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Abstract: This paper presents several models for real-time object detection with a hardware extension on hardware with 
limited resources. Additionally, a comparison of two approaches for detecting individual objects with Single-
Shot Multibox Detection (SSD) and You Only Look Once (YOLO) architecture in a 2D image with 
Convolution Neural Networks (ConvNet) is presented. Here, we focus on an approach to develop real-time 
object detection for hardware with limited resources in the field of the Internet of Things (IoT). Also, our 
selected models are trained and evaluated with real data from model making area. In the beginning, related 
work of this paper is discussed. As well known, a large amount of annotated training data for supervised 
learning of ConvNet is required. The data acquisition of the different real data sets is also discussed in this 
paper. Additionally, our dissimilar object detection models are compared in accuracy and run time to find the 
better and faster system for object detection on hardware with limited resources for low-power IoT devices. 
Through the experiments described in this paper, the comparison of the run time depending on different 
hardware is presented. Furthermore, the use of a hardware extension is analysed in this paper. For this purpose, 
we use the Intel Neural Compute Stick 2 (NCS2) to develop real-time object detection on hardware with 
limited resources. Finally, future research and work in this area are discussed. 

1 INTRODUCTION 

Nowadays it is possible to drive vehicles 
autonomously, without human intervention. These 
vehicles have a variety of sensors to interpret their 
environment and interact with it accordingly. For 
example, radar sensors can be used to determine the 
distance to the vehicle in front of these cars. But how 
does the vehicle behave if this system fails or 
provides incorrect distance measurements? Here, a 
control system that checks and compares the various 
measurements could be advantageous. This control 
system could be realized with distance measurements 
in a 2D image. For this purpose, the stereo camera can 
be used. This camera contains two cameras at a 
certain distance, similar to human eyes. This delivers 
two images. These both images can be used to 
determine the depth of the image to distinguish 
between roads, humans, cars, houses, etc. (Li, Chen 
and Shen, 2019). However, this various objects have 
to be recognized and classified. The autonomous 
vehicles have several cameras, including one that is 
directed at the road. With this camera, various 

objects, such as humans, vehicles or animals, can be 
delivered as a 2D image in the field of view of the 
camera on the road. These objects have to be 
recognized and classified in this 2D image. In 
addition, the position of an object on the motorway 
can be determined. Additionally, a lane detection 
(Kuzmic and Rudolph A1, 2021) have to be 
implemented. To evaluate this control system in real 
time a real-time object detection is a prerequisite. For 
this purpose, we focus in this paper on the real-time 
object detection of own objects on a hardware with 
limited resources for low-power IoT devices. Object 
detection requires usually hardware with high 
computational power, such as a graphics processing 
unit (GPU), because image processing is a highly 
intensive computing procedure. In addition, object 
detection is processed with Convolutional Neural 
Networks (ConvNets). These are known for their 
good processing of images. Also, the ConvNets have 
proven to be effective in object detection including 
contour finding. In this paper, we have trained and 
evaluated different models of object detection with 
different architectures such as Single-Shot Multibox 
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Detection (SSD) (Liu et al., 2016) and You Only 
Look Once (YOLO) (Redmon et al., 2016). The idea 
is to find a suitable system for model cars with non-
high-computing hardware without a GPU. In 
addition, there are already low-cost hardware 
extensions to improve the run time of ConvNets on 
hardware with limited resources. Here, we use the 
Intel Neural Compute Stick 2 (NCS2) (CNET, 2018). 
This stick contains an Intel Movidius Myriad X 
Vision Processing Unit (VPU). The built-in 
microcontroller was specially developed for the use 
of Convolutional Neural Networks for applications 
with low-power consumption and real-time image 
processing (Intel, 2021).   

Real-time object detection for low-power IoT 
hardware limited resources is not only interesting for 
the model making area. Additionally, this real-time 
object detection can be useful on hardware without 
internet connectivity. For example, consider postal 
drones that place the package in the garden or in smart 
surveillance cameras for agriculture which notify 
when certain objects e.g. animal species are detected. 
In addition, the route of an object can be tracked 
through a real-time evaluation, too. The problem in 
academic research is that these algorithms and 
procedures, which are already established in the 
autonomous vehicles industry, are kept under lock 
and key and are not freely accessible. For this reason, 
own algorithms and procedures have to be researched 
and developed in the academic field. Therefore, the 
topic of computer vision has become very popular in 
recent years.  

The future goal of our work is to switch from the 
simulation we developed before (Kuzmic and 
Rudolph, 2020) to the real model cars. In case of a 
successful transfer of simulation to reality (sim-to-
real transfer), the model car behaves exactly as before 
in the simulation. Here, the hardware of these model 
cars belongs to the low-power IoT devices with 
limited resources. 

2 RELATED WORK 

There are numerous scientific papers dealing with 
object detection, e.g. (Fink et al., 2019) who have 
made a deep learning-based multi-scale multi-object 
detection and classification for autonomous driving 
or (Zaghari et al., 2021) who have developed 
improvement in obstacle detection in autonomous 
vehicles using YOLO non-maximum suppression 
fuzzy algorithm. However, there are only a few 
scientific papers that are dealing with the detection of 
the objects in real time on hardware with limited 

resources for low-power IoT devices. For example, 
(Wang, Li and Ling, 2018) who have developed 
pelee: a real-time object detection system on mobile 
devices. This system reaches 23.6 FPS on an iPhone 
8. In their work, the SSD and YOLO architectures 
were also analysed. However, the hardware of the 
iPhone 8 is quite expensive to use it, for example, in 
a model car or as a surveillance camera. Similarly, 
there are (Jose et al., 2019) who have researched real-
time object detection on low power embedded 
platforms. This system operates at 22 FPS on low-
power TDA2PX System on Chip (SoC) provided by 
Texas Instruments (TI). Similarly, there are scientific 
works that deal with YOLO real-time object detection 
for low-power hardware, such as (Huang, Pedoeem 
and Chen, 2018) who have developed YOLO-LITE: 
a real-time object detection algorithm optimized for 
non-GPU computers or (Jin, Wen and Liang, 2020) 
who implemented embedded real-time pedestrian 
detection system using YOLO optimized by LNN. 
These papers handle with an older YOLOv3 version. 
Furthermore, some scientific papers are also dealing 
with the Intel Neural Compute Stick 2 such as 
(Asmara et al., 2020) who developed prediction of 
traffic density using YOLO object detection and 
implemented in Raspberry Pi 3b + and Intel NCS 2.  

Our approach is to develop a real-time object 
detection for low-power IoT hardware and to expand 
our previous development in this area (Kuzmic and 
Rudolph A2, 2021). Thus, it is possible to develop a 
low-cost real-time object detection e.g. for model 
making or a surveillance camera in a short time. For 
this purpose, we use the Raspberry Pi 3 B and 
Raspberry Pi 4 B with the Intel NCS2 as hardware 
extension. 

3 DATA SET 

Before training of the ConvNets, annotated training 
data have to be obtained for each specific use case. 
This training data is the basis for a successful object 
detection. The resolution is given in the format width 
x height. Some small pre-tests have shown: it is 
sufficient to take pictures of the object in a 360° view. 
The colour of the objects does not matter in object 
detection. The objects are distinguished by their 
different shapes. Our data sets were created with 
some objects from the model making area. We 
annotated this data manually. The procedure for this 
is described in subsection 3.2. Data set 1 contains a 
model car PiCar and data set 2 additionally ModCar, 
ModAnimal and ModPerson from the real world. So 
in data set 1 we have one class with 111 pictures. In 
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data set 2 there are four classes with a total of 200 
pictures. Figure 1 shows some images of the created 
training data from our data sets. In addition, the 
following can be seen on Figure 1, first two rows: 
Data set 1 contains a model car PiCar with various 
objects. Here, only the model car is labelled and not 
the other objects. So, the ConvNet can learn the 
difference to the other objects. Also, small pre-tests 
have shown that the ConvNet learns the differences 
between the various contours of objects. It is not 
enough to train the ConvNet, for example, with the 
model car on a white background. Any further 
unknown object would be interpreted as a model car 
at this point. The human brain, on the other hand, 
would learn it. 

 
Figure 1: Our data sets for object detection. First two rows: 
Data set 1 from model making area with one class (PiCar). 
Last two rows: Data set 2 from model making area with four 
classes (PiCar, ModCar, ModAnimal, ModPerson). 

If object detection on real data has to be implemented, 
already published data sets Microsoft Common 
Objects in Context (MS COCO) (Lin et al., 2014) or 
PASCAL Visual Object Classes (PASCAL VOC) 
(Everingham et al., 2010) can be used. These already 
contain thousands of annotated real objects. The split 
of our training and test data is 80/20. The test data was 
used as validation data.  

3.1 Automatic Annotation 

It is possible to annotate the objects to be classified 
manually. Unfortunately, this method is very time-
consuming for large data sets. With the approach of 

contour finding in the HSV colour space, the 
coordinates of the objects can be found automatically. 
A distinction is made between the hue, the colour 
saturation and the colour value (brightness) (Ivanov 
and Skryshevsky, 2021). To determine the position of 
the object in a 2D image, the input image is converted 
from RGB format (Fig. 2, left) into HSV format first 
(OpenCV, 2021). Figure 2, middle shows this input 
image in a HSV format. Then, the HSV parameters 
for the contour finding and the binarization have to be 
found (Shermal, 2017). In the next step, a binary 
image can be created (Fig. 2, right, without the green 
rectangle). These parameters have only to be found 
once per object class. From this binary image (white 
background, black object), the information for the 
position of the object (top left and bottom right) could 
be extracted. This gives the position of the object 
(Fig. 2, right) for the input image as coordinates for P 
(xMin, yMin) and Q (xMax, yMax). 

 
Figure 2: Automatic annotation with the HSV colour space. 
Left: Model car in RGB format. Middle: Model car in HSV 
format. Right: Model car as binary image with founded 
coordinates for P and Q. 

Once these coordinates are available, the annotations 
can be created in a TensorFlow (Vuppala, 2020) or a 
YOLO format (Bochkovskiy, Wang and Liao 2020). 
The advantage of this approach: many annotated 
training data with different objects can be created in 
a short time. Several objects can also be created in one 
image. Since, the position of the objects is known, 
these objects can be moved or exchanged among each 
other. Additionally, to create many different training 
data the position and size of the objects can be 
changed. The exchange of the background image is 
also conceivable. In our case, there was not much 
training data. For this reason, we manually annotated 
our training data sets. This procedure is described in 
the following section 3.2. Nevertheless, we tried and 
tested the automatic annotation of the data sets 
afterwards. 

3.2 Manual Annotation 

For our data set, some pictures from several models 
from model making were taken (Kuzmic and Rudolph 
A2, 2021). Afterwards, these images were manually 
annotated with the LabelImg tool (Tzutalin, 2015). 
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This tool simplifies the drawing of the rectangle 
around an object and automatically determines the 
coordinates for P (xMin, yMin) and Q (xMax, yMax). 
Then, these coordinates can be stored in an XML file 
with the same name as the image file for training with 
TensorFlow as annotation. With this tool it is also 
possible to save the annotations in a YOLO-format. 

4 EXPERIMENTS 

The following experiments were carried out to 
compare the functionality and the run time of the 
different TensorFlow and YOLO models. The 
resolution is in the format width x height. The 
accuracy is given as COCO mean average precision 
(mAP) metric (Hui, 2018). All experiments are 
carried out on the same hardware. This gives the 
possibility to compare the results afterwards and to 
find the optimal object detection system. The test 
input images for the respective systems are also the 
same. For hardware with limited resources, a single-
board Raspberry Pi 3 B and Raspberry Pi 4 B were 
used. The run time of detection is shown as frames 
per second (FPS). These measurements contain only 
the time for object detection and do not include 
loading and processing of the input images. Our 
Hardware for the experiments: 

 Training of the ConvNets on Google Colab 
with Intel Xeon 2.30 GHz CPU, 26 GB RAM, 
NVIDIA Tesla P100-PCIE-16GB GPU. 

 Raspberry Pi 3 B with ARM Cortex-A53 1.2 
GHz CPU, 1 GB RAM, USB 2.0, 8 GB SD as 
hardware with limited resources. 

 Raspberry Pi 4 B with ARM Cortex-A72 1.5 
GHz CPU, 8 GB RAM, USB 3.0, 16 GB SD as 
hardware with limited resources. 

 Intel Neural Compute Stick 2 (NCS2) with 
Intel Movidius Myriad X Vision Processing 
Unit 4 GB (VPU) as hardware extension for 
artificial neural networks. 

4.1 Object Detection with SSD and 
Intel NCS2 

In these experiments the models we have trained with 
TensorFlow are evaluated on the hardware with 
limited resources. The first step was to find some fast 
TensorFlow models. For TensorFlow some pre-
trained models are available. These models have been 
already established in object detection with real data. 
In the TensorFlow 1 Detection Model Zoo (Shi, 
2020), several ConvNet models are available for 

TensorFlow 1. These have already been pre-trained 
on the MS COCO 17 data set (Lin et al., 2014) and 
can detect and classify 90 different objects. The 
accuracy and the run time of these models is also 
specified. This gives first comparison of the ConvNet 
models. Furthermore, these models can be trained 
with several objects with the TensorFlow Object 
Detection API (Yu et al., 2020) in the next step. This 
library supports TensorFlow 1 and TensorFlow 2. 
The input resolution of these networks can also be 
adjusted.  To evaluate these models on the Raspberry 
Pi and the Intel NCS2 for several objects, the models 
are first trained with TensorFlow 1.15.5 with our 
training data. Subsequently, the trained models have 
to be exported as a frozen inference graph. Then, 
these models can be converted to OpenVINO models 
using the OpenVINO 2021.3 library (OpenVINO, 
2021) to run them on the Intel Neural Compute Stick 
2. Python 3.7.3 was used to execute the converted 
OpenVINO models on the hardware with limited 
resources. The SSD MobileNet V2 and SSD Lite 
MobileNet V2 models were used in our experiments. 

Table 1: Run time overview of trained TensorFlow models 
on Raspberry Pi 3 B with Intel NCS2 and Raspberry Pi 4 B 
with Intel NCS2. First column contains the number (ID) of 
the experiment (Exp. No.). 

Exp. 
No. 

Model 
Data 
Set 

mAP 

Run time 
[FPS] 

RPI 
3 B 

RPI 
4 B 

1 
SSD 

MobileNet 
V2 224x224

Mod 1 93.3 17.4 31.9 

2 
SSD 

MobileNet 
V2 224x224

Mod 2 80.8 17.2 31.7 

3 
SSD 

MobileNet 
V2 320x320

Mod 1 96.7 9.8 18.0 

4 
SSD 

MobileNet 
V2 320x320

Mod 2 88.5 9.7 17.9 

5 
SSD Lite 

MobileNet 
V2 224x224

Mod 1 99.9 16.5 29.5 

6 
SSD Lite 

MobileNet 
V2 224x224

Mod 2 83.3 16.3 29.1 

7 
SSD Lite 

MobileNet 
V2 320x320

Mod 1 99.8 9.4 16.7 

8 
SSD Lite 

MobileNet 
V2 320x320

Mod 2 93.6 9.3 16.7 

It is interesting to note that the SSD MobileNet V2 and 
SSD Lite MobileNet V2 models are not listed as 
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supported network architecture on the official Intel 
Movidius page (Movidius, 2019). At the time of our 
experiments and implementation, only the SSD 
MobileNet V1 models and the Inception models are 
listed as supported networks on the official Intel 
Movidius page. Nevertheless, for the development of 
our real-time object detection system we decided to 
use the current SSD MobileNet V2 and SSD Lite 
MobileNet V2 models and to run them with 
OpenVINO on the Intel NCS2. According to the 
TensorFlow 1 Detection Model Zoo (Shi, 2020), the 
SSD MobileNet V2 models are partly faster and more 
accurate than the SSD MobileNet V1 models. Table 1 
shows an overview of the accuracy and run time of 
the trained SSD models on the Raspberry Pi 3 B with 
Intel NCS2 and Raspberry Pi 4 B with Intel NCS2. 
Also, SSD Lite MobileNet V2 models with one class 
as output can quickly overtrain (exp. no. 5 in table 1). 
Additionally, we can see that the run time on the 
Raspberry Pi 4 B with Intel NCS2 is almost twice as 
high (exp. no. 1 in table 1). Our assumption at this 
point: The Raspberry Pi 3 B only has a USB 2.0 
interface. The Raspberry Pi 4 B, on the other hand, 
has a USB 3.0 interface. The Intel NCS2 hardware 
extension is also use a USB 3.0 interface. Thus, this 
is the bottleneck in terms of the run time. To check 
this, the SSD MobileNet V2 224x224 model was also 
run on the Raspberry Pi 4 B with the Intel NCS2 on 
the USB 2.0 interface. Table 2 shows that our 
assumption is correct. The run time bottleneck on the 
Raspberry Pi 3 B with the Intel NCS2 is the USB 2.0 
interface (comparison between exp. no. 1 in table 1 
and exp. no. 1 in table 2). 

Table 2: Run time overview of USB 2.0 and USB 3.0 on 
Raspberry Pi 4 B with Intel NCS2. First column contains 
the number (ID) of the experiment (Exp. No.). 

Exp. 
No. 

Model 
Data 
Set 

mAP 

Run time 
[FPS] 

USB 
2.0 

USB 
3.0 

1 
SSD 

MobileNet 
V2 224x224 

Mod 1 93.3 18.9 31.9 

Let now have a look to the evaluation of the test data 
from the worst SSD model (Fig. 3). This model 
achieves an accuracy of 80.8 % (exp. no. 2 in table 1). 
In Figure 3 can be seen that the detection of four 
classes PiCar, ModCar, ModAnimal and ModPerson 
is very accurate. Also, the classification and the 
position of the detected objects matches exactly 
(green rectangles). That is, the predicted object 
boundary overlaps exactly with the real object 
boundary. This detection is completely sufficient for 

our purpose. Also, the never seen objects could be 
detected by our trained SSD model. For example, a 
Lego person (Fig. 4, left), a model horse (Fig. 4, 
middle) and a blue model car (Fig. 4, right) are 
correctly recognized and classified by this model. 
During training the ConvNet has already seen figures 
of model persons, model animals and model cars. 
This ConvNet learned the similar shapes of the 
objects and not only images from the training data set. 
Furthermore, every other object with an unknown 
shape is recognized as a PiCar. The models have 
never seen any object with a similar shape (contour) 
during the training. Thus, the object cannot be clearly 
classified. As a result, the first output class PiCar is 
assigned to this unknown object. This problem can be 
solved by enlarging the data set. More training data 
with the PiCar and many different objects (different 
shapes) is needed. So, the difference to other shapes 
can be learned. 

 
Figure 3: Object detection with SSD MobileNet V2 224x224 
model trained with TensorFlow (exp. no. 2 in table 1). 
Green rectangle shows the detection of the object by the 
ConvNet. This model contains four classes as output 
(PiCar, ModCar, ModAnimal, ModPerson). 

 
Figure 4: Object detection on never seen objects with SSD 
MobileNet V2 224x224 model trained with TensorFlow 
(exp. no. 2 in table 1). Green rectangle shows the detection 
of the object by the ConvNet. This model contains four 
classes as output (PiCar, ModCar, ModAnimal, 
ModPerson). Left: Detected model person. Middle: 
Detected model animal. Right: Detected model car. 

4.2 Object Detection with YOLO and 
Intel NCS2 

To implement a comparable system for object 
detection, some current YOLO V4 models 
(Bochkovskiy et al., 2020) were trained and evaluated 
using the same data sets and the DarkNet framework 
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(version: CSPDarknet53). For this purpose, the 
empty weights for YOLO V4 (yolov4.conv.137) and 
YOLO V4 Tiny (yolov4-tiny.conv.29) were used 
(Bochkovskiy et al., 2020). Then, the trained weights 
of the models were converted to Protobuf models 
using TensorFlow 1.12.0 and Protobuf 3.15.6 
(Tianwen, 2021). Python 3.6.13 was used for this 
conversion. Notice, a conversion using Python 3.7.3 
did not work at the time of the experiments. 
Subsequently, the converted Protobuf models can be 
converted to OpenVINO using the OpenVINO 2020.4 
library and YOLO configuration files (Tianwen, 
2021) in the next step. After the conversion to 
OpenVINO, several frozen DarkNet YOLO V4 and 
YOLO V4 Tiny models are obtained to run them on 
the Intel Neural Compute Stick 2 hardware extension 
with Python 3.7.3 (similar procedure to TensorFlow). 
Table 3 shows an overview of the accuracy and run 
time of the trained YOLO models on the Raspberry 
Pi 3 B with the Intel NCS2 and Raspberry Pi 4 B with 
the Intel NCS2.  

Table 3: Run time overview of trained YOLO models on 
Raspberry Pi 3 B with Intel NCS2 and Raspberry Pi 4 B 
with Intel NCS2. First column contains the number (ID) of 
the experiment (Exp. No.). 

Exp. 
No. 

Model 
Data 
Set 

mAP 

Run time 
[FPS] 

RPI 
3 B 

RPI 
4 B 

1 
YOLO V4 

Tiny 
224x224 

Mod 1 93.3 9.9 15.5 

2 
YOLO V4 

Tiny 
224x224 

Mod 2 89.5 9.8 15.4 

3 
YOLO V4 

Tiny 
320x320 

Mod 1 98.6 5.3 8.5 

4 
YOLO V4 

Tiny 
320x320 

Mod 2 94.5 5.2 8.3 

5 
YOLO V4 
224x224 

Mod 1 100 1.7 2.2 

6 
YOLO V4 
224x224 

Mod 2 99.2 1.6 2.2 

7 
YOLO V4 
320x320 

Mod 1 100 0.9 1.7 

8 
YOLO V4 
320x320 

Mod 2 98.8 0.9 1.7 

It can be seen that the YOLO V4 models with one class 
as output can quickly overtrain. Let now have also a 
look to the evaluation of the object detection on the 
same test image from the worst YOLO V4 Tiny model 
(Fig. 5). This model achieves an accuracy of 89.5 % 
(exp. no. 2 in table 3). As also can be seen in figure 5 
the classification of the objects corresponds. 

However, the position of the detected objects does not 
match exactly (for example white model car in figure 
5). That is, the predicted object boundary does not 
overlap exactly with the real object boundary. Also, 
the never seen objects could be detected by our 
trained YOLO model. For example, a Lego person 
(Fig. 6, left), a model horse (Fig. 6, middle) and a blue 
model car (Fig. 6, right) are correctly classified by 
this model. However, the position of the detected 
objects (green rectangles) does not match. Also, some 
objects are recognized twice (Fig. 6, middle. 
Therefore, the object detection with the YOLO 
architecture is not suitable for our use case. 

 
Figure 5: Object detection with YOLO V4 Tiny 224x224 
model trained with DarkNet (exp. no. 2 in table 3). Green 
rectangle shows the detection of the object by the ConvNet.  
This model contains four classes as output (PiCar, ModCar, 
ModAnimal, ModPerson). 

 
Figure 6: Object detection on never seen Objects with 
YOLO V4 Tiny 224x224 model trained with DarkNet (exp. 
no. 2 in table 3). Green rectangle shows the detection of the 
object by the ConvNet. This model contains four classes as 
output (PiCar, ModCar, ModAnimal, ModPerson). Left: 
Detected model person. Middle: Detected model animal. 
Right: Detected model car. 

4.3 Evaluation of Run Time and 
Accuracy 

After the experiments and performance tests of the 
models have been completed, evaluating of the run 
times of these different models could be started. 
Therefore, it is important to find a balance between 
sufficient accuracy and the run time of the models. 
Also, some experiments show longer training does 
not affect the run time. The run time depends only on 
the model architecture, on size of the input resolution 
and on size of the output classes of the ConvNet. With 
YOLO V4 and YOLO V4 Tiny models, only a 

Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices

115



 

maximum of about 16 FPS could be achieved in our 
implementation. Furthermore, with YOLO V4 Tiny 
with 224x224 pixel resolution the size of the detected 
objects is partly incorrect (Fig. 5). For a distance 
measurement to a detected object in a 2D image, for 
example, the detected position and size of the objects 
have to match exactly. This is the case with the SSD 
MobileNet V2 model with 224x224 pixel resolution 
(Fig. 3). A comparison between these two 
experiments (comparison between exp. no. 2 in table 
1 and exp. no 2 in table 3) shows that it is not 
sufficient to select the models based on the COCO 
mAP (Hui, 2018). The YOLO V4 Tiny 224x224 model 
achieves a mAP of 89.5 % (exp. no. 2 in table 3) while 
the SSD MobileNet V2 224x224 model only achieves 
a mAP of 80.8 % (exp. no. 2 in table 1). However, if 
we examine the evaluated test images, we can see that 
the detection of the SSD MobileNet V2 224x224 
model is much more accurate in spite of the smaller 
mAP. Thus, the results should be evaluated and 
examined for each specific use case. 

As a standard, videos with a lot of motion are 
recorded at 30 FPS (Kuzmic and Rudolph A1, 2021). 
To analyse these videos and detect objects in real 
time, the two models SSD MobileNet V2 and SSD Lite 
MobileNet V2 trained with TensorFlow with a 
resolution of 224x224 pixels are suitable for a real-
time application on the Raspberry Pi 4 B with Intel 
NCS2 (exp. no. 1, 2, 5 and 6 in table 1). Here, up to 
approx. 32 FPS could be achieved. 

The SSD models with 320x320 pixel resolution, 
on the other hand, are slightly more accurate than the 
224x224 pixel models. However, they are also 
slightly worse in terms of the run time (comparison 
between exp. no. 6 and 8 in table 1). These models 
achieve up to approx. 17 FPS. This approach does not 
achieve a real-time evaluation on our hardware. 

5 CONCLUSIONS 

This section summarizes once again the points that 
were introduced in this paper. In our research, we 
focused on real-time object detection for custom 
objects. The usage on hardware with limited 
resources for low-power IoT devices was our first 
priority. For this purpose, we also created our own 
data sets from the model making area. In addition, 
several different SSD and YOLO models were trained 
to find a balance between sufficient accuracy and the 
run time of the models. The dissimilar approaches 
allowed us to create a comparison of methods 
between SSD and YOLO on the Raspberry Pi 3 B and 
Raspberry Pi 4 B with Intel Neural Compute Stick 2. 

According to our experiments, the SSD MobileNet V2 
and SSD Lite MobileNet V2 models trained with 
TensorFlow with 224x224 pixel resolution are 
suitable for real-time object detection on the 
Raspberry Pi 4 B with the Intel Neural Compute Stick 
2 as a hardware extension. Here, up to approx. 32 FPS 
could be achieved with described hardware and SSD 
models. This is completely sufficient for a real-time 
application. As our experiments also show, the 
YOLO models trained with the DarkNet framework 
are significantly slower than the SSD models trained 
with TensorFlow on the Raspberry Pi 3 B and 
Raspberry Pi 4 B. These models are not suitable for 
real-time object detection on hardware with limited 
resources for low-power IoT devices. 

In conclusion, we presented the SSD MobileNet 
V2 and SSD Lite MobileNet V2 models with 224x224 
pixel resolution for real-time object detection with 
Raspberry Pi 4 and the Intel Neural Compute Stick 2 
(NCS2). These models achieve an effective balance 
between accuracy and run time.  

6 FUTURE WORK 

As already announced, the goal of our future work is 
to successfully conduct a sim-to-real transfer, 
including our lane and object detection we have 
developed for the model making area. This means the 
simulated environment is completely applied to a real 
model vehicle. In this approach, we focus on 
developing software for hardware with limited 
resources for low-power IoT devices. Additionally, 
we want to set up a model test track like a real 
motorway for this experiment. Another important 
aspect on the motorways is the creation of an 
emergency corridor for the rescue vehicles in the case 
of an accident. Thus, the behaviour of the vehicles in 
the simulation can be compared with the behaviour of 
the model vehicles in reality. It is also conceivable to 
extend this object detection by a distance 
measurement to the detected objects on the lane. This 
can be used, for example, to protect the radar sensor 
in self-driving cars. 
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