
ReCoTOS: A Platform for Resource-sparing Computing Task
Optimization

Jānis Kampars1 a, Guntis Mosāns1 b, Jānis Zuters2 c, Aldis Gulbis3 and Rasa Gulbe3
1Institute of Information Technology, Riga Technical University, 10 Zunda krastmala, Riga, Latvia

2Faculty of Computing, University of Latvia, 19 Raiņa bulvāris, Riga, Latvia
3Dati Group, 80 A Balasta dambis, Riga, Latvia

Keywords: Software Optimization, Vectorization, SIMD.

Abstract: To cope with the growing volume of data and complexity of the associated processing logic, modern CPU
capabilities such as vector registers and SIMD (Single Instruction Multiple Data) instructions need to be taken
advantage of. Although from a technical point of view, usage of SIMD instructions is not complicated,
building computing tasks with good SIMD capabilities has always been a challenging task. Modern compilers
assist developers to some extent with solutions like Compiler Automatic Vectorization, which is not always
sufficient, and several researchers demonstrate that manual code optimization is still necessary. The paper
gives an overview of the existing computing task optimization approaches, designs and describes development
of a cloud-based software optimization platform and demonstrates its usage by optimizing a software
correlator.

1 INTRODUCTION

The data volume and complexity of computing tasks
are constantly increasing, requiring more power,
resources, and energy (Rong, Zhang, Xiao, Li, & Hu,
2016). It is also driven by the IoT phenomena, due to
which the number of connected devices and potential
data sources has grown rapidly. Some sources suggest
that the number of connected IoT devices will reach
50 billion in the near future (Marjani et al., 2017).
One of the possible solutions is the horizontal and
vertical scaling of the computing infrastructure,
however, the approach is associated with several
shortcomings. There are certain limits to vertical
scalability, and not all computing tasks are built in a
way that they can be scaled horizontally. It may not
always be technologically possible, especially in the
case of edge computing (Ren, Guo, Xu, & Zhang,
2017). It may also be unfeasible from an economic
perspective, especially due to the recent increase in
the cost of electricity.

Another approach to solving the problem of
computing capacity deficiency is related to the

a https://orcid.org/0000-0003-0045-5593
b https://orcid.org/0000-0001-9373-4000
c https://orcid.org/0000-0002-3194-9142

computing task itself. It involves code refactoring or
optimization activities allowing developers to get
better performance with less resources. The inability
of computing tasks to take complete advantage of the
CPU has become particularly topical since the
beginning of the 21st century, when CPU
manufacturers have shifted their focus from growth
of clock speed towards more sophisticated solutions
like increasing the number of cores, adding larger
vector registers, and Single Instruction Multiple Data
(SIMD) capabilities. Although modern compilers
assist developers to some extent with solutions like
Compiler Automatic Vectorization (CAV), this is not
always sufficient. Several researchers conclude that
manual code optimization is superior to CAV (Amiri
& Shahbahrami, 2020; Watanabe & Nakagawa,
2019). Some of the reasons for CAV to fail are
conservative dependency analysis and behaviour for
handling of boundary cases, data layouts that do not
allow the contiguous memory accesses needed for
SIMD (Holewinski et al., 2012).

In order to address the challenges associated with
computing task optimization, we have previously

Kampars, J., Mosāns, G., Zuters, J., Gulbis, A. and Gulbe, R.
ReCoTOS: A Platform for Resource-sparing Computing Task Optimization.
DOI: 10.5220/0010977100003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 251-258
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

251

proposed a methodology and demonstrated its usage
(Kampars et al., 2020). The goal of this paper is to
define a cloud-based platform that facilitates the
optimization of computing tasks according to the
aforementioned methodology.

The paper is structured as follows. Section 2
provides an overview of the computing task
optimization approaches while focusing on the
vectorization and SIMD instructions. Section 3 gives
a brief overview of the ReCoTOS optimization
methodology. Section 4 designs the platform
according to the previously defined methodology.
Section 5 provides a computing task optimization use
case that demonstrates the functionality of the
platform. Section 6 concludes with final remarks and
directions for future research.

2 COMPUTING TASK
OPTIMIZATION APPROACHES

Although from a technical point of view, usage of
SIMD instructions is not complicated, building
computing tasks with good SIMD capabilities has
always been a challenging task (Amiri &
Shahbahrami, 2020). Some of the applicable
optimization approaches are summarized in the
following subsections.

2.1 Assembly Level Programming

The resource-intensive sections of the computing task
requiring optimization are implemented in the
assembly language in the form of modules (Amiri &
Shahbahrami, 2020; Cockshott & Renfrew, 2004).
Variables are moved between the assembler and a
high-level programming language during run-time.
Good knowledge of both the assembly and high-level
programming language is required. Due to the low
level of abstraction, the maintainability of the code
will suffer and moving between different CPU
architectures will be complex.

2.2 Intrinsic Programming Model

Intrinsic programming model (IPM) relies on
assembly-type instructions, which are added in the
source code of a high-level programming language.
The IPM instructions correspond to a specific SIMD
instruction that the compiler will further use to
vectorize the code. The code is more readable; no in-
depth assembly knowledge is required, but the IPM
instructions are specific to the processor

microarchitecture, which is why portability of the
code suffers. The use of IPM is also specific to the
compiler version (Hughes, 2015). The programming
model provides the most significant increase in
performance compared to other approaches according
to some researchers (Nuzman & Zaks, 2008).

2.3 Pragma Syntax

Pragma syntax allows one to insert instructions for
the compiler in the source code of a high-level
programming language. Such instructions could be
inserted before the start of a loop or other logical
block, instructing the compiler that vectorization
should occur. The compiler may choose to ignore
these instructions, which is why performance gains
are not guaranteed (Hughes, 2015).

2.4 Compiler Automatic Vectorization

CAV provides indirect code vectorization, without
the need to make any changes in the code. This allows
the developers to concentrate on the business logic
and to worry less about specific microprocessor
architectures and SIMD instruction sets. CAV avoids
manual code optimization, provides easier-to-read
and maintain code portability; however, CAV is not
able to successfully vectorize all computing tasks
(Watanabe and Nakagawa, 2019).

2.5 External Libraries and Parallel
Programming Standards

Programmers can opt for the integration of
specialized high-performance libraries into their
computing tasks. If the standardized operations such
as matrix multiplication or Fourier transformations
are required, it is possible to find a high-performance
library which provides this operation in highly
optimized manner.

Frameworks like OpenCL (Stone, Gohara, & Shi,
2010) allow one to write portable and parallelizable
computing tasks relying on standardized
parallelization operations. These operations are
implemented in such a way that they can take
advantage of specific processor microarchitecture
while requiring no changes to the source code of the
original computing task. OpenCL programs can also
be executed on Graphical Processing Units (GPUs).
The advantages of the approach are portability and
performance at a higher level of abstraction, while the
disadvantage is that not all standardized
parallelization operations are executed equally fast on
all technical platforms due to different architectural

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

252

constraints and their specific instruction mappings
(Lai, Luo, & Xie, 2019).

3 OPTIMIZATION
METHODOLOGY OVERVIEW

Availability of various optimization methods presents
a difficult choice for the developers. Typical
development environments and code management
systems do not provide support to evaluate and to
select the most suitable approach and lack
methodological support.

To address this a platform is developed on the
basis of a methodology for vectorization-based
resource-saving computing task optimization
(Kampars et al., 2020). The methodology consists of
concepts, technologies, and optimization process thus
facilitating more efficient use of modern CPU
vectorization capabilities and gaining the associated
performance improvements.

The methodology guides the optimization of
computing tasks (application or a component of an
application that can be logically isolated and executed
separately). Initially, valid results of the computing
task are recorded, and a performance baseline is
established. The necessary performance
improvement is defined, and the optimization starts
with performing computing task level optimizations
that do not require any changes to the source code. An
example of such optimization is to choose the best
compiler version and its flags.

Further methodology reviews computing task
kernels (certain functionality returning a result or
change of kernel’s internal state according to the
received input) and identifies hot kernels (the ones
consuming a significant proportion of resources).
Static and dynamic analysis of the computing task is
used for this purpose. Each of the identified hot
kernels can be optimized as part of an optimization
iteration.

Optimization iterations are started by the possible
introduction of external libraries or replacement of
existing libraries with ones providing better
performance. This is proposed as the first step since
this method does not affect the portability of the code,
can have great impact on the performance, and is
simpler to implement compared with other strategies.

The next method is concerned with introducing
structural changes in the source code (modifying the
source of a computing task or its hot kernel to achieve
better performance) and lastly IPM is applied. IPM is
the least preferred method since it is harder to

implement and negatively affects portability and
maintainability of the codebase.

After each of the optimizations, the results of the
computing task and kernel being optimized are
recorded and checked against the previously recorded
ones. Performance also needs to be measured to see if
the necessary performance improvement has been
reached. If the performance improvement after an
optimization is negative or if it is associated with
maintainability degradation that outweighs the
performance benefits, the changes are reverted, and
another iteration is started. While in case of the
positive results, the changes are saved, and it is
determined if further optimization is required and
what would be the most appropriate actions for that.

4 DESIGN OF ReCoTOS
PLATFORM

The architecture of the platform is shown in Figure 1
and its components are detailed in the following
subsection.

4.1 Platform Functional Components

The ReCoTOS core is used as a mediator in the
execution of various asynchronous processes related
to the optimization of computational tasks, as well as
to ensure the creation of appropriate containers by
interacting with the Kubernetes orchestration system.

Figure 1: ReCoTOS platform architecture.

The ReCoTOS core allows for creation of loosely
coupled components by acting as a mediator between
them. Multiple instances of the ReCoTOS core can be
run simultaneously to ensure horizontal scalability
and fault tolerance. It is implemented in the NodeJS,

ReCoTOS: A Platform for Resource-sparing Computing Task Optimization

253

which is also used in the implementation of several
other ReCoTOS components.

The purpose of the reverse proxy component is to
redirect the request received from the browser to the
appropriate platform component, hiding the
implementation details from the platform user and
providing a homogeneous and integrated
environment. It is also used to implement user
authentication and access control for components that
do not include such functionality. The component
includes load balancer functionality, which allows to
distribute requests between multiple service
instances, thus contributing to scalability and fault
tolerance. It is integrated with the Redis key-value
store to ensure its reconfiguration during runtime.
While reviewing options such as Nginx, Traefik and
OpenResty, the latter one was found to be the most
suitable. OpenResty is a web platform that integrates
an enhanced core of the open-source version of
Nginx, a Lua language programming module and
compiler, as well as Nginx modules developed by
third parties. Lua programming language support
allows creation of dynamic configurations which can
be integrated with a key-value stores such as Redis.

The platform needs to provide identity and access
management, which is achieved by using KeyCloak.
The module is integrated with the Reverse proxy
server and load balancer verifying that the client has
obtained a valid JSON Web Token (JWT) object and
has access to the appropriate resource. The module
secures user-facing microservices such as
Optimization pattern repository, ReCoTOS
management dashboard, and Integrated optimization
environment. Session information is being stored in
the Redis key-value store.

The Optimization pattern repository is designed to
store reusable best practices for optimizing
computing tasks according to the previously defined
methodology (Kampars et al., 2020). A pattern will
consist of a description of the context and the
corresponding solution, including versioned code
samples and measured performance improvements.
To store the original code with possibly multiple
rounds of edits leading to the final optimization, the
module is integrated with the Version control system,
while pattern related metadata is stored in the NoSQL
database. To make the patterns runnable and easily
reusable, integration with the Integrated optimization
environment is also provided. The Optimization
pattern repository is implemented by using the
NodeJS Express and VueJS frameworks.

The ReCoTOS management panel is used for user
authorization, management of optimization projects,
and navigating between the platform’s user-facing

modules. It is built based on the NodeJS Express and
VueJS frameworks and stores optimization project-
related data in the NoSQL database.

The Dynamic analysis module framework is
extendable to support multiple profilers. It stores the
profiling results in the NoSQL database and makes
them available in the Integrated optimization
environment. Initially, two dynamic analysis modules
are included in the framework supporting Google
pprof and GNU gprof. The extendibility of the
component allows the addition of more profilers in
the future. Profiling tasks are automated using CMake
and CTest, while the framework adds the necessary C
and C++ flags needed for the profiler to the
CMakeLists.txt file. The dynamic analysis process is
implemented in an asynchronous manner according
to the event-driven architecture, as this architecture is
best suited for resource-intensive tasks, provides
horizontal scaling capabilities, and does not freeze the
user interface during the process.

The result validation module stores the result of a
computational task and ensures that it is not corrupted
after the optimization activities have been performed.
The tests are run from the Integrated optimization
environment, while the results are written to the
objects storage or NoSQL database depending on the
use case. The process is implemented asynchronously
according to the event-driven architecture and relies
on the use of CMake and CTest.

The performance and stability evaluation module
sets the performance baseline and records the possible
improvements after optimization activities. In the
current version only the processor time is estimated;
however, the module can be extended with additional
functionality. Performance and stability evaluation is
initialized through the Integrated optimization
environment and relies on CMake and CTest. The
results are logged in the NoSQL database and can be
reviewed in the Integrated optimization environment.

The performance and stability evaluation process
is implemented asynchronously and uses queue for
this purpose.

The purpose of the static analysis module
framework is to provide transformations aimed
towards performance improvement. The framework
contains an external library detection module that
allows one to detect used external libraries and their
possible alternatives. It also integrates with the ROSE
compiler (Quinlan & Liao, 2011), which provides
automated transformation of source code allowing to
improve its efficiency and performance. The
transformation process starts from the integrated
optimization environment, and it is implemented
asynchronously by using queue for passing tasks to

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

254

the appropriate containerized workers. Object storage
serves the purpose of storing temporary files needed
for exchanging data between the Integrated
optimization environment and worker containers.

The compiler framework provides unified
infrastructure services for assessing the suitability of
several compilers and their versions for a specific
computing task and determining the optimal values of
their configuration parameters in a semiautomated
way. Currently three latest major versions of GCC are
supported; however, it is possible to extend the
component with additional compilers. To determine
the optimal compiler and its configuration, it is also
necessary to validate the results of computational
tasks and evaluate their performance. The interaction
with these modules is orchestrated by the ReCoTOS
core, and the process is started from the Integrated
optimization environment. The results are stored in
the NoSQL database. Once the optimal settings have
been determined, the Integrated optimization
environment is reconfigured accordingly and
restarted. The process is implemented
asynchronously to avoid freezing of the user
interface.

4.2 Integrated Optimization
Environment

Special attention was paid to choosing technology for
the Integrated optimization environment, since it is a
user-facing component and most of the time the users
of the platform would spend interacting with this
module.

Eclipse Theia, Atheos, Gitpod, Eclipse Che, Cloud9
were reviewed as the potential candidates for the
integrated optimization environment. The following
tools were dismissed from further evaluation:
 Cloud9 – the free version does not include the

needed functionality.
 The Gitpod – AGPL licence requires one to

opensource any modifications that are made to the
solution.

 Atheos - too few built-in functions for working
with C and C++ projects.

From the remaining tools, Eclipse Che seemed to be
the most feature-rich based on documentation,
however, our practical experiments showed that it is
often unstable and lacks sufficient documentation.
Due to this reason, Theia was chosen as the most
suitable environment.

4.3 Infrastructure Services

The ReCoTOS platform is based on the use of the
following infrastructure services:
 Containerization facilities – Kubernetes is used

for containerization of the platform components.
 Queue – RabbitMQ is used as the queue backend

to enable asynchronous communication between
components.

 NoSQL database – MongoDB is used.
 Key-value store – Redis is used to store user

sessions.
 Authentication provider – KeyCloak is used for

access and identity management.
 Object storage – Minio is used as object storage

due to its minimalistic approach and compatibility
with the S3 interface.

 Version control system – Gitea is used for the
source management and branching of the
optimization projects.

5 USE CASE

The functionality of the platform is demonstrated by
optimizing C based software correlator for earth
observation data processing (KANA), which was
developed by Ventspils International Radio
Astronomy Centre of the Ventspils University of
Applied Sciences Institute of Engineering (IE
VIRAC) in 2012 as part of the project “Earth’s near-
field radio-astronomical research”. Optimization is
carried out following the previously defined
methodology (Kampars et al., 2020). Experiments are
performed in the CloudStack (Train release) cloud
computing platform. The cloud environment is
equipped with Intel(R) Xeon(R) Gold 5218R CPU
processors.

5.1 Project Initialization

Optimization starts by creating a new project through
the management dashboard. It is necessary to specify
the source code archive, performance goal, the
external libraries, and custom installation scripts, if
any.

After the new project has been saved, a new Gitea
repository is created, and Theia container is started in
the background. The git branches used during the
optimization are shown in Figure 2. The original code
from the project archive is added to the git branch
‘Original’ and a new branch named ‘Optimized’ is
created and linked to the Theia container.

ReCoTOS: A Platform for Resource-sparing Computing Task Optimization

255

Figure 2: Git branches for optimization.

The initially committed version to the ‘Optimized’
branch is used for establishing the performance
baseline, identifying the most appropriate compiler
version and configuration, and for identifying the
most resource-consuming sections of the computing
task (hot kernels).

To identify the performance baseline (see Figure
3) of the computing task and to confirm its validity
Performance and stability evaluation module is used
through the Testing widget. As can be seen, the initial
time of Kana computing task execution is averaging
234 seconds.

Figure 3: Setting the performance baseline.

5.2 Compiler Settings Optimization

The interaction with the Compiler framework is done
from a corresponding Theia plugin. It is possible to
switch to the configuration, which would rebuild the
Theia container with the appropriate compiler version
and make the according changes to the CMakeList.txt
file to set the compiler flags. The tuning of compiler
version and its flags have allowed to reduce the
execution time by approximately 58 seconds or by
24.8%.

5.3 Profiling and External Library
Optimization

Google pprof and GNU gprof profilers are used to

identify hot kernels through the corresponding Theia
plugin. Both profilers provide tabular and graph
representations of the profiling results. The GNU
gprof compiler shows a better overview of internal
functions or kernels while Google pprof also shows
the functions that are executed within the linked
external library.

Once the optimal compiler configuration has been
set, the performance baseline and the hot kernel to be
optimized have been identified, the user can start a
new optimization iteration (see Figure 4) for which a
corresponding git branch and a new instance of Theia
container will be created.

Figure 4: Starting a new optimization iteration.

According to the optimization methodology
(Kampars et al., 2020) the first optimization step is
concerned with choosing the optimal external library.
As the Google pprof results show, a significant
amount of time is spent on Fourier transformations by
FFTW. The Intel Math Kernel Library (MKL) has
been identified as a potential alternative and will be
further evaluated as part of the optimization iteration.
Switching from FFTW to the Intel MKL library
requires minor changes in CMakeLists.txt (see the
file before and after the changes in Figure 5).

Figure 5: Switching from FFTW to Intel MKL.

To evaluate the performance effect of changing
external library, a test needs to be run using the
Testing widget (see Figure 6) and the validity of
computing task needs to be re-evaluated.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

256

Figure 6: Performance improvement after the first iteration.

The changes introduced did not have a negative effect
on validity, while the execution time was reduced by
approximately 82 seconds or 35.0% from the baseline
originally measured. The optimization iteration ends
with the saving of results and merging of the changes
in the ‘Optimization’ branch (see Figure 7).

Figure 7: End a successful optimization iteration.

Afterwards, the user is redirected to the Theia
container linked to the ‘Optimization’ branch.

5.4 Introduction of Structural Changes

According to the applied methodology (Kampars et
al., 2020) structural changes to the computing task are
the next most suitable optimization strategy after
optimizing use of external libraries.

A new optimization iteration is started, and the
computing task is profiled once again. It is decided
that since all major internal functions are in the file
mode1.c it could be transformed by the Rose
compiler, which is part of the Static analysis module
framework. The file is selected, and the
corresponding Rose submenu is clicked under the
Static Analysis menu item.

We can conclude that the maintainability of the
code has been decreased, and it is necessary to
evaluate if there is sufficient performance
improvement to compensate for that. It is concluded
that the computing task is still valid; however, there
is no performance improvement (see Figure 8), in fact
the execution time has increased by approximately 2
seconds.

Figure 8: Performance degradation after the second
iteration.

It is decided to discard the changes made and return
to the result of the previous successful optimization
(see menu item 'Discard optimization' in Figure 7).
The optimization ends with gaining execution time
reduction by approximately 140 seconds or 59.9%,
which is almost equal to the initially defined
optimization target.

6 CONCLUSION AND FUTURE
WORK

The ReCoTOS platform has been designed,
implemented, and its functionality has been
demonstrated using a C-based software correlator.
Initially, it targets C and C++ programming
languages, and the applied optimization methodology
is mostly concerned with improving the vectorization
of the computing tasks.

Our experience while developing the
methodology and the platform shows that software
optimization is a complicated process which would
benefit from availability of a supporting
methodology, cloud-based platform and best
practices expressed as patterns.

We have formalized 7 patterns in the pattern
repository with the measured execution time
reduction as follows:
 2D array processing pattern (structural changes

in the code) - 47%.
 External library usage pattern (external library

replacement) - 43%.
 Array sort pattern variant #1 (structural changes

in the code) - 66%.
 Array sort pattern variant #2 (structural changes

in the code) - 78%.
 Matrix multiplication pattern #1 (structural

changes in the code) - 78%.
 Matrix multiplication pattern #2 (structural

changes in code) - 91%.
 Square matrix transposition pattern (structural

changes in code) - 28%.

ReCoTOS: A Platform for Resource-sparing Computing Task Optimization

257

While working on the patterns we have discovered
that some of the introduced structural changes can
have very different impact on various processor
architectures – resulting in significant execution time
reduction on one processor, while causing execution
time increase on another one. We have also
acknowledged that even optimizations with positive
performance impact can have negative effects on the
stability of the computing task, maintainability, and
portability of the codebase, which might prove them
not feasible. Software developers are not always
familiar with existing optimization practices, their
efficiency on certain CPU versions and efficient
usage of modern CPU capabilities, which is why it is
particularly important to increase the number of best
practice patterns stored in the pattern repository. This
would also assist us in further improvement of the
methodology and the platform.

It is necessary to extend the platform with
support for testing computing tasks on different CPU
architectures, which would require some changes on
the hardware level and platform itself.

Another possible direction for evolving the
ReCoTOS platform is to add support for optimizing
computing tasks designed for edge computing. This
would require extending the cloud computing
platform with several edge nodes, as well as changes
in the container orchestration and a number of
modules.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the project "Competence Centre of
Information and Communication Technologies" of
EU Structural funds, contract No. 1.2.1.1/18/A/003
signed between IT Competence Centre and Central
Finance and Contracting Agency, Research No. 1.13"
Resource-saving Computing Task Optimization
Solutions".

REFERENCES

Amiri, H., & Shahbahrami, A. (2020). SIMD programming
using Intel vector extensions. Journal of Parallel and
Distributed Computing, 135, 83–100. https://doi.org/
10.1016/j.jpdc.2019.09.012

Cockshott, P., & Renfrew, K. (2004). SIMD Programming
in Assembler and C BT - SIMD Programming Manual
for Linux and Windows. In P. Cockshott & K. Renfrew
(Eds.) (pp. 23–46). London: Springer London.
https://doi.org/10.1007/978-1-4471-3862-4_3

Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia,
N., Pouchet, L. N., Rountev, A., & Sadayappan, P.
(2012). Dynamic trace-based analysis of vectorization
potential of applications. ACM SIGPLAN Notices,
47(6), 371–382. https://doi.org/10.1145/2345156
.2254108

Hughes, C. J. (2015). Single-instruction multiple-data
execution. Synthesis Lectures on Computer
Architecture, 32, 1–121. https://doi.org/10.2200/S006
47ED1V01Y201505CAC032

Kampars, J., Irbe, J., Kalnins, G., Mosans, G., Gulbe, R., &
Pinka, K. (2020). ReCoTOS: A Methodology for
Vectorization-based Resource-saving Computing Task
Optimization. In 2020 61st International Scientific
Conference on Information Technology and
Management Science of Riga Technical University,
ITMS 2020 - Proceedings. https://doi.org/10.1109/I
TMS51158.2020.9259289

Lai, Z., Luo, Q., & Xie, X. (2019). Efficient data-parallel
primitives on heterogeneous systems. ACM
International Conference Proceeding Series, (Mic).
https://doi.org/10.1145/3337821.3337920

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem,
I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT Data
Analytics: Architecture, Opportunities, and Open
Research Challenges. IEEE Access, 5, 5247–5261.
https://doi.org/10.1109/ACCESS.2017.2689040

Nuzman, D., & Zaks, A. (2008). Outer-loop vectorization -
revisited for short SIMD architectures. Parallel
Architectures and Compilation Techniques -
Conference Proceedings, PACT, 2–11. https://doi.org/
10.1145/1454115.1454119

Quinlan, D., & Liao, C. (2011). The ROSE Source-to-
Source Compiler Infrastructure. International Journal,
1–3.

Ren, J., Guo, H., Xu, C., & Zhang, Y. (2017). Serving at the
Edge: A Scalable IoT Architecture Based on
Transparent Computing. IEEE Network, 31(5), 96–105.
https://doi.org/10.1109/MNET.2017.1700030

Rong, H., Zhang, H., Xiao, S., Li, C., & Hu, C. (2016).
Optimizing energy consumption for data centers.
Renewable and Sustainable Energy Reviews, 58, 674–
691. https://doi.org/10.1016/j.rser.2015.12.283

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in Science and
Engineering, 12(3), 66–72. https://doi.org/10.
1109/MCSE.2010.69

Watanabe, H., & Nakagawa, K. M. (2019). SIMD
vectorization for the Lennard-Jones potential with
AVX2 and AVX-512 instructions. Computer Physics
Communications, 237, 1–7. https://doi.org/10.1016/
j.cpc.2018.10.028

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

258

