
Real-Time Object Detection with Intel NCS2 on Hardware with
Limited Resources for Low-power IoT Devices

Jurij Kuzmic, Patrick Brinkmann and Günter Rudolph
Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 14, Dortmund, Germany

Keywords: Real-Time Object Detection, Convolutional Neural Network (Convnet), Autonomous Driving, Intel Neural
Compute Stick 2 (NCS2), Computational Intelligence, Computer Vision, Tensorflow, Open Vino, YOLO.

Abstract: This paper presents several models for real-time object detection with a hardware extension on hardware with
limited resources. Additionally, a comparison of two approaches for detecting individual objects with Single-
Shot Multibox Detection (SSD) and You Only Look Once (YOLO) architecture in a 2D image with
Convolution Neural Networks (ConvNet) is presented. Here, we focus on an approach to develop real-time
object detection for hardware with limited resources in the field of the Internet of Things (IoT). Also, our
selected models are trained and evaluated with real data from model making area. In the beginning, related
work of this paper is discussed. As well known, a large amount of annotated training data for supervised
learning of ConvNet is required. The data acquisition of the different real data sets is also discussed in this
paper. Additionally, our dissimilar object detection models are compared in accuracy and run time to find the
better and faster system for object detection on hardware with limited resources for low-power IoT devices.
Through the experiments described in this paper, the comparison of the run time depending on different
hardware is presented. Furthermore, the use of a hardware extension is analysed in this paper. For this purpose,
we use the Intel Neural Compute Stick 2 (NCS2) to develop real-time object detection on hardware with
limited resources. Finally, future research and work in this area are discussed.

1 INTRODUCTION

Nowadays it is possible to drive vehicles
autonomously, without human intervention. These
vehicles have a variety of sensors to interpret their
environment and interact with it accordingly. For
example, radar sensors can be used to determine the
distance to the vehicle in front of these cars. But how
does the vehicle behave if this system fails or
provides incorrect distance measurements? Here, a
control system that checks and compares the various
measurements could be advantageous. This control
system could be realized with distance measurements
in a 2D image. For this purpose, the stereo camera can
be used. This camera contains two cameras at a
certain distance, similar to human eyes. This delivers
two images. These both images can be used to
determine the depth of the image to distinguish
between roads, humans, cars, houses, etc. (Li, Chen
and Shen, 2019). However, this various objects have
to be recognized and classified. The autonomous
vehicles have several cameras, including one that is
directed at the road. With this camera, various

objects, such as humans, vehicles or animals, can be
delivered as a 2D image in the field of view of the
camera on the road. These objects have to be
recognized and classified in this 2D image. In
addition, the position of an object on the motorway
can be determined. Additionally, a lane detection
(Kuzmic and Rudolph A1, 2021) have to be
implemented. To evaluate this control system in real
time a real-time object detection is a prerequisite. For
this purpose, we focus in this paper on the real-time
object detection of own objects on a hardware with
limited resources for low-power IoT devices. Object
detection requires usually hardware with high
computational power, such as a graphics processing
unit (GPU), because image processing is a highly
intensive computing procedure. In addition, object
detection is processed with Convolutional Neural
Networks (ConvNets). These are known for their
good processing of images. Also, the ConvNets have
proven to be effective in object detection including
contour finding. In this paper, we have trained and
evaluated different models of object detection with
different architectures such as Single-Shot Multibox

110
Kuzmic, J., Brinkmann, P. and Rudolph, G.
Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices.
DOI: 10.5220/0010979900003194
In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (IoTBDS 2022), pages 110-118
ISBN: 978-989-758-564-7; ISSN: 2184-4976
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Detection (SSD) (Liu et al., 2016) and You Only
Look Once (YOLO) (Redmon et al., 2016). The idea
is to find a suitable system for model cars with non-
high-computing hardware without a GPU. In
addition, there are already low-cost hardware
extensions to improve the run time of ConvNets on
hardware with limited resources. Here, we use the
Intel Neural Compute Stick 2 (NCS2) (CNET, 2018).
This stick contains an Intel Movidius Myriad X
Vision Processing Unit (VPU). The built-in
microcontroller was specially developed for the use
of Convolutional Neural Networks for applications
with low-power consumption and real-time image
processing (Intel, 2021).

Real-time object detection for low-power IoT
hardware limited resources is not only interesting for
the model making area. Additionally, this real-time
object detection can be useful on hardware without
internet connectivity. For example, consider postal
drones that place the package in the garden or in smart
surveillance cameras for agriculture which notify
when certain objects e.g. animal species are detected.
In addition, the route of an object can be tracked
through a real-time evaluation, too. The problem in
academic research is that these algorithms and
procedures, which are already established in the
autonomous vehicles industry, are kept under lock
and key and are not freely accessible. For this reason,
own algorithms and procedures have to be researched
and developed in the academic field. Therefore, the
topic of computer vision has become very popular in
recent years.

The future goal of our work is to switch from the
simulation we developed before (Kuzmic and
Rudolph, 2020) to the real model cars. In case of a
successful transfer of simulation to reality (sim-to-
real transfer), the model car behaves exactly as before
in the simulation. Here, the hardware of these model
cars belongs to the low-power IoT devices with
limited resources.

2 RELATED WORK

There are numerous scientific papers dealing with
object detection, e.g. (Fink et al., 2019) who have
made a deep learning-based multi-scale multi-object
detection and classification for autonomous driving
or (Zaghari et al., 2021) who have developed
improvement in obstacle detection in autonomous
vehicles using YOLO non-maximum suppression
fuzzy algorithm. However, there are only a few
scientific papers that are dealing with the detection of
the objects in real time on hardware with limited

resources for low-power IoT devices. For example,
(Wang, Li and Ling, 2018) who have developed
pelee: a real-time object detection system on mobile
devices. This system reaches 23.6 FPS on an iPhone
8. In their work, the SSD and YOLO architectures
were also analysed. However, the hardware of the
iPhone 8 is quite expensive to use it, for example, in
a model car or as a surveillance camera. Similarly,
there are (Jose et al., 2019) who have researched real-
time object detection on low power embedded
platforms. This system operates at 22 FPS on low-
power TDA2PX System on Chip (SoC) provided by
Texas Instruments (TI). Similarly, there are scientific
works that deal with YOLO real-time object detection
for low-power hardware, such as (Huang, Pedoeem
and Chen, 2018) who have developed YOLO-LITE:
a real-time object detection algorithm optimized for
non-GPU computers or (Jin, Wen and Liang, 2020)
who implemented embedded real-time pedestrian
detection system using YOLO optimized by LNN.
These papers handle with an older YOLOv3 version.
Furthermore, some scientific papers are also dealing
with the Intel Neural Compute Stick 2 such as
(Asmara et al., 2020) who developed prediction of
traffic density using YOLO object detection and
implemented in Raspberry Pi 3b + and Intel NCS 2.

Our approach is to develop a real-time object
detection for low-power IoT hardware and to expand
our previous development in this area (Kuzmic and
Rudolph A2, 2021). Thus, it is possible to develop a
low-cost real-time object detection e.g. for model
making or a surveillance camera in a short time. For
this purpose, we use the Raspberry Pi 3 B and
Raspberry Pi 4 B with the Intel NCS2 as hardware
extension.

3 DATA SET

Before training of the ConvNets, annotated training
data have to be obtained for each specific use case.
This training data is the basis for a successful object
detection. The resolution is given in the format width
x height. Some small pre-tests have shown: it is
sufficient to take pictures of the object in a 360° view.
The colour of the objects does not matter in object
detection. The objects are distinguished by their
different shapes. Our data sets were created with
some objects from the model making area. We
annotated this data manually. The procedure for this
is described in subsection 3.2. Data set 1 contains a
model car PiCar and data set 2 additionally ModCar,
ModAnimal and ModPerson from the real world. So
in data set 1 we have one class with 111 pictures. In

Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices

111

data set 2 there are four classes with a total of 200
pictures. Figure 1 shows some images of the created
training data from our data sets. In addition, the
following can be seen on Figure 1, first two rows:
Data set 1 contains a model car PiCar with various
objects. Here, only the model car is labelled and not
the other objects. So, the ConvNet can learn the
difference to the other objects. Also, small pre-tests
have shown that the ConvNet learns the differences
between the various contours of objects. It is not
enough to train the ConvNet, for example, with the
model car on a white background. Any further
unknown object would be interpreted as a model car
at this point. The human brain, on the other hand,
would learn it.

Figure 1: Our data sets for object detection. First two rows:
Data set 1 from model making area with one class (PiCar).
Last two rows: Data set 2 from model making area with four
classes (PiCar, ModCar, ModAnimal, ModPerson).

If object detection on real data has to be implemented,
already published data sets Microsoft Common
Objects in Context (MS COCO) (Lin et al., 2014) or
PASCAL Visual Object Classes (PASCAL VOC)
(Everingham et al., 2010) can be used. These already
contain thousands of annotated real objects. The split
of our training and test data is 80/20. The test data was
used as validation data.

3.1 Automatic Annotation

It is possible to annotate the objects to be classified
manually. Unfortunately, this method is very time-
consuming for large data sets. With the approach of

contour finding in the HSV colour space, the
coordinates of the objects can be found automatically.
A distinction is made between the hue, the colour
saturation and the colour value (brightness) (Ivanov
and Skryshevsky, 2021). To determine the position of
the object in a 2D image, the input image is converted
from RGB format (Fig. 2, left) into HSV format first
(OpenCV, 2021). Figure 2, middle shows this input
image in a HSV format. Then, the HSV parameters
for the contour finding and the binarization have to be
found (Shermal, 2017). In the next step, a binary
image can be created (Fig. 2, right, without the green
rectangle). These parameters have only to be found
once per object class. From this binary image (white
background, black object), the information for the
position of the object (top left and bottom right) could
be extracted. This gives the position of the object
(Fig. 2, right) for the input image as coordinates for P
(xMin, yMin) and Q (xMax, yMax).

Figure 2: Automatic annotation with the HSV colour space.
Left: Model car in RGB format. Middle: Model car in HSV
format. Right: Model car as binary image with founded
coordinates for P and Q.

Once these coordinates are available, the annotations
can be created in a TensorFlow (Vuppala, 2020) or a
YOLO format (Bochkovskiy, Wang and Liao 2020).
The advantage of this approach: many annotated
training data with different objects can be created in
a short time. Several objects can also be created in one
image. Since, the position of the objects is known,
these objects can be moved or exchanged among each
other. Additionally, to create many different training
data the position and size of the objects can be
changed. The exchange of the background image is
also conceivable. In our case, there was not much
training data. For this reason, we manually annotated
our training data sets. This procedure is described in
the following section 3.2. Nevertheless, we tried and
tested the automatic annotation of the data sets
afterwards.

3.2 Manual Annotation

For our data set, some pictures from several models
from model making were taken (Kuzmic and Rudolph
A2, 2021). Afterwards, these images were manually
annotated with the LabelImg tool (Tzutalin, 2015).

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

112

This tool simplifies the drawing of the rectangle
around an object and automatically determines the
coordinates for P (xMin, yMin) and Q (xMax, yMax).
Then, these coordinates can be stored in an XML file
with the same name as the image file for training with
TensorFlow as annotation. With this tool it is also
possible to save the annotations in a YOLO-format.

4 EXPERIMENTS

The following experiments were carried out to
compare the functionality and the run time of the
different TensorFlow and YOLO models. The
resolution is in the format width x height. The
accuracy is given as COCO mean average precision
(mAP) metric (Hui, 2018). All experiments are
carried out on the same hardware. This gives the
possibility to compare the results afterwards and to
find the optimal object detection system. The test
input images for the respective systems are also the
same. For hardware with limited resources, a single-
board Raspberry Pi 3 B and Raspberry Pi 4 B were
used. The run time of detection is shown as frames
per second (FPS). These measurements contain only
the time for object detection and do not include
loading and processing of the input images. Our
Hardware for the experiments:

 Training of the ConvNets on Google Colab
with Intel Xeon 2.30 GHz CPU, 26 GB RAM,
NVIDIA Tesla P100-PCIE-16GB GPU.

 Raspberry Pi 3 B with ARM Cortex-A53 1.2
GHz CPU, 1 GB RAM, USB 2.0, 8 GB SD as
hardware with limited resources.

 Raspberry Pi 4 B with ARM Cortex-A72 1.5
GHz CPU, 8 GB RAM, USB 3.0, 16 GB SD as
hardware with limited resources.

 Intel Neural Compute Stick 2 (NCS2) with
Intel Movidius Myriad X Vision Processing
Unit 4 GB (VPU) as hardware extension for
artificial neural networks.

4.1 Object Detection with SSD and
Intel NCS2

In these experiments the models we have trained with
TensorFlow are evaluated on the hardware with
limited resources. The first step was to find some fast
TensorFlow models. For TensorFlow some pre-
trained models are available. These models have been
already established in object detection with real data.
In the TensorFlow 1 Detection Model Zoo (Shi,
2020), several ConvNet models are available for

TensorFlow 1. These have already been pre-trained
on the MS COCO 17 data set (Lin et al., 2014) and
can detect and classify 90 different objects. The
accuracy and the run time of these models is also
specified. This gives first comparison of the ConvNet
models. Furthermore, these models can be trained
with several objects with the TensorFlow Object
Detection API (Yu et al., 2020) in the next step. This
library supports TensorFlow 1 and TensorFlow 2.
The input resolution of these networks can also be
adjusted. To evaluate these models on the Raspberry
Pi and the Intel NCS2 for several objects, the models
are first trained with TensorFlow 1.15.5 with our
training data. Subsequently, the trained models have
to be exported as a frozen inference graph. Then,
these models can be converted to OpenVINO models
using the OpenVINO 2021.3 library (OpenVINO,
2021) to run them on the Intel Neural Compute Stick
2. Python 3.7.3 was used to execute the converted
OpenVINO models on the hardware with limited
resources. The SSD MobileNet V2 and SSD Lite
MobileNet V2 models were used in our experiments.

Table 1: Run time overview of trained TensorFlow models
on Raspberry Pi 3 B with Intel NCS2 and Raspberry Pi 4 B
with Intel NCS2. First column contains the number (ID) of
the experiment (Exp. No.).

Exp.
No.

Model
Data
Set

mAP

Run time
[FPS]

RPI
3 B

RPI
4 B

1
SSD

MobileNet
V2 224x224

Mod 1 93.3 17.4 31.9

2
SSD

MobileNet
V2 224x224

Mod 2 80.8 17.2 31.7

3
SSD

MobileNet
V2 320x320

Mod 1 96.7 9.8 18.0

4
SSD

MobileNet
V2 320x320

Mod 2 88.5 9.7 17.9

5
SSD Lite

MobileNet
V2 224x224

Mod 1 99.9 16.5 29.5

6
SSD Lite

MobileNet
V2 224x224

Mod 2 83.3 16.3 29.1

7
SSD Lite

MobileNet
V2 320x320

Mod 1 99.8 9.4 16.7

8
SSD Lite

MobileNet
V2 320x320

Mod 2 93.6 9.3 16.7

It is interesting to note that the SSD MobileNet V2 and
SSD Lite MobileNet V2 models are not listed as

Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices

113

supported network architecture on the official Intel
Movidius page (Movidius, 2019). At the time of our
experiments and implementation, only the SSD
MobileNet V1 models and the Inception models are
listed as supported networks on the official Intel
Movidius page. Nevertheless, for the development of
our real-time object detection system we decided to
use the current SSD MobileNet V2 and SSD Lite
MobileNet V2 models and to run them with
OpenVINO on the Intel NCS2. According to the
TensorFlow 1 Detection Model Zoo (Shi, 2020), the
SSD MobileNet V2 models are partly faster and more
accurate than the SSD MobileNet V1 models. Table 1
shows an overview of the accuracy and run time of
the trained SSD models on the Raspberry Pi 3 B with
Intel NCS2 and Raspberry Pi 4 B with Intel NCS2.
Also, SSD Lite MobileNet V2 models with one class
as output can quickly overtrain (exp. no. 5 in table 1).
Additionally, we can see that the run time on the
Raspberry Pi 4 B with Intel NCS2 is almost twice as
high (exp. no. 1 in table 1). Our assumption at this
point: The Raspberry Pi 3 B only has a USB 2.0
interface. The Raspberry Pi 4 B, on the other hand,
has a USB 3.0 interface. The Intel NCS2 hardware
extension is also use a USB 3.0 interface. Thus, this
is the bottleneck in terms of the run time. To check
this, the SSD MobileNet V2 224x224 model was also
run on the Raspberry Pi 4 B with the Intel NCS2 on
the USB 2.0 interface. Table 2 shows that our
assumption is correct. The run time bottleneck on the
Raspberry Pi 3 B with the Intel NCS2 is the USB 2.0
interface (comparison between exp. no. 1 in table 1
and exp. no. 1 in table 2).

Table 2: Run time overview of USB 2.0 and USB 3.0 on
Raspberry Pi 4 B with Intel NCS2. First column contains
the number (ID) of the experiment (Exp. No.).

Exp.
No.

Model
Data
Set

mAP

Run time
[FPS]

USB
2.0

USB
3.0

1
SSD

MobileNet
V2 224x224

Mod 1 93.3 18.9 31.9

Let now have a look to the evaluation of the test data
from the worst SSD model (Fig. 3). This model
achieves an accuracy of 80.8 % (exp. no. 2 in table 1).
In Figure 3 can be seen that the detection of four
classes PiCar, ModCar, ModAnimal and ModPerson
is very accurate. Also, the classification and the
position of the detected objects matches exactly
(green rectangles). That is, the predicted object
boundary overlaps exactly with the real object
boundary. This detection is completely sufficient for

our purpose. Also, the never seen objects could be
detected by our trained SSD model. For example, a
Lego person (Fig. 4, left), a model horse (Fig. 4,
middle) and a blue model car (Fig. 4, right) are
correctly recognized and classified by this model.
During training the ConvNet has already seen figures
of model persons, model animals and model cars.
This ConvNet learned the similar shapes of the
objects and not only images from the training data set.
Furthermore, every other object with an unknown
shape is recognized as a PiCar. The models have
never seen any object with a similar shape (contour)
during the training. Thus, the object cannot be clearly
classified. As a result, the first output class PiCar is
assigned to this unknown object. This problem can be
solved by enlarging the data set. More training data
with the PiCar and many different objects (different
shapes) is needed. So, the difference to other shapes
can be learned.

Figure 3: Object detection with SSD MobileNet V2 224x224
model trained with TensorFlow (exp. no. 2 in table 1).
Green rectangle shows the detection of the object by the
ConvNet. This model contains four classes as output
(PiCar, ModCar, ModAnimal, ModPerson).

Figure 4: Object detection on never seen objects with SSD
MobileNet V2 224x224 model trained with TensorFlow
(exp. no. 2 in table 1). Green rectangle shows the detection
of the object by the ConvNet. This model contains four
classes as output (PiCar, ModCar, ModAnimal,
ModPerson). Left: Detected model person. Middle:
Detected model animal. Right: Detected model car.

4.2 Object Detection with YOLO and
Intel NCS2

To implement a comparable system for object
detection, some current YOLO V4 models
(Bochkovskiy et al., 2020) were trained and evaluated
using the same data sets and the DarkNet framework

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

114

(version: CSPDarknet53). For this purpose, the
empty weights for YOLO V4 (yolov4.conv.137) and
YOLO V4 Tiny (yolov4-tiny.conv.29) were used
(Bochkovskiy et al., 2020). Then, the trained weights
of the models were converted to Protobuf models
using TensorFlow 1.12.0 and Protobuf 3.15.6
(Tianwen, 2021). Python 3.6.13 was used for this
conversion. Notice, a conversion using Python 3.7.3
did not work at the time of the experiments.
Subsequently, the converted Protobuf models can be
converted to OpenVINO using the OpenVINO 2020.4
library and YOLO configuration files (Tianwen,
2021) in the next step. After the conversion to
OpenVINO, several frozen DarkNet YOLO V4 and
YOLO V4 Tiny models are obtained to run them on
the Intel Neural Compute Stick 2 hardware extension
with Python 3.7.3 (similar procedure to TensorFlow).
Table 3 shows an overview of the accuracy and run
time of the trained YOLO models on the Raspberry
Pi 3 B with the Intel NCS2 and Raspberry Pi 4 B with
the Intel NCS2.

Table 3: Run time overview of trained YOLO models on
Raspberry Pi 3 B with Intel NCS2 and Raspberry Pi 4 B
with Intel NCS2. First column contains the number (ID) of
the experiment (Exp. No.).

Exp.
No.

Model
Data
Set

mAP

Run time
[FPS]

RPI
3 B

RPI
4 B

1
YOLO V4

Tiny
224x224

Mod 1 93.3 9.9 15.5

2
YOLO V4

Tiny
224x224

Mod 2 89.5 9.8 15.4

3
YOLO V4

Tiny
320x320

Mod 1 98.6 5.3 8.5

4
YOLO V4

Tiny
320x320

Mod 2 94.5 5.2 8.3

5
YOLO V4
224x224

Mod 1 100 1.7 2.2

6
YOLO V4
224x224

Mod 2 99.2 1.6 2.2

7
YOLO V4
320x320

Mod 1 100 0.9 1.7

8
YOLO V4
320x320

Mod 2 98.8 0.9 1.7

It can be seen that the YOLO V4 models with one class
as output can quickly overtrain. Let now have also a
look to the evaluation of the object detection on the
same test image from the worst YOLO V4 Tiny model
(Fig. 5). This model achieves an accuracy of 89.5 %
(exp. no. 2 in table 3). As also can be seen in figure 5
the classification of the objects corresponds.

However, the position of the detected objects does not
match exactly (for example white model car in figure
5). That is, the predicted object boundary does not
overlap exactly with the real object boundary. Also,
the never seen objects could be detected by our
trained YOLO model. For example, a Lego person
(Fig. 6, left), a model horse (Fig. 6, middle) and a blue
model car (Fig. 6, right) are correctly classified by
this model. However, the position of the detected
objects (green rectangles) does not match. Also, some
objects are recognized twice (Fig. 6, middle.
Therefore, the object detection with the YOLO
architecture is not suitable for our use case.

Figure 5: Object detection with YOLO V4 Tiny 224x224
model trained with DarkNet (exp. no. 2 in table 3). Green
rectangle shows the detection of the object by the ConvNet.
This model contains four classes as output (PiCar, ModCar,
ModAnimal, ModPerson).

Figure 6: Object detection on never seen Objects with
YOLO V4 Tiny 224x224 model trained with DarkNet (exp.
no. 2 in table 3). Green rectangle shows the detection of the
object by the ConvNet. This model contains four classes as
output (PiCar, ModCar, ModAnimal, ModPerson). Left:
Detected model person. Middle: Detected model animal.
Right: Detected model car.

4.3 Evaluation of Run Time and
Accuracy

After the experiments and performance tests of the
models have been completed, evaluating of the run
times of these different models could be started.
Therefore, it is important to find a balance between
sufficient accuracy and the run time of the models.
Also, some experiments show longer training does
not affect the run time. The run time depends only on
the model architecture, on size of the input resolution
and on size of the output classes of the ConvNet. With
YOLO V4 and YOLO V4 Tiny models, only a

Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices

115

maximum of about 16 FPS could be achieved in our
implementation. Furthermore, with YOLO V4 Tiny
with 224x224 pixel resolution the size of the detected
objects is partly incorrect (Fig. 5). For a distance
measurement to a detected object in a 2D image, for
example, the detected position and size of the objects
have to match exactly. This is the case with the SSD
MobileNet V2 model with 224x224 pixel resolution
(Fig. 3). A comparison between these two
experiments (comparison between exp. no. 2 in table
1 and exp. no 2 in table 3) shows that it is not
sufficient to select the models based on the COCO
mAP (Hui, 2018). The YOLO V4 Tiny 224x224 model
achieves a mAP of 89.5 % (exp. no. 2 in table 3) while
the SSD MobileNet V2 224x224 model only achieves
a mAP of 80.8 % (exp. no. 2 in table 1). However, if
we examine the evaluated test images, we can see that
the detection of the SSD MobileNet V2 224x224
model is much more accurate in spite of the smaller
mAP. Thus, the results should be evaluated and
examined for each specific use case.

As a standard, videos with a lot of motion are
recorded at 30 FPS (Kuzmic and Rudolph A1, 2021).
To analyse these videos and detect objects in real
time, the two models SSD MobileNet V2 and SSD Lite
MobileNet V2 trained with TensorFlow with a
resolution of 224x224 pixels are suitable for a real-
time application on the Raspberry Pi 4 B with Intel
NCS2 (exp. no. 1, 2, 5 and 6 in table 1). Here, up to
approx. 32 FPS could be achieved.

The SSD models with 320x320 pixel resolution,
on the other hand, are slightly more accurate than the
224x224 pixel models. However, they are also
slightly worse in terms of the run time (comparison
between exp. no. 6 and 8 in table 1). These models
achieve up to approx. 17 FPS. This approach does not
achieve a real-time evaluation on our hardware.

5 CONCLUSIONS

This section summarizes once again the points that
were introduced in this paper. In our research, we
focused on real-time object detection for custom
objects. The usage on hardware with limited
resources for low-power IoT devices was our first
priority. For this purpose, we also created our own
data sets from the model making area. In addition,
several different SSD and YOLO models were trained
to find a balance between sufficient accuracy and the
run time of the models. The dissimilar approaches
allowed us to create a comparison of methods
between SSD and YOLO on the Raspberry Pi 3 B and
Raspberry Pi 4 B with Intel Neural Compute Stick 2.

According to our experiments, the SSD MobileNet V2
and SSD Lite MobileNet V2 models trained with
TensorFlow with 224x224 pixel resolution are
suitable for real-time object detection on the
Raspberry Pi 4 B with the Intel Neural Compute Stick
2 as a hardware extension. Here, up to approx. 32 FPS
could be achieved with described hardware and SSD
models. This is completely sufficient for a real-time
application. As our experiments also show, the
YOLO models trained with the DarkNet framework
are significantly slower than the SSD models trained
with TensorFlow on the Raspberry Pi 3 B and
Raspberry Pi 4 B. These models are not suitable for
real-time object detection on hardware with limited
resources for low-power IoT devices.

In conclusion, we presented the SSD MobileNet
V2 and SSD Lite MobileNet V2 models with 224x224
pixel resolution for real-time object detection with
Raspberry Pi 4 and the Intel Neural Compute Stick 2
(NCS2). These models achieve an effective balance
between accuracy and run time.

6 FUTURE WORK

As already announced, the goal of our future work is
to successfully conduct a sim-to-real transfer,
including our lane and object detection we have
developed for the model making area. This means the
simulated environment is completely applied to a real
model vehicle. In this approach, we focus on
developing software for hardware with limited
resources for low-power IoT devices. Additionally,
we want to set up a model test track like a real
motorway for this experiment. Another important
aspect on the motorways is the creation of an
emergency corridor for the rescue vehicles in the case
of an accident. Thus, the behaviour of the vehicles in
the simulation can be compared with the behaviour of
the model vehicles in reality. It is also conceivable to
extend this object detection by a distance
measurement to the detected objects on the lane. This
can be used, for example, to protect the radar sensor
in self-driving cars.

REFERENCES

Asmara, R. A., Syahputro, B., Supriyanto, D., Handayani,
A. N., 2020. Prediction of Traffic Density Using YOLO
Object Detection and Implemented in Raspberry Pi 3b
+ and Intel NCS 2. 4th International Conference on
Vocational Education and Training (ICOVET), ISBN:
978-1-7281-8132-5.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

116

Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020.
YOLOv4: Optimal Speed and Accuracy of Object
Detection. arXiv:2004.10934.

CNET, 2018. Faster new Intel AI brain sticks into the side
of your PC for $99. The Neural Compute Stick 2 uses a
Movidius Myriad X artificial intelligence chip and is
geared for prototype projects. Cnet.com. [online].
Available at: https://www.cnet.com/news/faster-new-
intel-ai-brain-sticks-into-the-side-of-your-pc-for-99/.
Accessed: 10/05/2021.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., Zisserman, A., 2010. The PASCAL visual object
classes (VOC) challenge. International Journal of
Computer Vision (IJCV), Volume 88, Issue 2, pp. 303-
338.

Fink, M., Liu, Y., Engstle, A., Schneider, S. A., 2019. Deep
learning-based multi-scale multi-object detection and
classification for autonomous driving. In:
Fahrerassistenzsysteme 2018, Springer, ISBN 978-3-
658-23751-6, pp. 233-242.

Hui, J., 2018. mAP (mean Average Precision) for Object
Detection. COCO mAP. Jonathan-hui.medium.com.
[online]. Available at: https://jonathan-hui.medium.
com/map-mean-average-precision-for-object-
detection-45c121a31173. Accessed: 10/05/2021.

Huang, R., Pedoeem, J., Chen, C., 2018. YOLO-LITE: A
Real-Time Object Detection Algorithm Optimized for
Non-GPU Computers. IEEE International Conference
on Big Data (IEEE Big Data 2018), ISBN 978-1-5386-
5036-3.

Intel, 2021. Intel Movidius Vision Processing Units (VPUs).
Intel.com. [online]. Available at: https://www.
intel.com/ content/www/us/en/products/details/
processors/movidius-vpu.html. Accessed: 24/06/2021.

Ivanov, I., Skryshevsky, V., 2021. Porous Silicon Bragg
Reflector Sensor: Applying HSV Color Space for
Sensor Characterization. IEEE 16th International
Conference on the Experience of Designing and
Application of CAD Systems (CADSM), ISBN: 978-1-
6654-4605-1, pp. 15-19.

Jin, Y., Wen, Y., Liang, J., 2020. Embedded Real-Time
Pedestrian Detection System Using YOLO Optimized
by LNN. International Conference on Electrical,
Communication, and Computer Engineering
(ICECCE), ISBN 978-1-7281-7117-3.

Jose, G., Kumar, A., Kruthiventi, S., Saha, S., Muralidhara,
H., 2019. Real-Time Object Detection On Low Power
Embedded Platforms. IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW),
ISBN: 978-1-7281-5024-6.

Kuzmic, J., Rudolph, G., 2020. Unity 3D Simulator of
Autonomous Motorway Traffic Applied to Emergency
Corridor Building. In Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security, ISBN 978-989-758-426-8, pp. 197-
204.

Kuzmic, J., Rudolph, G., A1, 2021. Comparison between
Filtered Canny Edge Detector and Convolutional
Neural Network for Real Time Lane Detection in a
Unity 3D Simulator. In Proceedings of the 6th

International Conference on Internet of Things, Big
Data and Security (IoTBDS), ISBN 978-989-758-504-
3, pp. 148-155.

Kuzmic, J., Rudolph, G., A2, 2021. Object Detection with
TensorFlow on Hardware with Limited Resources for
Low-Power IoT Devices. 13th International Conference
on Neural Computation Theory and Applications
(NCTA).

Li, P., Chen, X., Shen, S., 2019. Stereo R-CNN Based 3D
Object Detection for Autonomous Driving. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7644-7652.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C. L., 2014, Microsoft
COCO: common objects in context. In: Fleet D, Pajdla
T, Schiele B, Tuytelaars T, editors, Computer Vision-
ECCV 2014, Springer, ISBN 978-3-319-10602-1, pp.
740-755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., Berg, A. C., 2016. SSD: Single Shot Multibox
Detector. In European conference on computer vision
(ECCV), Springer, 2016, pp. 21-37.

Movidius, 2019. TensorFlow Support. Movidius.github.io.
[online]. Available: https://movidius.github.io/ncsdk/
tensorflow.html. Accessed: 10/04/2021.

OpenCV, 2021. Color conversions. Opencv.org. [online].
Available at: https://docs.opencv.org/master/de/d25/
imgproc_color_conversions.html#color_convert_rgb_
hsv. Accessed: 09/03/2021.

OpenVINO, 2021. Converting a TensorFlow* Model.
Openvinotoolkit.org. [online]. Available at:
https://docs.openvinotoolkit.org/latest/openvino_docs_
MO_DG_prepare_model_convert_model_Convert_M
odel_From_TensorFlow.html#Convert_From_TF.
Accessed: 05/05/2021.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016.
You only look once: Unified, real-time object detection.
In Conference on Computer Vision and Pattern
Recognition (CVPR).

Shi, Y., 2020. TensorFlow 1 Detection Model Zoo.
Github.com. [online]. Available at: https://github.com/
tensorflow/models/blob/master/research/object_detecti
on/g3doc/tf1_detection_zoo.md. Accessed:
23/06/2021.

Shermal, F., 2017. Color Detection & Object Tracking.
Opencv-srf.com. [online]. Available at: https://www.
opencv-srf.com/2010/09/object-detection-using-color-
seperation.html. Accessed: 09/03/2021.

Tianwen, W., 2021. OpenVINO-YOLOV4. Github.com.
[online]. Available at: https://github.com/TNTWEN/
OpenVINO-YOLOV4. Accessed: 10/07/2021.

Tzutalin, 2015. LabelImg. Github.com. [online]. Available
at: https://github.com/tzutalin/labelImg. Accessed:
07/05/2021

Vuppala, S. R., 2020. Getting data annotation format right
for object detection tasks. Medium.com. [online].
Available at: https://medium.com/analytics-vidhya/
getting-data-annotation-format-right-for-object-
detection-tasks-f41b07eebbf5. Accessed: 03/03/2021.

Real-Time Object Detection with Intel NCS2 on Hardware with Limited Resources for Low-power IoT Devices

117

Wang, R. J., Li, X., Ling, C. X., 2018. Pelee: A Real-Time
Object Detection System on Mobile Devices. 32nd
Conference on Neural Information Processing Systems
(NeurIPS).

Yu, H., Chen, C., Du, X., Li, Y., Rashwan, A., Hou, L., Jin,
P., Yang, F., Liu, F., Kim, J., Li, J., 2020. TensorFlow
Model Garden. Github.com. [online]. Available at:
https://github.com/tensorflow/models. Accessed:
19/05/2021.

Zaghari, N., Fathy, M., Jameii, S. M., Shahverdy, M., 2021.
The improvement in obstacle detection in autonomous
vehicles using YOLO non-maximum suppression fuzzy
algorithm. The Journal of Supercomputing, DOI:
10.1007/s11227-021-03813-5.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

118

