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Abstract: The potentials of Transfer Learning (TL) have been well-researched in areas such as Computer Vision and 

Natural Language Processing. This study aims to explore a novel application of TL to detect Autism Spectrum 

Disorder. We seek to develop an approach that combines TL and eye-tracking, which is commonly used for 

analyzing autistic features. The key idea is to transform eye-tracking scanpaths into a visual representation, 

which could facilitate using pretrained vision models. Our experiments implemented a set of widely used 

models including VGG-16, ResNet, and DenseNet. Our results showed that the TL approach could realize a 

promising accuracy of classification (ROC-AUC up to 0.78). The proposed approach is not claimed to provide 

superior performance compared to earlier work. However, the study is primarily thought to convey an 

interesting aspect regarding the use of (synthetic) visual representations of eye-tracking output as a means to 

transfer representations from models pretrained on large-scale datasets such as ImageNet.

1 INTRODUCTION 

Autism Spectrum Disorder (ASD) is a neuro-

developmental disorder, which is characterized by 

various impairments, mainly social communication 

and interaction issues, and repetitive behavior 

(American Psychiatric Association, 2013). ASD-

diagnosed individuals usually suffer from troubles in 

interaction and communication in multiple forms. 

The most remarkable symptom is the poor 

development of non-verbal skills such as the lack or 

absence of eye contact. With such deficits, a 
considerable strain can be placed on the well-being of 

autistic individuals and families as well. From an 

economic perspective, it was estimated that autism 

costs the UK, for example, more than heart disease, 

cancer, and stroke combined (Buescher et al., 2014). 

The early intervention for autism is highly 

favorable to realize common benefits for children and 

their families (Estes et al., 2015). Multiple studies 

(e.g., Smith et al., 2000; Dawson et al., 2010) reported 

improved outcomes of treatment such as intellectual 

capacity, communication, adaptive behavior, and 

educational support. However, the diagnosis of 
autism has been considered as a challenging task. 

Typically, the diagnosis process includes a variety of 

cognitive tests that could require hours of intensive 

clinical examinations. Furthermore, standardized 

tests require a considerable amount of time and effort, 

and the diversity of symptoms increase the 
complexity of identifying an accurate classification. 

A major part of the psychological research 

endeavored to develop assistive instruments based on 

observational measures or diagnostic interviews. 

Examples include Childhood Autism Rating Scale 

(CARS) (Schopler et al., 1980), Autism Diagnostic 

Observation Schedule (ADOS) (Lord et al., 1989), 

and Autism Diagnostic Interview (ADI-R) (Lord, 

Rutter, and Le Couteur, 1994). More recently, 

computer-aided methods have come into prominence 

to support the diagnosis process at different levels. In 
particular, the eye-tracking technology has received 

an extensive research interest. The literature is rife 

with studies that analyzed eye-tracking recordings as 

an effective means to identify the ASD symptoms 

(e.g., Eraslan et al., 2019; Harrison, and Slane, 2020; 

Greene et al., 2021). In addition, Artificial 

Intelligence (AI) is being increasingly combined with 

eye-tracking. The state-of-the-art techniques, such as 

Deep Learning, have demonstrated promising 
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potentials to advance the development of diagnostic 

applications (e.g., Heinsfeld et al., 2018; Eslami, and 

Saeed, 2019). 
In this respect, this study explores a Transfer 

Learning (TL) approach. The TL concept has deemed 

as an attractive path for a multitude of healthcare and 

medical applications, which largely suffer from data 

paucity and imbalance. TL-based methods allow for 

using sophisticated models pretrained on huge 

datasets such as ImageNet (Deng et al., 2009). With 

many successful applications (e.g., Khan et al., 2019; 

Ahuja et al., 2021), TL is well-poised to be the path 

forward to deal with such challenges. 

We adopt a vision-based methodology using the 
visual representation of eye-tracking output for 

learning the patterns associated with ASD. 

Accordingly, the detection of autism could be 

approached as a problem of image classification. The 

approach applicability was experimented with 

popular pretrained models including VGG-16 

(Simonyan, and Zisserman, 2014), ResNet (He et al., 

2016), and DenseNet (Huang et al., 2017).  

The contributions of this study can be considered 

as follows. We explore a novel application of TL 

using a visual representation of eye-tracking, which 

has not been proposed yet, to the best of our 
knowledge. The interesting aspect of our 

methodology is using a synthetic visual 

representation as a means to allow for transferring 

representations from Deep Learning models 

pretrained on large-scale datasets. Further, the study 

could be generally regarded as an addition to the 

ongoing contributions of applying Machine Learning 

(ML) in the context of ASD diagnosis. 

2 RELATED WORK 

Increasing evidence suggests that the application of 

ML could have a strong impact on the autism 

research. This section aims to review part of the 

recent advances in terms of data representation and 

model architectures. 

A variety of feature sets has been experimented 

for developing ML models to help detect the 

symptoms of ASD. This review focuses on two 

modalities of data including facial expressions and 
eye-gaze movements. The review is unavoidably 

selective rather than exhaustive whereas it only 

highlights potential ML approaches in this context. 

However, comprehensive literature reviews are 

provided by excellent survey studies such as (Ahmed, 

and Jadhav, 2020) and (de Belen et al., 2020).. 

2.1 Facial Expressions 

Seminal psychology studies (e.g., Hobson, 1986; 

Weeks, and Hobson, 1987) intensively discussed the 

impairments of social interaction among ASD-
diagnosed individuals. Moreover, clinical studies 

(e.g., Loth et al., 2018) largely confirmed that facial 

expressions and emotions could effectively serve as 

markers for autism.  

Building upon the hypothesis of discriminative 

facial attributes, a variety of ML applications were 

developed to detect ASD. For instance, (Li et al., 

2019) applied Deep Learning for ASD classification 

using facial expressions. They developed an end-to-

end system using Convolutional Neural Networks 

(CNN). Their results showed that the representation 
of different facial attributes was statistically 

significant. Specifically, the ASD classification could 

be improved by about 7% with F1-score of 76%. 

Likewise, (Shukla et al., 2017) utilized facial 

images for recognizing developmental disorders 

including ASD. A multi-channel CNN architecture 

was developed where facial images were divided into 

four parts and fed separately into CNNs to perform 

the feature extraction. The extracted representations 

were combined altogether into a global feature map. 

Eventually, a linear Support Vector Machine was 

trained to perform the classification task. In general, 
the literature includes similar contributions (e.g., Han 

et al., 2018; Tang et al., 2018) that experimented 

different ML approaches using facial images. 

2.2 Eye-gaze Movement 

The behavior of eye gaze has been widely recognized 

as one of the hallmarks of ASD. The psychology 

literature has consistently included autism studies that 

analyzed the eye gaze in response to verbal or visual 

cues (e.g., Habayeb et al., 2021; Fukui et al., 2021). 

Therefore, the eye-tracking technology has been 
adopted in multiple aspects in the ASD research. 

In this respect, plentiful contributions aimed to 

combine eye-tracking methods with a variety of ML 

applications in various ways and for different 

purposes. A number of studies (e.g., Liu et al., 2021; 

Liu, Li, and Yi, 2016) developed ML approaches to 

detect the autistic patterns of eye movement. Their 

results presented promising evidence for applying 

ML methods to identify ASD-diagnosed children, 

with a classification accuracy up to around 88.5%. 

More sophisticated approaches were employed as 

well. For example, a Deep Learning model was 
implemented to detect autism using eye-tracking 

tasks of free-image viewing (Jiang, and Zhao, 2017). 
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Deep Learning was utilized to extract features 

automatically from a collection of discriminative 

images. Likewise, (Chong et al., 2017) applied a 
CNN-based architecture for the detection of eye 

contact during social interactions. Their results 

reported a precision and recall of 76% and 80%, 

respectively. Another Deep Learning-based 

framework was developed for ASD screening using 

photo-taking tasks (Chen, and Zhao, 2019). LSTM 

models were implemented for encoding the temporal 

information of eye movements. 

More recently, (Elbattah et al., 2020) adopted 

sequence learning in eye-tracking data. A set of 

Natural Language Processing (NLP) methods were 
applied to transform the saccadic eye movements into 

text-like sequences. The NLP-based approach could 

allow for transforming high-dimensional eye-

tracking data into an amenable representation for ML. 

The applicability of their approach was experimented 

using a set of classification models including CNN 

and LSTM. The best performing CNN model could 

achieve a ROC-AUC of about 0.84. 

The authors undoubtedly recognize all those 

efforts that sought to advance ASD diagnosis with the 

help of ML. We hope for this study to contribute to 

the mounting efforts by exploring the TL approach 
and its applicability. 

3 DATA DESCRIPTION 

The dataset under consideration was collected as part 

of earlier work (Carette et al., 2018) related to the 

study of autism using eye-tracking. The following 

sections describe the characteristics of participants 
and experimental settings of the original study. 

3.1 Participants 

A group of 59 school-aged children were recruited 

from French schools in the region of Hauts-de-

France. The age of participants was generally in the 

range of 3 to 12 years old. It was highly aimed for the 

participants to be at an early stage of development.  

A parental permission was acquired for every 

participant to take part in the eye-tracking 

experiments. Further, the parents were acquainted 

with the research goals through orientation sessions. 
Initially, the participants were organized based on 

a basic binary grouping as: i) Typically Developing 

(TD), and ii) ASD. In addition, the CARS score 

(Schopler et al., 1980) was employed to classify the 

severity of autism more precisely. The CARS method 

Table 1: Statistics of participants (Carette et al., 2018). 

Number of Participants (ASD, TD) 59 (29, 30) 

Gender Distribution (M, F) 
38 (≈ 64%), 21 

(≈ 36%) 

Age (Mean,  Median) years 7.88, 8.1 

CARS Score (Mean, Median) 32.97, 34.50 

has been widely applied in the Psychology practice 

for describing the severity of ASD symptoms 

(Ozonoff et al., 2005). The scale includes various 

ratings on different behavioral aspects (e.g., verbal 

communication, activity level). Table 1 summarizes 
the characteristics of participants. 

3.2 Experimental Protocol 

The experiments were conducted using an eye-tracker 

of the SMI Red-M model, which is a screen-based 

eye-tracker with 60Hz sampling rate. The eye-tracker 

was operated along with a 17-inch monitor. The 

screen resolution was 1280x1024. 

The eye-tracking experiments included a set of 

photos and video scenarios, which were particularly 

designed to stimulate the eye gaze across the screen. 

The participants were seated at approximately 60-cm 
distance away from the monitor. A quiet room at the 

university campus was used for running our 

experiments. In addition, physical barriers were 

applied around the screen to avoid visual distractions. 

The content and length of videos varied to allow 

for analyzing the ocular activity from different 

aspects and levels. We used other stimuli provided by 

the SMI Experiment Center Software. The Stimuli 

included a variety of types, typically used in the eye-

tracking research. For instance, static and dynamic 

naturalistic scenes with and without receptive 
language, static face or objects and cartoons stimuli, 

and other joint attention stimuli. In addition, some 

videos included human presenters. The presenter’s 

role was generally to turn the participant’s attention 

to elements, which could be visible or invisible 

around the display area. 

Eye-tracking experiments usually took about 5 

minutes. The participants were inspected with respect 

to the quality of eye contact with the presenter, and 

the level of focus on other elements. A five-point 

scheme of calibration was applied. A set of 

verification procedures followed the calibration 
scheme. A set of 25 eye-tracking experiments was 

conducted to produce the output dataset. The dataset 
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was stored in multiple CSV files, which collectively 

included more than 2M records.  

3.3 Ethical Approval 

The study received the ethical approval by the ethics 

committee of Rouen University (Reference: 2016-02-

B). The CNIL (Commission nationale de 

l'informatique et des libertés) declaration number of 

research conformity is 2208663v0.  

The study fulfils the principles and terms of the 

1964 Helsinki declaration. Before starting the study, 

the approval was obtained from the heads of the 

regional and district education authorities, as well as 

the head and the teachers of the particpating school. 
The parents of participants had also given their 

written informed consent. 

4 OUR APPROACH 

The raw eye-tracking output is high-dimensional, 

which typically contains many variables describing 

the gaze position and eye movements. Therefore, the 

main challenge is to find out a feature representation 
suitable for building ML models. 

In this respect, our approach aimed at developing 

a visual representation of eye-tracking data. The basic 

idea was to compactly render long-tailed eye-tracking 

recordings into a set of images that can visually 

describe the gaze behavior. In this manner, the 

prediction problem could be approached as an image 

classification task. Furthermore, the visual 

representation was used as a bridge to allow for 

applying high-performing models pretrained on 

large-scale image datasets. 

The following sections elaborate further on the 
key components of our approach. First, we describe 

the method of transforming the raw eye-tracking data 

into images. Second, we refer to the pretrained 

models used in our experiments as described later. 

4.1 Visualization of Eye-tracking 
Scanpaths 

Scanpaths are commonly utilized in the eye-tracking 

context as to depict the gaze behavior in a visual 

manner. A scanpath basically represents a sequence 

of consecutive fixations and saccades as a trace 

through time and space (Goldberg, and Helfman, 

2010). A fixation describes the brief moments while 

the eye gaze is paused on a particular object, which 
allow the brain to perform the perception process. The 

average duration of fixation was estimated to be 

around 330ms (Henderson, 2003). While saccades 

include a constant scanning with very rapid and short 

eye movements. Saccades consist of quick ballistic 
jumps of 2o or longer, which continue for about 30–

120ms (Jacob, 1995). 

 

Figure 1: Eye-tracking scanpath, adapted from (Goldberg, 
and Helfman, 2010). 

 

Figure 2: Samples of the scanpath visualization (Carette et 
al., 2018). The left-sided image relates to an ASD 
participant, while the right-sided image is for a TD. 

Figure 1 gives a basic scanpath example, which 

includes a few fixations and saccades. As it appears, 

the fixations are shown as circles, and the saccades as 

lines connecting those fixations. The diameter of a 

fixation indicates the duration, while the line length 

represents the continuation of saccades. 

Our approach was based on transforming the eye-

tracking scanpaths into an image-based format. Our 

representation of scanpaths follows on the core idea 

of visualizing fixations and saccades. Further, it was 
aimed to visually encode the dynamics of gaze using 

color gradients. Given the coordinates and timing of 

eye-tracking records, the velocity of gaze movement 

could be calculated. Using a grayscale spectrum, the 

color values were tuned based on the magnitude of 

velocity with respect to time. The visualizations were 

produced using Python with the Matplotlib library 

(Hunter, 2007). A more comprehensive presentation 

of that part is elaborated in our earlier work (Carette 

et al., 2018). 

The outcome of data transformation process was 
an image dataset containing more than 500 images. 

Specifically, 328 images related to the TD 

participants, and another 219 images for the ASD-

diagnosed. The default image dimensions were set as 

640×480. The dataset along with metadata files have 
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been made publicly available on the Figshare 

repository (Figshare, 2019). Figure 2 presents sample 

images from the dataset. 

4.2 Transfer Learning 

TL is a rapidly developing approach in the arena of 

Deep Learning, and AI in general. TL allows for 

extracting knowledge from one or more source tasks 

towards the application to another target task (Pan, 

and Yang, 2009). Thanks to the visual representation 

of eye-tracking data, the source task could be linked 

to image classification in a broad sense. As such, we 

were able to consider the state-of-the-art models of 

Computer Vision.  
A set of popular TL models were experimented. 

The models were originally pretrained using the 

ImageNet dataset (Deng et al., 2009). Specifically, 

our experiments included the following models: 

i) VGG-16: The VGG-16 model is a deep CNN 

architecture developed by a group of researchers from 

the University of Oxford (Simonyan, and Zisserman, 

2014). The model could achieve an excellent 

accuracy of 92.7% with ImageNet data, over 14M 

images organized into 1000 categories. As its name 

suggests, the VGG-16 architecture includes 16 layers. 

More specifically, the model includes a couple of 

blocks of 2 convolutional layers followed by a max-

pooling operation. Subsequently, it has a sequence of 

3 blocks including 3 convolutional layers followed by 

max-pooling. Eventually, the output is connected to a 
number of fully connected dense layers. 

ii) ResNet: Residual Networks (ResNet) (He et 

al., 2016) have become the mainstream architecture 
for many tasks of Computer Vision. The fundamental 

breakthrough made by the ResNet architecture was to 

allow for training extremely deep neural networks. 

The key idea of ResNet was the so-called “skip 

connection”, which can add the original input to the 

output of the convolution block. This was a major 

contribution to address the problem of vanishing 

gradients (Hochreiter, 1998). There are variants of the 

ResNet architectures (e.g. ResNet50, ResNet101). In 

our case, the ResNet50 model was applied only. The 

ResNet50 model includes 48 convolutional layers 

along with a max-pooling layer, and another average-
pooling layer. 

iii) DenseNet: The Densely Connected 

Convolutional Network (DenseNet) architecture 

(Huang et al., 2017) can be conceived as a further 
extension of the ResNet. The basic idea of 

the DenseNet architecture is that each layer is 

connected to each other layer. As such, the feature 

maps of all the preceding layers are used as inputs for 

each layer, and its own feature maps are used as input 

for each subsequent layer. There are variants of the 

DenseNet architectures including the DenseNet-121, 
DenseNet-160, and DenseNet-201. The number 

denotes the number of layers in the model (i.e. 121 

layers, 160 layers, etc.). In our case, we only applied 

the DenseNet-121 architecture. 

5 EXPERIMENTS 

5.1 Preprocessing and Augmentation 

At the outset, a set of image processing techniques 

was applied as follows. First, the blank background 
was cropped out as far as possible. The cropping was 

implemented using the OpenCV library (Bradski, G., 

2000). Second, all images were consistently scaled 

down to 256x256 dimensions. 

Further, data augmentation was applied to enlarge 

the dataset, and increase the diversity of images. 

Augmentation is a prevalent approach to help models 

generalize better and reduce the risk of overfitting. 

The ML literature largely reported that augmentation 

could improve the performance of classification 

models (e.g., Xu et al. 2016; Perez, and Wang, 2017). 
In our case, each scanpath image in the dataset 

was augmented with five synthetic samples. The 

synthetic samples were created using a random set of 

image transformations such as rotation, and shearing. 

The implementation of data augmentation was largely 

facilitated thanks to the Keras library (Chollet, 2015), 

which comes with built-in functionalities for that 

purpose. The synthetic set was added exclusively to 

the train data during the model training as explained 

in the following part.  

5.2 Data Splitting 

The dataset was partitioned into train and test sets 

based on a 3-fold cross-validation procedure. The 

split process was conducted over two stages to ensure 

that images of a particular participant would exist 

either in the train or test sets. Specifically, the dataset 

was split using the following stepwise procedures: 

1. Split Participants: Initially, the group of 59 

participants were randomly split into two 

independent sets (i.e., train and test). 

2. Match Images: Based on the IDs of 

participants, the scanpath images were 

matched and loaded into the train and test 

sets. The images produced earlier by the 
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augmentation were used exclusively in the 

train set based on participant IDs as well. 

3. Repeat: Step #1 and Step #2 were repeated 

for each round of the cross-validation. 

5.3 Classification Models 

Our experiments included a set of three classifiers 
based on the pretrained models mentioned earlier. 

Each classification model consisted of two main parts 

as follows: 

• Base Model: The pretrained convolutional 

model for performing the feature extraction. 

• Classifier Model: The model used to 

classify the input image based on the 
features extracted by the convolutional base. 

It is also important to note that those pretrained 

models were originally trained against the classes of 

ImageNet, which consisted of 1000 labels. Therefore, 
we removed the final layers that perform the 

classification task. Instead, we added a simple MLP 

module on top of each base model.  

The MLP module consisted of three layers 

including 256, and 128 neurons, along with the final 

output layer. On the one hand, the MLP weights were 

trainable during the model training. On the other 

hand, the base model weights were fully transferred. 

The ReLU activation function was used at the MLP 

front layers. While the output layer used a sigmoid 

function, which was sufficient to perform the binary 
classification task (i.e., TD or ASD).  

5.4 Performance Evaluation 

Three rounds of cross-validation were applied for 

evaluating the performance of each model. Figure 3 

compares the ROC curves. As it appears, the VGG-

16 model could achieve the best performance with 

ROC-AUC≈0.78. However, the ResNet and 

DenseNet models could achieve quite comparable 

performance with ROC-AUC of about 0.77 and 0.76, 

respectively. Table 2 analyzes the performance with 

respect to precision and recall. Likewise, the VGG-16 
had the highest values. 

The experiments were run on the Google Cloud 

platform using a VM including a single GPU (P-100 

Nvidia), and 25GB RAM. All classification models 

were implemented using Keras (Chollet, 2015) along 

with TensorFlow backend (Abadi et al., 2016). 

 

 

Figure 3: ROC curves. 

Table 2: Performance analysis of models. 

Model Recall (~) Precision (~) 

VGG-16 0.56 0.67 

ResNet 0.54 0.65 

DenseNet 0.55 0.65 

6 CONCLUSIONS 

This paper presented a vision-based approach for 

detecting autism using Transfer Learning (TL) and 

eye-tracking. The key idea presented here was to 

utilize a visual representation of eye-tracking 

recordings as an enabler to approach sophisticated 

models pretrained on image classification tasks.  

Interestingly, popular vision models such as 

VGG-16, ResNet, and DenseNet could achieve a 

quite promising performance. It turned out that the TL 
approach was largely applicable, even though the 

source dataset (i.e., ImageNet) is assumed to have 

included quite different types of images. This could 

translate into the suitability of synthetic visual 

representations. Compared to earlier work (e.g., 

Carette et al., 2019), it is not claimed at all that the TL 

approach could provide superior performance. 

However, it is conceived that the scarcity or 

imbalance of datasets could make such TL 

approaches attractive for further investigation.  
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