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Abstract:  To cope with the growing volume of data and complexity of the associated processing logic, modern CPU 
capabilities such as vector registers and SIMD (Single Instruction Multiple Data) instructions need to be taken 
advantage of. Although from a technical point of view, usage of SIMD instructions is not complicated, 
building computing tasks with good SIMD capabilities has always been a challenging task. Modern compilers 
assist developers to some extent with solutions like Compiler Automatic Vectorization, which is not always 
sufficient, and several researchers demonstrate that manual code optimization is still necessary. The paper 
gives an overview of the existing computing task optimization approaches, designs and describes development 
of a cloud-based software optimization platform and demonstrates its usage by optimizing a software 
correlator.

1 INTRODUCTION 

The data volume and complexity of computing tasks 
are constantly increasing, requiring more power, 
resources, and energy (Rong, Zhang, Xiao, Li, & Hu, 
2016). It is also driven by the IoT phenomena, due to 
which the number of connected devices and potential 
data sources has grown rapidly. Some sources suggest 
that the number of connected IoT devices will reach 
50 billion in the near future (Marjani et al., 2017). 
One of the possible solutions is the horizontal and 
vertical scaling of the computing infrastructure, 
however, the approach is associated with several 
shortcomings. There are certain limits to vertical 
scalability, and not all computing tasks are built in a 
way that they can be scaled horizontally. It may not 
always be technologically possible, especially in the 
case of edge computing (Ren, Guo, Xu, & Zhang, 
2017). It may also be unfeasible from an economic 
perspective, especially due to the recent increase in 
the cost of electricity.  

Another approach to solving the problem of 
computing capacity deficiency is related to the 
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computing task itself. It involves code refactoring or 
optimization activities allowing developers to get 
better performance with less resources. The inability 
of computing tasks to take complete advantage of the 
CPU has become particularly topical since the 
beginning of the 21st century, when CPU 
manufacturers have shifted their focus from growth 
of clock speed towards more sophisticated solutions 
like increasing the number of cores, adding larger 
vector registers, and Single Instruction Multiple Data 
(SIMD) capabilities. Although modern compilers 
assist developers to some extent with solutions like 
Compiler Automatic Vectorization (CAV), this is not 
always sufficient. Several researchers conclude that 
manual code optimization is superior to CAV (Amiri 
& Shahbahrami, 2020; Watanabe & Nakagawa, 
2019). Some of the reasons for CAV to fail are 
conservative dependency analysis and behaviour for 
handling of boundary cases, data layouts that do not 
allow the contiguous memory accesses needed for 
SIMD (Holewinski et al., 2012).  

In order to address the challenges associated with 
computing task optimization, we have previously 
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proposed a methodology and demonstrated its usage 
(Kampars et al., 2020). The goal of this paper is to 
define a cloud-based platform that facilitates the 
optimization of computing tasks according to the 
aforementioned methodology.  

The paper is structured as follows. Section 2 
provides an overview of the computing task 
optimization approaches while focusing on the 
vectorization and SIMD instructions. Section 3 gives 
a brief overview of the ReCoTOS optimization 
methodology. Section 4 designs the platform 
according to the previously defined methodology. 
Section 5 provides a computing task optimization use 
case that demonstrates the functionality of the 
platform. Section 6 concludes with final remarks and 
directions for future research. 

2 COMPUTING TASK 
OPTIMIZATION APPROACHES 

Although from a technical point of view, usage of 
SIMD instructions is not complicated, building 
computing tasks with good SIMD capabilities has 
always been a challenging task (Amiri & 
Shahbahrami, 2020). Some of the applicable 
optimization approaches are summarized in the 
following subsections. 

2.1 Assembly Level Programming 

The resource-intensive sections of the computing task 
requiring optimization are implemented in the 
assembly language in the form of modules (Amiri & 
Shahbahrami, 2020; Cockshott & Renfrew, 2004). 
Variables are moved between the assembler and a 
high-level programming language during run-time. 
Good knowledge of both the assembly and high-level 
programming language is required. Due to the low 
level of abstraction, the maintainability of the code 
will suffer and moving between different CPU 
architectures will be complex.  

2.2 Intrinsic Programming Model 

Intrinsic programming model (IPM) relies on 
assembly-type instructions, which are added in the 
source code of a high-level programming language. 
The IPM instructions correspond to a specific SIMD 
instruction that the compiler will further use to 
vectorize the code. The code is more readable; no in-
depth assembly knowledge is required, but the IPM 
instructions are specific to the processor 

microarchitecture, which is why portability of the 
code suffers. The use of IPM is also specific to the 
compiler version (Hughes, 2015). The programming 
model provides the most significant increase in 
performance compared to other approaches according 
to some researchers (Nuzman & Zaks, 2008). 

2.3 Pragma Syntax 

Pragma syntax allows one to insert instructions for 
the compiler in the source code of a high-level 
programming language. Such instructions could be 
inserted before the start of a loop or other logical 
block, instructing the compiler that vectorization 
should occur. The compiler may choose to ignore 
these instructions, which is why performance gains 
are not guaranteed (Hughes, 2015). 

2.4 Compiler Automatic Vectorization 

CAV provides indirect code vectorization, without 
the need to make any changes in the code. This allows 
the developers to concentrate on the business logic 
and to worry less about specific microprocessor 
architectures and SIMD instruction sets. CAV avoids 
manual code optimization, provides easier-to-read 
and maintain code portability; however, CAV is not 
able to successfully vectorize all computing tasks 
(Watanabe and Nakagawa, 2019). 

2.5 External Libraries and Parallel 
Programming Standards 

Programmers can opt for the integration of 
specialized high-performance libraries into their 
computing tasks. If the standardized operations such 
as matrix multiplication or Fourier transformations 
are required, it is possible to find a high-performance 
library which provides this operation in highly 
optimized manner.  

Frameworks like OpenCL (Stone, Gohara, & Shi, 
2010) allow one to write portable and parallelizable 
computing tasks relying on standardized 
parallelization operations. These operations are 
implemented in such a way that they can take 
advantage of specific processor microarchitecture 
while requiring no changes to the source code of the 
original computing task. OpenCL programs can also 
be executed on Graphical Processing Units (GPUs). 
The advantages of the approach are portability and 
performance at a higher level of abstraction, while the 
disadvantage is that not all standardized 
parallelization operations are executed equally fast on 
all technical platforms due to different architectural 
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constraints and their specific instruction mappings 
(Lai, Luo, & Xie, 2019). 

3 OPTIMIZATION 
METHODOLOGY OVERVIEW 

Availability of various optimization methods presents 
a difficult choice for the developers. Typical 
development environments and code management 
systems do not provide support to evaluate and to 
select the most suitable approach and lack 
methodological support.  

To address this a platform is developed on the 
basis of a methodology for vectorization-based 
resource-saving computing task optimization 
(Kampars et al., 2020). The methodology consists of 
concepts, technologies, and optimization process thus 
facilitating more efficient use of modern CPU 
vectorization capabilities and gaining the associated 
performance improvements.  

The methodology guides the optimization of 
computing tasks (application or a component of an 
application that can be logically isolated and executed 
separately). Initially, valid results of the computing 
task are recorded, and a performance baseline is 
established. The necessary performance 
improvement is defined, and the optimization starts 
with performing computing task level optimizations 
that do not require any changes to the source code. An 
example of such optimization is to choose the best 
compiler version and its flags.  

Further methodology reviews computing task 
kernels (certain functionality returning a result or 
change of kernel’s internal state according to the 
received input) and identifies hot kernels (the ones 
consuming a significant proportion of resources). 
Static and dynamic analysis of the computing task is 
used for this purpose. Each of the identified hot 
kernels can be optimized as part of an optimization 
iteration.  

Optimization iterations are started by the possible 
introduction of external libraries or replacement of 
existing libraries with ones providing better 
performance. This is proposed as the first step since 
this method does not affect the portability of the code, 
can have great impact on the performance, and is 
simpler to implement compared with other strategies.  

The next method is concerned with introducing 
structural changes in the source code (modifying the 
source of a computing task or its hot kernel to achieve 
better performance) and lastly IPM is applied. IPM is 
the least preferred method since it is harder to 

implement and negatively affects portability and 
maintainability of the codebase. 

After each of the optimizations, the results of the 
computing task and kernel being optimized are 
recorded and checked against the previously recorded 
ones. Performance also needs to be measured to see if 
the necessary performance improvement has been 
reached. If the performance improvement after an 
optimization is negative or if it is associated with 
maintainability degradation that outweighs the 
performance benefits, the changes are reverted, and 
another iteration is started. While in case of the 
positive results, the changes are saved, and it is 
determined if further optimization is required and 
what would be the most appropriate actions for that. 

4 DESIGN OF ReCoTOS 
PLATFORM  

The architecture of the platform is shown in Figure 1 
and its components are detailed in the following 
subsection. 

4.1 Platform Functional Components 

The ReCoTOS core is used as a mediator in the 
execution of various asynchronous processes related 
to the optimization of computational tasks, as well as 
to ensure the creation of appropriate containers by 
interacting with the Kubernetes orchestration system. 

  

Figure 1: ReCoTOS platform architecture. 

The ReCoTOS core allows for creation of loosely 
coupled components by acting as a mediator between 
them. Multiple instances of the ReCoTOS core can be 
run simultaneously to ensure horizontal scalability 
and fault tolerance. It is implemented in the NodeJS, 
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which is also used in the implementation of several 
other ReCoTOS components. 

The purpose of the reverse proxy component is to 
redirect the request received from the browser to the 
appropriate platform component, hiding the 
implementation details from the platform user and 
providing a homogeneous and integrated 
environment. It is also used to implement user 
authentication and access control for components that 
do not include such functionality. The component 
includes load balancer functionality, which allows to 
distribute requests between multiple service 
instances, thus contributing to scalability and fault 
tolerance. It is integrated with the Redis key-value 
store to ensure its reconfiguration during runtime. 
While reviewing options such as Nginx, Traefik and 
OpenResty, the latter one was found to be the most 
suitable. OpenResty is a web platform that integrates 
an enhanced core of the open-source version of 
Nginx, a Lua language programming module and 
compiler, as well as Nginx modules developed by 
third parties. Lua programming language support 
allows creation of dynamic configurations which can 
be integrated with a key-value stores such as Redis. 

The platform needs to provide identity and access 
management, which is achieved by using KeyCloak. 
The module is integrated with the Reverse proxy 
server and load balancer verifying that the client has 
obtained a valid JSON Web Token (JWT) object and 
has access to the appropriate resource. The module 
secures user-facing microservices such as 
Optimization pattern repository, ReCoTOS 
management dashboard, and Integrated optimization 
environment. Session information is being stored in 
the Redis key-value store. 

The Optimization pattern repository is designed to 
store reusable best practices for optimizing 
computing tasks according to the previously defined 
methodology (Kampars et al., 2020). A pattern will 
consist of a description of the context and the 
corresponding solution, including versioned code 
samples and measured performance improvements. 
To store the original code with possibly multiple 
rounds of edits leading to the final optimization, the 
module is integrated with the Version control system, 
while pattern related metadata is stored in the NoSQL 
database. To make the patterns runnable and easily 
reusable, integration with the Integrated optimization 
environment is also provided. The Optimization 
pattern repository is implemented by using the 
NodeJS Express and VueJS frameworks. 

The ReCoTOS management panel is used for user 
authorization, management of optimization projects, 
and navigating between the platform’s user-facing 

modules. It is built based on the NodeJS Express and 
VueJS frameworks and stores optimization project-
related data in the NoSQL database. 

The Dynamic analysis module framework is 
extendable to support multiple profilers. It stores the 
profiling results in the NoSQL database and makes 
them available in the Integrated optimization 
environment. Initially, two dynamic analysis modules 
are included in the framework supporting Google 
pprof and GNU gprof. The extendibility of the 
component allows the addition of more profilers in 
the future. Profiling tasks are automated using CMake 
and CTest, while the framework adds the necessary C 
and C++ flags needed for the profiler to the 
CMakeLists.txt file.  The dynamic analysis process is 
implemented in an asynchronous manner according 
to the event-driven architecture, as this architecture is 
best suited for resource-intensive tasks, provides 
horizontal scaling capabilities, and does not freeze the 
user interface during the process. 

The result validation module stores the result of a 
computational task and ensures that it is not corrupted 
after the optimization activities have been performed. 
The tests are run from the Integrated optimization 
environment, while the results are written to the 
objects storage or NoSQL database depending on the 
use case. The process is implemented asynchronously 
according to the event-driven architecture and relies 
on the use of CMake and CTest. 

The performance and stability evaluation module 
sets the performance baseline and records the possible 
improvements after optimization activities. In the 
current version only the processor time is estimated; 
however, the module can be extended with additional 
functionality. Performance and stability evaluation is 
initialized through the Integrated optimization 
environment and relies on CMake and CTest. The 
results are logged in the NoSQL database and can be 
reviewed in the Integrated optimization environment. 

The performance and stability evaluation process 
is implemented asynchronously and uses queue for 
this purpose. 

The purpose of the static analysis module 
framework is to provide transformations aimed 
towards performance improvement. The framework 
contains an external library detection module that 
allows one to detect used external libraries and their 
possible alternatives. It also integrates with the ROSE 
compiler (Quinlan & Liao, 2011), which provides 
automated transformation of source code allowing to 
improve its efficiency and performance. The 
transformation process starts from the integrated 
optimization environment, and it is implemented 
asynchronously by using queue for passing tasks to 
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the appropriate containerized workers. Object storage 
serves the purpose of storing temporary files needed 
for exchanging data between the Integrated 
optimization environment and worker containers. 

The compiler framework provides unified 
infrastructure services for assessing the suitability of 
several compilers and their versions for a specific 
computing task and determining the optimal values of 
their configuration parameters in a semiautomated 
way. Currently three latest major versions of GCC are 
supported; however, it is possible to extend the 
component with additional compilers. To determine 
the optimal compiler and its configuration, it is also 
necessary to validate the results of computational 
tasks and evaluate their performance. The interaction 
with these modules is orchestrated by the ReCoTOS 
core, and the process is started from the Integrated 
optimization environment. The results are stored in 
the NoSQL database. Once the optimal settings have 
been determined, the Integrated optimization 
environment is reconfigured accordingly and 
restarted. The process is implemented 
asynchronously to avoid freezing of the user 
interface. 

4.2 Integrated Optimization 
Environment 

Special attention was paid to choosing technology for 
the Integrated optimization environment, since it is a 
user-facing component and most of the time the users 
of the platform would spend interacting with this 
module.  

Eclipse Theia, Atheos, Gitpod, Eclipse Che, Cloud9 
were reviewed as the potential candidates for the 
integrated optimization environment. The following 
tools were dismissed from further evaluation: 
 Cloud9 – the free version does not include the 

needed functionality. 
 The Gitpod – AGPL licence requires one to 

opensource any modifications that are made to the 
solution. 

 Atheos - too few built-in functions for working 
with C and C++ projects. 

From the remaining tools, Eclipse Che seemed to be 
the most feature-rich based on documentation, 
however, our practical experiments showed that it is 
often unstable and lacks sufficient documentation. 
Due to this reason, Theia was chosen as the most 
suitable environment. 

4.3 Infrastructure Services 

The ReCoTOS platform is based on the use of the 
following infrastructure services: 
 Containerization facilities – Kubernetes is used 

for containerization of the platform components. 
 Queue – RabbitMQ is used as the queue backend 

to enable asynchronous communication between 
components. 

 NoSQL database – MongoDB is used. 
 Key-value store – Redis is used to store user 

sessions. 
 Authentication provider – KeyCloak is used for 

access and identity management. 
 Object storage – Minio is used as object storage 

due to its minimalistic approach and compatibility 
with the S3 interface. 

 Version control system – Gitea is used for the 
source management and branching of the 
optimization projects. 

5 USE CASE 

The functionality of the platform is demonstrated by 
optimizing C based software correlator for earth 
observation data processing (KANA), which was 
developed by Ventspils International Radio 
Astronomy Centre of the Ventspils University of 
Applied Sciences Institute of Engineering (IE 
VIRAC) in 2012 as part of the project “Earth’s near-
field radio-astronomical research”.  Optimization is 
carried out following the previously defined 
methodology (Kampars et al., 2020). Experiments are 
performed in the CloudStack (Train release) cloud 
computing platform. The cloud environment is 
equipped with Intel(R) Xeon(R) Gold 5218R CPU 
processors. 

5.1 Project Initialization 

Optimization starts by creating a new project through 
the management dashboard. It is necessary to specify 
the source code archive, performance goal, the 
external libraries, and custom installation scripts, if 
any. 

After the new project has been saved, a new Gitea 
repository is created, and Theia container is started in 
the background. The git branches used during the 
optimization are shown in Figure 2. The original code 
from the project archive is added to the git branch 
‘Original’ and a new branch named ‘Optimized’ is 
created and linked to the Theia container. 
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Figure 2: Git branches for optimization.  

The initially committed version to the ‘Optimized’ 
branch is used for establishing the performance 
baseline, identifying the most appropriate compiler 
version and configuration, and for identifying the 
most resource-consuming sections of the computing 
task (hot kernels).  

To identify the performance baseline (see Figure 
3) of the computing task and to confirm its validity 
Performance and stability evaluation module is used 
through the Testing widget. As can be seen, the initial 
time of Kana computing task execution is averaging 
234 seconds.  

  

Figure 3: Setting the performance baseline.  

5.2 Compiler Settings Optimization 

The interaction with the Compiler framework is done 
from a corresponding Theia plugin. It is possible to 
switch to the configuration, which would rebuild the 
Theia container with the appropriate compiler version 
and make the according changes to the CMakeList.txt 
file to set the compiler flags. The tuning of compiler 
version and its flags have allowed to reduce the 
execution time by approximately 58 seconds or by 
24.8%. 

5.3 Profiling and External Library 
Optimization 

Google pprof and GNU gprof profilers are used to 

identify hot kernels through the corresponding Theia 
plugin. Both profilers provide tabular and graph 
representations of the profiling results. The GNU 
gprof compiler shows a better overview of internal 
functions or kernels while Google pprof also shows 
the functions that are executed within the linked 
external library. 

Once the optimal compiler configuration has been 
set, the performance baseline and the hot kernel to be 
optimized have been identified, the user can start a 
new optimization iteration (see Figure 4) for which a 
corresponding git branch and a new instance of Theia 
container will be created. 

  

Figure 4: Starting a new optimization iteration. 

According to the optimization methodology 
(Kampars et al., 2020) the first optimization step is 
concerned with choosing the optimal external library. 
As the Google pprof results show, a significant 
amount of time is spent on Fourier transformations by 
FFTW. The Intel Math Kernel Library (MKL) has 
been identified as a potential alternative and will be 
further evaluated as part of the optimization iteration. 
Switching from FFTW to the Intel MKL library 
requires minor changes in CMakeLists.txt (see the 
file before and after the changes in Figure 5). 
 

 

 
Figure 5: Switching from FFTW to Intel MKL. 

To evaluate the performance effect of changing 
external library, a test needs to be run using the 
Testing widget (see Figure 6) and the validity of 
computing task needs to be re-evaluated.  
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Figure 6: Performance improvement after the first iteration. 

The changes introduced did not have a negative effect 
on validity, while the execution time was reduced by 
approximately 82 seconds or 35.0% from the baseline 
originally measured. The optimization iteration ends 
with the saving of results and merging of the changes 
in the ‘Optimization’ branch (see Figure 7). 

 

Figure 7: End a successful optimization iteration. 

Afterwards, the user is redirected to the Theia 
container linked to the ‘Optimization’ branch. 

5.4 Introduction of Structural Changes 

According to the applied methodology (Kampars et 
al., 2020) structural changes to the computing task are 
the next most suitable optimization strategy after 
optimizing use of external libraries.  

A new optimization iteration is started, and the 
computing task is profiled once again. It is decided 
that since all major internal functions are in the file 
mode1.c it could be transformed by the Rose 
compiler, which is part of the Static analysis module 
framework. The file is selected, and the 
corresponding Rose submenu is clicked under the 
Static Analysis menu item.  

We can conclude that the maintainability of the 
code has been decreased, and it is necessary to 
evaluate if there is sufficient performance 
improvement to compensate for that. It is concluded 
that the computing task is still valid; however, there 
is no performance improvement (see Figure 8), in fact 
the execution time has increased by approximately 2 
seconds. 

 

Figure 8: Performance degradation after the second 
iteration. 

It is decided to discard the changes made and return 
to the result of the previous successful optimization 
(see menu item 'Discard optimization' in Figure 7).  
The optimization ends with gaining execution time 
reduction by approximately 140 seconds or 59.9%, 
which is almost equal to the initially defined 
optimization target. 

6 CONCLUSION AND FUTURE 
WORK 

The ReCoTOS platform has been designed, 
implemented, and its functionality has been 
demonstrated using a C-based software correlator. 
Initially, it targets C and C++ programming 
languages, and the applied optimization methodology 
is mostly concerned with improving the vectorization 
of the computing tasks. 

Our experience while developing the 
methodology and the platform shows that software 
optimization is a complicated process which would 
benefit from availability of a supporting 
methodology, cloud-based platform and best 
practices expressed as patterns.  

We have formalized 7 patterns in the pattern 
repository with the measured execution time 
reduction as follows: 
 2D array processing pattern (structural changes 

in the code) - 47%. 
 External library usage pattern (external library 

replacement) - 43%. 
 Array sort pattern variant #1 (structural changes 

in the code) - 66%. 
 Array sort pattern variant #2 (structural changes 

in the code) - 78%. 
 Matrix multiplication pattern #1 (structural 

changes in the code) - 78%. 
 Matrix multiplication pattern #2 (structural 

changes in code) - 91%. 
 Square matrix transposition pattern (structural 

changes in code) - 28%. 
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While working on the patterns we have discovered 
that some of the introduced structural changes can 
have very different impact on various processor 
architectures – resulting in significant execution time 
reduction on one processor, while causing execution 
time increase on another one. We have also 
acknowledged that even optimizations with positive 
performance impact can have negative effects on the 
stability of the computing task, maintainability, and 
portability of the codebase, which might prove them 
not feasible. Software developers are not always 
familiar with existing optimization practices, their 
efficiency on certain CPU versions and efficient 
usage of modern CPU capabilities, which is why it is 
particularly important to increase the number of best 
practice patterns stored in the pattern repository. This 
would also assist us in further improvement of the 
methodology and the platform. 

It is necessary to extend the platform with 
support for testing computing tasks on different CPU 
architectures, which would require some changes on 
the hardware level and platform itself.  

Another possible direction for evolving the 
ReCoTOS platform is to add support for optimizing 
computing tasks designed for edge computing. This 
would require extending the cloud computing 
platform with several edge nodes, as well as changes 
in the container orchestration and a number of 
modules. 
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