB), a variation
which makes the assumption that attributes of the fea-
ture vector are distributed according to a normal dis-
tribution. (5) A Support Vector Machine (SVM)
classifies data by searching an optimal linear hyper-
plane which separates features with a maximal mar-
gin. The classification rule is based on which side of
the hyperplane a data point occurs. In this paper, we
apply Platt scaling (Platt et al., 1999) to obtain condi-
tional probabilities from SVM outcomes. (6) Logistic
Regression (LR) is a commonly used classifier which
is capable of additionally predicting conditional class
probabilities. A Logistic Regression model uses a sig-
moid function to squeeze the output of a linear pre-
dictor function between 0 and 1 to represent class
probabilities. (7) A Multilayer Perceptron (MLP)
is a Neural Network-based classifier consisting of lay-
ers of interconnected computational units performing

summation and thresholding. Similar to Logistic Re-
gression, the class activation scores are normalized to
obtain pseudo class probabilities.

Further, we consider a Bayesian approach to en-
able rich uncertainty interpretations (Gal and Ghahra-
mani, 2016; Siddhant and Lipton, 2018). A Bayesian
classifier replaces the models’ weights ω with distri-
butions, i.e. a Gaussian prior ω ∼ N(0,1). Since
the posterior probability p(ω|X ,Y ) cannot be eval-
uated analytically, several approximation techniques
are used in practise (Blundell et al., 2015; Gal and
Ghahramani, 2016). Sample-based approximations
aim to fit the posterior p(ω|X ,Y ) with a simple to
compute distribution q∗(ω). The conditional class
probability can then be approximated by averaging T
Monte Carlo samples over possible weights. In this
paper, we consider (8) a Bayesian variation of the
Multilayer Perceptron (B-MLP). Bayesian models
are of particular interest since they also capture uncer-
tainty inherent in the models parameters (Kendall and
Gal, 2017), while conventional deterministic classi-
fiers do only assess uncertainties inherent in the data.
A holistic uncertainty assessment of Bayesian classi-
fiers can be carried out by calculating Shannon’s En-
tropy (Eq. 1) on the mean conditional class proba-
bilities obtained by averaging the results of multiple
model runs.

3 BENCHMARK DESIGN

To answer our research questions, we first assess the
quality of predicted probabilities provided by the clas-
sifiers outlined in Section 2.1. We measure the Brier
score (Brier et al., 1950) of each classifier applied
to each dataset. The Brier score is a proper scoring
rule to measure the accuracy of predicted probabili-
ties. It is calculated as the squared error of the pre-
dicted probabilities and true class outcomes, that is:

BS = |Y |−1
∑
y∈Y

∑
c∈C

(
p(y = c|x)− I(ŷ = c)

)2 (2)

where I(ŷ = c) = 1 if the true class of x represented
by ŷ is equal to c else 0. The lower the Brier score
the better are the conditional class probabilities cal-
ibrated. Calibrated class probabilities are desired to
reliably assess the true probability of predictions lead-
ing to more accurate quantification of predictive un-
certainties. Second, we compare the macro F1-Score
of these classifiers when a certain amount of the most
uncertain data instances, in our case 0, 10, 20, and
30%, are removed from the test dataset. We use the
macro-average since some used datasets are highly
imbalanced and we aim to treat all classes equally
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important. Third, we estimate the amount of man-
ual effort a human has to spend, i.e. by correcting
classifier outcomes, in order to reach a specific target
macro F1-Score. We measure human efforts in terms
of instances a human has to decide manually. In our
experiments, we simulate human annotations by se-
lecting the ground truth label for each annotation re-
quest, a common approach when evaluating interac-
tive machine learning approaches (Siddhant and Lip-
ton, 2018). Since human annotations are known to be
noisy, we simulate three different human noise levels.
We assign a randomly selected class label with a prob-
ability of 0, 5, or 10% respectively to each annotation
request instead of the ground truth label. The macro
F1-Score of a combined human-automatic classifier
is calculated based on the unified sets of manually
corrected and automatically inferred labels. Fourth,
we measure the training and inference time to assess
the computational efficiency of different text classi-
fiers. All experiments are run on an Intel® Xeon®

Gold 5115 CPU @ 2.40GHz using 1 core and 4 GB of
memory. All reported measurements are the mean of
five stratified cross fold data sets with a 50% training-
test split. In the following, we use the shortened term
”F1-Score” to refer to the macro F1-Score.

3.1 Datasets

We consider four different publicly available real-
world datasets covering heterogeneous classification
tasks in our experiments. Key statistics of the datasets
are summarized in Table 1.

Table 1: Statistics of the datasets including size, number of
classes and its distribution as well as the mean number and
standard deviation of words per text instance.

Dataset Size |C| Class Distribution #Words (µ±σ)
IMDB 50000 2 25000:25000 234±173
App Store 5752 3 3472:1286:994 24±29

Reuters 8614 8 3930:2319:527:499:
458:425:290:166 117±129

Hate Speech 24783 2 19190:5593 15±7

First, we use the IMDB dataset (Maas et al.,
2011), a commonly used benchmark for sentiment
analysis. The dataset consists of highly polarized
film reviews, which are either labeled as positive or
negative. Second, we consider a corpus of app re-
views from the domain of participatory requirements
engineering. The App Store dataset (Maalej et al.,
2016) contains user reviews, which are manually la-
beled as feature request, bug report or praise. Third,
we take a dataset collected from the Reuters financial
newswire service (Lewis et al., 2004). Documents are
labeled regarding their topic. In our experiments, we
use a subset of the 8 most frequent topics with unam-

biguous labels. Lastly, we consider the Hate Speech
dataset (Davidson et al., 2017) which comes with the
task of identifying toxic tweets (hate speech or offen-
sive language). For each dataset, we apply a stratified
split of 50% for training and the remaining for testing.

3.2 Document Features

Text documents consist of sequences of characters
and have to be transformed to a vector space before
passing them to machine learning models. As the fea-
ture representation for text documents, we consider
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) encodings. SBERT is a modification of the pre-
trained Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) model and
provides semantically meaningful encodings for unla-
beled text documents without the need of domain spe-
cific pre-training and fine-tuning. Studies show that
SBERT encodings outperform out-of-the-box BERT
encoding in several text classification tasks (Reimers
and Gurevych, 2019). Furthermore, SBERT encod-
ings are resource efficient to compute.

SBERT, like other BERT variations, encodes a
document d as an n-dimensional vector of continuous
attributes x = (ai, ...,an). We employ the pre-trained
bert-base-nli-mean-tokens1 model, which computes
encodings of length n = 768. Since BERT uses sub-
word tokenization, BERT encodings are limited to
512 tokens, which are around 300 to 400 words.
Therefore, we use the mean SBERT encoding of each
individual sentence for the IMDB dataset to avoid
truncation. In a preliminary investigation, we found
that mean SBERT encodings have a positive effect
only on the F1-Score of the IMDB classifiers.

3.3 Classifier Implementations

For the majority of classifiers, we rely on the default
implementation provided by the Scikit-learn library2

since these are commonly used for machine learning
experiments. For the Random Forest classifier, we
use T = 100 Decision Trees and set k = 25 for the
kNN classifier. The structure of the MLP takes the
shape [768, 500, 500, C]. We do not perform hyper-
parameter tuning. Since Scikit-learn does not offer a
Bayesian-MLP, we employ Tensorflow3 version 2.4.1
for the implementation (B-MLP*). We approximate
the posterior using a dropout variational distribution

1https://huggingface.co/sentence-transformers/
bert-base-nli-mean-tokens

2https://scikit-learn.org/stable/index.html
3https://www.tensorflow.org/
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(Gal and Ghahramani, 2016) and apply T = 100 for-
ward passes. Since an identical recreation of Scikit-
learn’s MLP in Tensorflow is difficult, we addition-
ally develop a (9) conventional non-Bayesian-MLP
(MLP*) to compare the impact of Bayesian mod-
elling. In comparison to Scikit-learn’s MLP imple-
mentation, our MLP model applies dropout similarly
to the Bayesian MLP, but only during training. Fur-
ther, we select 10% of the training data as valida-
tion data for all MLP implementations to enable early
stopping. The source code of all models, parameters
and experiments are publicly available.4

4 RESULTS

In this section, we present the results of our experi-
ments and answer the four research questions.

4.1 Quality of Predicted Probabilities
(RQ1)

The Brier scores of our experiments covering nine
classifiers and four datasets are shown in Table 2. The
lower the Brier score, the more accurate the predicted
conditional class probabilities. A Brier score of 0 in-
dicates a perfectly accurate classifier, whereas a score
of 1 indicates a highly inaccurate one.

Table 2: Brier scores of different classifiers and datasets
measuring the accuracy of the predicted conditional class
probabilities. The lower the Brier score the better are the
conditional class probabilities calibrated.

Classifier IMDB App Store Reuters Hate Speech AVG
DT 0.4259 0.5443 0.4869 0.4659 0.4806
RF 0.2059 0.2629 0.2247 0.2221 0.2289
kNN 0.2076 0.2629 0.1794 0.2302 0.2200
GNB 0.3174 0.4615 0.3919 0.4962 0.4168
SVM 0.1460 0.2435 0.1043 0.1934 0.1718
LR 0.1464 0.2398 0.0954 0.1919 0.1684
MLP 0.1592 0.2098 0.1029 0.2045 0.1691
MLP* 0.1542 0.2060 0.0939 0.1879 0.1605
B-MLP* 0.1513 0.2036 0.0920 0.1819 0.1572

The table reveals huge differences between the
classifiers regarding their quality of predicted prob-
abilities. A DT and GNB provide the worst calibrated
probabilities with an average Brier score of 0.48 and
0.42 respectively. RF and kNN reach nearly equally
calibrated probabilities, with an average of > 0.22.
SVM, LR and MLP as well as its variations receive
the best Brier scores. LR followed by SVM ob-
tains the best scores on the IMDB dataset, whereas
MLP* and B-MLP* receive the best scores on the
App Store, Reuters and Hate-Speech Dataset. Over-
all, a Bayesian MLP (B-MLP*) followed by a dropout

4https://github.com/jsandersen/MRTviaHIL

based MLP (MLP*) provide the most accurate proba-
bilities with an average Brier score of ∼ 0.16.

4.2 Classifier Performance under
Stepwise Removal of Uncertain
Instances (RQ2)

Table 3 lists the F1-Scores of the classifiers applied
to each of the datasets. The columns represent the
F1-Scores which are obtained when a certain num-
ber (0, 10, 20 and 30%) of the most uncertain in-
stances are removed from the test set. Each cell addi-
tionally states the relative improvement of F1-Score
in relation to the previous removal ratio. For exam-
ple, a SVM on the IMDB dataset reaches a F1-Score
of 90.24% on the entire test dataset. If 10% of the
most uncertain instances are removed, the F1-Score
increases to 93.60% which is a relative improvement
of 3.72%.

Our experiment shows that on the whole test
dataset, i.e. using a removal ratio of 0%, a DT and
GNB provide the worst F1-Score followed by the
kNN and RF classifiers. LR, SVM and the MLP
reach the highest initial F1-Scores. Scikit-learn’s
MLP implementation provides a worse performance
compared to our Tensorflow implementation. In our
setting, Bayesian modelling (B-MLP*) shows no im-
provement in F1-Score compared to a deterministic
MLP. Overall, SVM and LR classifiers perform best
on the IMDB and Reuters datasets, whereas a deter-
ministic MLP with dropout performs best on the App
Store and Hate Speech datasets.

When a certain number of the most uncertain in-
stances are removed from the test dataset, the F1-
Score generally increases. Only the uncertainty es-
timates of a Decision Tree classifier are unable to de-
tect misclassifications since the F1-Score is not im-
proving when removing highly uncertain instances.
Further, the relative F1-Score improvements decrease
with larger removal ratios indicating a decreasing hu-
man efficiency when large amounts of removed data
are passed to human annotators. Overall, classifiers
with high initial F1-Scores also reach the best F1-
Scores after removing uncertain instances from the
test dataset. Only the initially better performing LR
gets outperformed by the MLP* when removing un-
certain instances on the Reuters dataset.

4.3 Semi-automated Classification
Performance (RQ3)

Table 4 shows how much of the most uncertain in-
stances from the unseen test set have to be classified
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Table 3: F1-Scores of different classifiers when a certain number of the most uncertain predictions were removed from the
test dataset.

IMDB App Store Reuters Hate Speech
Classifier 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

78.70 78.75 78.77 78.77 64.80 65.02 64.94 65.00 58.11 58.30 58.15 58.30 66.99 66.95 67.03 67.05DT +0.05 +0.03 -0.00 +0.33 -0.11 +0.09 +0.34 -0.27 +0.27 -0.01 +0.11 +0.02
86.37 89.69 92.33 94.34 76.02 79.41 81.94 82.61 75.47 81.41 85.42 89.80 73.47 74.07 73.23 70.91RF +3.84 +2.94 +2.18 +4.47 +3.18 +0.82 +7.87 +4.93 +5.13 +0.82 -1.14 -3.16
85.54 88.88 91.61 93.71 76.65 80.70 83.85 86.69 76.46 81.36 83.66 78.27 68.48 67.54 67.06 67.26kNN +3.91 +3.07 +2.30 +5.28 +3.90 +3.38 +6.41 +2.82 -6.43 -1.37 -0.72 +0.30
83.95 87.25 90.16 92.55 72.86 76.26 79.51 82.66 69.06 73.98 80.37 87.62 69.95 72.82 75.76 78.95GNB +3.93 +3.33 +2.65 +4.66 +4.26 +3.96 +7.12 +8.63 +9.03 +4.11 +4.03 +4.21
90.24 93.60 95.74 97.04 76.84 80.83 84.84 88.45 88.38 93.98 96.77 98.44 79.51 82.16 84.42 86.15SVM +3.72 +2.29 +1.35 +5.19 +4.96 +4.26 +6.34 +2.97 +1.73 +3.33 +2.76 +2.05
90.19 93.53 95.71 97.02 78.89 83.33 87.59 91.19 88.75 94.98 97.56 98.42 80.17 83.54 86.44 88.42LR +3.70 +2.33 +2.37 +5.62 +5.12 +4.11 +7.02 +2.72 +0.88 +4.20 +3.47 +2.29
89.55 92.96 95.32 96.85 80.09 84.65 88.55 92.10 87.77 94.32 97.57 98.64 80.06 83.53 86.54 88.82MLP +3.81 +2.53 +1.61 +5.69 +4.62 +4.00 +7.46 +3.44 +0.11 +4.33 +3.60 +2.64
89.94 93.36 95.59 96.96 81.08 86.12 89.89 92.97 88.68 95.24 97.87 99.15 81.12 84.77 88.24 90.68

MLP*
+3.80 +2.39 +1.43 +6.21 +4.38 +3.42 +7.39 +2.76 +1.31 +4.50 +4.10 +2.77

89.95 93.39 95.66 97.08 80.99 86.02 89.74 92.97 88.76 95.14 98.09 99.24 81.12 84.80 87.99 90.42
B-MLP*

+3.83 +2.43 +1.48 +6.21 +4.32 +3.61 +7.19 +3.10 +1.17 +4.54 +3.76 +2.76

Table 4: Performance of Human-in-the-Loop classifiers. Each cell shows how much of the most uncertain classification
outcomes in percent have to be manually annotated in order to reach a certain F1-Score given a specific noise level of the
human annotator. Unobtainable F1-Scores due to a high number of committed human errors are marked as ”-”.

IMDB App Store Reuters Hate Speech
Classifier .93 .95 .97 .99 .89 .91 .93 .95 .93 .95 .97 .99 .89 .91 .93 .95
DT 67.18 76.55 85.94 95.12 68.46 74.03 80.16 86.01 83.49 87.76 92.76 97.42 66.58 72.76 78.56 84.68
RF 17.00 24.84 35.94 57.04 22.53 28.41 33.82 40.43 14.21 18.34 24.40 38.91 25.67 30.76 37.44 48.14
kNN 18.87 26.94 38.44 60.21 21.96 26.35 31.41 37.48 15.37 18.50 23.31 34.50 23.31 26.97 31.75 38.55
GNB 22.87 30.97 42.78 64.06 29.79 34.01 38.61 44.06 28.47 32.39 37.87 51.78 41.68 48.01 54.70 62.52
SVM 6.33 12.71 22.46 44.42 18.43 22.34 27.28 32.42 5.11 8.94 13.47 24.75 15.03 19.60 24.95 32.46
LR 6.60 12.88 22.62 43.95 15.21 19.24 23.56 29.22 3.90 7.24 12.19 23.91 14.17 18.56 23.72 30.88
MLP 8.00 14.60 24.18 46.25 13.49 17.68 21.62 27.00 5.32 8.31 12.91 22.31 13.83 18.24 23.55 31.25
MLP* 7.08 13.40 23.19 45.91 11.42 15.39 19.77 25.34 4.16 6.99 11.75 20.64 12.19 16.33 21.26 28.74
B-MLP* 7.02 13.17 22.77 44.16 11.67 15.68 20.06 25.56 4.23 7.43 11.52 19.80 12.23 16.28 21.06 27.95

0%
hu

m
an

no
is

e

DT 75.81 86.38 97.79 - 7.75 84.07 90.30 96.53 - - - - 73.77 80.46 87.39 94.54
RF 18.34 28.06 44.64 - 26.91 33.54 40.93 51.50 18.11 27.58 - - 23.48 28.30 35.02 46.43
kNN 20.73 30.62 48.88 - 24.31 29.22 36.23 43.37 18.20 24.96 - - 25.06 29.64 36.20 48.12
GNB 25.23 35.41 55.46 - 33.01 37.92 43.80 53.35 33.78 - - - 46.49 54.17 63.57 76.75
SVM 6.77 14.05 28.26 - 20.18 25.53 31.04 40.08 5.94 10.68 23.17 - 16.50 21.76 28.70 41.51
LR 7.06 14.18 27.76 - 16.49 20.96 26.44 33.95 4.27 8.80 19.13 - 15.41 20.34 27.28 38.63
MLP 8.55 16.23 29.50 - 14.52 19.15 23.84 31.48 6.11 10.47 18.53 - 15.03 20.34 27.33 39.24
MLP* 7.54 14.79 28.60 - 12.48 16.71 22.59 29.32 4.99 9.01 18.02 - 13.15 17.87 24.35 35.26
B-MLP* 7.51 14.56 27.40 - 12.77 17.21 22.68 29.76 4.97 8.61 16.32 - 13.14 17.88 24.09 34.36

5%
hu

m
an

no
is

e

DT 88.38 - - - 87.58 95.03 - - - - - - 83.17 91.45 99.62 -
RF 20.64 33.76 - - 29.79 37.17 46.46 - - - - - 25.70 32.11 42.97 -
kNN 23.60 37.63 - - 27.32 34.39 42.77 - - - - - 27.36 33.37 44.30 -
GNB 28.74 44.38 - - 36.42 42.99 53.82 - - - - - 51.97 63.28 82.17 -
SVM 7.34 16.02 - - 22.40 28.60 37.67 - 7.53 - - - 18.13 24.54 35.16 -
LR 7.51 16.00 - - 18.18 23.37 30.48 - 5.32 13.49 - - 16.71 22.67 32.15 -
MLP 9.17 18.06 - - 16.46 21.96 30.16 - 7.22 14.60 - - 16.20 22.43 32.46 -
MLP* 8.19 16.61 - - 14.05 19.46 27.00 - 5.71 13.03 - - 14.34 19.83 29.56 -
B-MLP* 8.10 16.50 - - 14.49 19.52 26.47 47.47 5.99 12.03 - - 14.39 19.78 28.04 -

10
%

hu
m

an
no

is
e

manually in order to raise the semi-automatic classifi-
cation outcomes to a certain F1-Score. Each sub-table
represents a different human noise level as introduced
in Section 3. For example, on the IMDB dataset
12.71% of the most uncertain prediction have to be
manually corrected to improve the model’s F1-Score
(from initial 90.24%) to 95% using a SVM. The ta-
ble indicates that models with a high initial F1-Score
require less manual efforts to raise the F1-Score to a
certain target level. Overall, models with lower initial

F1-Score scores do rarely overtake better performing
classifiers in regard to the final F1-Score when human
annotators are in the loop.

Involving humans with higher noise levels re-
quires more manual efforts to reach a specific F1-
Score, which is straightforward, since more misclassi-
fications are committed. However, our results indicate
that Human-in-the-Loop text classification can reach
a higher F1-Score compared to its pure machine and
human parts on their own. For example, an LR classi-
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fier with an initial F1-Score of 90.19% on the IMDB
dataset and a 10% noisy human can reach an F1-Score
of >95% (max. 96.77%) when >18.6% of the dataset
is classified manually.

Our results reveal that lightweight classifiers can
reach strong accuracies with a human in the loop
even if the annotator commits several errors. Us-
ing the best performing classifier, an F1-Score of
95% (+4.81), 91% (+9.92), 95%(+6.24), 91% (+9.88)
can be reached with a manual effort of 16.02, 19.46,
12.03, and 19.78% respectively considering a human
noise level of 10%. Compared to a 100% accurate hu-
man annotator, this is an increase in manual efforts of
24.37%, 26.45%, 61.91%, and 21.50% respectively.
Our results also demonstrate that top F1-Scores, e.g.
95-99%, are not reachable in all Human-in-the-Loop
settings. If the human annotations are too noisy, the
F1-Score is starting to decrease after a certain amount
of human assistance. As less uncertain predictions are
more often annotated by humans during larger work-
loads, the accuracy decreases. This phenomenon oc-
curs because noisy humans incorrectly annotate in-
stances that the machine would have correctly decided
by itself reducing the overall accuracy of the semi-
automated classification outcomes.

4.4 Runtime Comparison (RQ4)

The training time of the classifiers is illustrated in Fig-
ure 1. The x-axis lists the classifiers and the y-axis
represents the average training-time measured in sec-
onds in log-scale. The kNN classifier is not listed
since it is a memory-based learning algorithm that
requires no training. A GNB has the fastest train-
ing time taking an average of 0.2 Seconds for 25000
instances (IMDB). The LR has the second-shortest
training time being 3.7 seconds. A DT, MLP, and
RF perform much slower with around 64.28, 73.42,
and 91.14 seconds respectively. The dropout based-
MLP* implementation took 138.66 seconds which is
nearly double the time of MLP. MLP* and B-MLP*

require the same time for training as they share the
same training procedure. The SVM is the only clas-
sifier which shows an exponential growth in training
time in regard to the size of the training data ranging
from 12.81 seconds for the App Store (size 2876) to
27.18 minutes for the IMDB (size 25000) dataset.

Figure 2 depicts the time needed to perform in-
ference. The DT, RF, GNB, LR and the MLP classi-
fiers take less than one second to infer the labels for
25000 instances (IMDB). The MLP* implementation
is slightly slower with an average of 1.33 seconds on
the same dataset. The kNN classifier is much slower
with an inference time of 48.87 seconds (IMDB).

DT RF GNB SVM LR MLP MLP* B-MLP*
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Figure 1: Total training time of the experiments.
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Figure 2: Total inference time of the experiments.

The inference time of a SVM and kNN grows expo-
nentially in regarding the number of predicted texts.
The SVM needs 1.15 seconds for the App Store and
123.84 seconds for the IMDB dataset. The kNN clas-
sifier requires 0.91 seconds for the App Store and
48.87 seconds for the IMDB dataset. Sampling-based
Bayesian approximations require more time for infer-
ence since multiple forward passes have to be car-
ried out to approximate the condition class probabil-
ity. By performing 100 forward passes, a Bayesian
MLP takes 176.41 seconds (IMDB).

5 DISCUSSION

Our results indicate that manually annotating parts
of the outcomes of lightweight text classifiers using
SBERT can lead to substantial improvements with a
manageable manual effort. A Human-in-the-Loop ap-
proach can increase the F1-Score to at least 95% on
all datasets by manually validating less than 28% of
the data. Our findings are especially important for do-
mains in which annotation tasks are still carried out
purely manually in case applicable automatic classi-
fiers do not provide a required F1-Score out of the
box. While solving a classification task by hand can
be an alternative solution, many domains are con-
fronted with an overwhelming amount of data exceed-
ing human capabilities. Human-in-the-Loop classifi-
cation aims to overcome the accuracy limitations of
pure automatic classification with the cost of human
involvement. Human efforts are usually wasted when
used to perform tasks a cheap artificial model can
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perform equally. The effectiveness of Human-in-the-
Loop emerges by focusing human efforts on instances
where an automatic classifier mostly fails. Overall,
the applicability of Human-in-the-Loop text classifi-
cation depends on whether human efforts are afford-
able during a classifiers operational use and whether
more reliable classification outcomes are needed.

In our experiments, we observed large variations
between different classifiers regarding their suitabil-
ity for Human-in-the-Loop text classification. We
show that the quality of uncertainty estimates of sim-
ple models such as Decision Trees, Gaussian Naive
Bayes, Random Forest and k-Nearest Neighbour clas-
sifier are fare less accurate compared to an Logistic
Regression model, Support Vector Machine or Mul-
tilayer Perceptron, limiting their suitability for uncer-
tainty assessments. We also show, that these simple
models do not provide any advantages compared to
a Logistic Regression model in Human-in-the-Loop
classification settings, since they reach a lower F1-
Score or require much more computational costs.

The Multilayer Perceptron and a Support Vec-
tor Machine have shown to provide similar or even
stronger performance scores compared to Logistic
Regression, but require much more computational re-
sources. Although no classifier consistently outper-
forms the others in our experiments, a Multilayer Per-
ceptron with dropout reaches on average the high-
est performance across all datasets. Overall, classi-
fiers which reach a higher F1-Score pure automati-
cally also require less effort to reach an even higher
F1-Score when placing a Human-in-the-Loop. Fur-
ther, our results indicate that Bayesian modelling i.e.
Monte Carlo Dropout (Gal and Ghahramani, 2016)
does slightly improve the quality of uncertainty es-
timated, but has not a great impact on the resulting
F1-Score of Human-in-the-Loop classification using
a small MLP and SBERT encodings as text features.
Since classifiers with the highest F1-Score also pro-
vide the best Brier scores it is not necessary using one
classifier to estimate uncertainties and another classi-
fier to provide the classification decision.

To enable rapid or even real-time Human-in-the-
Loop processing, a Logistic Regression model is the
fastest approach in inference and training while pro-
viding a decent initial as well as human in the loop
performance. It only requires < 4 seconds for train-
ing and inference on 25000 data instances. A Support
Vector Machine is less applicable due to its compa-
rable slow training time and it does not scale well to
large datasets. A dropout-based Multilayer Percep-
tron has shown to provide on average a better perfor-
mance, but comes with higher computational efforts
of a total of < 139 seconds for training and inference.

We also demonstrate that humans and machines
can work together to achieve even greater accuracy
than their individual parts. Highly uncertain instances
are most likely to be misclassified automatically, and
even noisy human annotators have the potential to
provide more accurate labels. By simulating different
kinds of human behaviour, we demonstrate the per-
formance of Human-in-the-Loop text classification
across multiple domains and human performances.
Practitioners in the loop have to judge about their own
behaviour to draw insides about how much effort is
worth to spend in the loop. Our study provides guide-
lines to support practitioners in choosing the most ef-
ficient classifier when strong classifiers are not appli-
cable because of high computational costs, and hu-
mans are willing to label some part of the classifica-
tion results.

SBERT-based classifiers clearly underperform
state-of-the-art text classifiers such as BERT. For ex-
ample, a fine-tuned BERT model has shown to reach a
F1-Score of 93.46% (Sanh et al., 2019) on the IMDB
dataset. However, BERT requires huge computational
resources and takes multiple hours to days to be fine-
tuned on a CPU. In comparison, a Logistic Regres-
sion model employed on the same task using SBERT
encodings takes a few seconds on a CPU for training
and inference to reach an F1-Score of 90.2%, which
is a higher score than recent Word-Embedding based
approaches (He et al., 2020; Hendrycks and Gim-
pel, 2016). As shown by our results, manually an-
notating 12.70% of the data leads to an F1-Score of
95%, which outperforms BERT’s performance. Thus,
SBERT-based classifiers with a human in the loop are
an alternative or even a substitute of BERT if training
and inference have to be carried out efficiently and
human efforts are arrangeable.

This paper investigates Human-in-the-Loop clas-
sification with on-device training and inference. Al-
ternatively to our approach, practitioners can also
train classifiers on more powerful machines if avail-
able and afterwards transfer the parameters to weak
edge devices in order to maintain applicability and
save computational costs. However, the inference
of state-of-the-art classifiers such as BERT is still
very slow on weak computational infrastructure e.g.
edge devices due to their high resource consump-
tion. With our research, we follow a more person-
alized approach, where practitioners are capable to
reach strong classification performances on weak in-
frastructure. Hereby, we aim to support practitioners
to rapidly extract desired information from their tex-
tual data using classification on their own work sta-
tions.
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6 RELATED WORK

The rising demand for interactive real-time process-
ing (Amershi et al., 2014; Dudley and Kristensson,
2018; Zanzotto, 2019) and resource efficient machine
learning (Al-Jarrah et al., 2015; Zhang et al., 2018)
upraise the need of additional evaluation perspectives.
In contrast to traditional performance driven bench-
mark studies (Chauhan and Singh, 2018; Luu et al.,
2020; Stanik et al., 2019), we focus on the accuracy
and time efficiency of semi-automatic and lightweight
text classifiers.

Rattigan et al. (Rattigan et al., 2007) initially in-
vestigate the objective of maximizing the accuracy of
classifiers while limiting human efforts. On the one
side, related work in the domain of text classification
focus on approaches based on estimating thresholds
of conditional class probabilities to separate unreli-
able class outcomes similar to our work. Pavlopou-
los et al. (Pavlopoulos et al., 2017) suggest identi-
fying upper and lower class probability thresholds to
determine a fixed sized slice of data instances which
maximizes the accuracy of a model when manually
annotated. In contrast, our approach is based on un-
certainty estimates and does not require solving an
optimization task. He et al. (He et al., 2020) seek
to improve the quality of uncertainty estimates to en-
able a more efficient annotation process. However,
their approach is only applicable to Deep Neural Net-
works while ours can be applied to any classifier. On
the other side, training an additional reject function is
another common approach to delegate unreliable in-
stances to humans (Cortes et al., 2016; Geifman and
El-Yaniv, 2017). An abstain option can either be mod-
elled as an additional class outcome or is achieved
by training a separate classifier leading to additional
computational costs and effort.

Manually annotating classifier outcomes can also
be considered as a special case of Algorithm-in-
the-Loop Decision Making (Green and Chen, 2019),
where humans rather than algorithms are making the
final classification decision. In contrast, our approach
seeks to only involve humans when the model is un-
able to provide reliable classification outcomes. An-
other closely related field to Human-in-the-Loop clas-
sification is Active Learning (Lewis and Gale, 1994).
Active learning seeks to minimize human efforts in
the creation of training data to reach highly accurate
classifiers. In Active Learning a machine actively
queries labels from human annotators to improve a
model’s learning behaviour. Similar to Human-in-the-
Loop classification, both approaches can utilize un-
certainty sampling to guide human involvement. In
contrast, Active Learning is applied during the train-

ing step of the initial model while our approach seeks
to further raise the accuracy of an already trained
model during its operational use. Human-in-the-Loop
classification aims to exceed the maximum achievable
accuracy (Baram et al., 2004) of a pre-trained classi-
fier with the cost of human participation during the
classification process.

7 CONCLUSION

In this paper, we conduct several experiments to iden-
tify best performing and time efficient semi-automatic
text classifiers using SBERT encodings. We investi-
gate the quality of uncertainty estimates as well as the
F1-Score of lightweight text classifiers, when a cer-
tain amount of the most uncertain classification out-
comes is manually validated and corrected. Further,
we assess the time needed to perform training and in-
ference to assess a model’s applicability on edge de-
vices as well as enabling rapid human interaction cy-
cles. Our study consists of nine different classification
models and four real-world text classification tasks.
Our results indicate that the initially best performing
automatic classifiers (without human involvement) re-
quire less manual effort to achieve a strong F1-Score
compared to initially weaker classifiers. We also show
that SBERT-based classifiers are time efficient and
only take seconds to a few minutes to be trained, en-
abling rapid interactive machine learning cycles. Our
research provides guidelines for semi-automatic text
classification approaches when conventional state-of-
the-art classifiers are not applicable due to time con-
straints. As further work, we plan to perform more
user experiments and investigate the acceptance of
using Human-in-the-Loop text classification in real-
world domains.
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