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Abstract: As personal mobile devices, such as smartphones and smartwatches, are increasingly commoditized, it has
become easier to measure individual physiological and physical states and record them continuously. Ap-
plying machine learning techniques to the data, we can detect early signs of diseases in older people, such
as dementia, and predict probabilities of future disorders. This review paper describes the machine learning
technologies in realizing wearable healthcare for older people. First, we survey the literature on machine-
learning-driven wearable technologies for the early detection of dementia. Second, we discuss issues of the
datasets for constructing ML models. Third, we describe the need for a service framework to collect longitudi-
nal data through continuous monitoring of the user’s health status. Finally, we discuss the socially acceptable
implementation of the service framework.

1 INTRODUCTION

Dementia is caused by brain disorders and diseases,
such as Alzheimer’s Disease (AD), Dementia with
Lewy Bodies, Vascular dementia, Frontotemporal de-
mentia, Parkinson’s disease with dementia (PDD).
Because there is no cure for dementia, early detec-
tion of the symptoms is essential to prevent disease
exacerbation.

Many medical screening methods for dementia
have been proposed (Turner et al., 2020; Thabtah
et al., 2020). Cognitive assessment tools (Cordell
et al., 2013; Giebel and Challis, 2016) are often used
for detection by investigating cognitive domains (at-
tention, language, memory, and visuospatial function)
because of their simplicity. The tools are essential for
the diagnosis of dementia in the hospital. However,
most persons with dementia (PwDs) do not notice a
decline in their cognitive function in the early stages.
They do not go to the hospital until noticeable demen-
tia symptoms are progressing. Thus, detecting the in-
dividual cognitive decline at home is an important is-
sue. A home screening system that informs doctors
about user changes is required.

To capture changes in the cognitive functions of
individuals, the use of digital biomarkers has drawn

a https://orcid.org/0000-0002-6414-6506

attention in recent years. They collect, track, and an-
alyze patients’ social, behavioral, and physiological
states using sensors, such as cameras, accelerometers,
barometers, GPS, and microphones (Kourtis et al.,
2019; Piau et al., 2019; Husebo et al., 2020). Be-
cause recent wearable devices (e.g., smartwatches)
have these sensors, they can be used to detect dig-
ital biomarkers of users’ unnoticeable diseases. As
many people use smartwatches, there is a large med-
ical impact on the early detection of individual cog-
nitive decline at home. In addition, recently, machine
learning (ML) technologies are also used to detect de-
mentia(Tsang et al., 2020; Tanveer et al., 2020). It is
still a new challenging research area to apply ML to
detecting early signals of dementia from the sensor
data on commercially available wearable devices.

In this short review, we survey the literature on
using wearable and ML technologies to detect early
symptoms of dementia and discuss its current status
and future challenges. First, we conduct a literature
review of relevant articles from major publishing sites
and academic libraries. Second, we discuss issues of
constructing the datasets for ML models. Third, we
point out the need for a framework construction to
collect longitudinal data through continuous monitor-
ing of the user’s health status. Finally, we describe the
challenges of making such a data collection frame-
work socially acceptable.
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2 WEARABLE DEVICES AND
DIGITAL BIOMARKERS FOR
DEMENTIA

In this section, we review the literature on detecting
early symptoms of dementia by applying ML meth-
ods to various types of digital biomarkers. We con-
ducted a literature review by examining relevant ar-
ticles from major publishing sites and academic li-
braries. We selected appropriate literature related to
the digital biomarkers sensed by the wearable devices.
The summary of the literature is shown in Table 1.

2.1 Physiological Signals

Rim et al. (Rim et al., 2020) provided a review paper
on DL applications in physiological signal data. For
early detection of AD, electroencephalogram (EEG)
has recently become a promising area of AD (Al-
Jumeily et al., 2014; D. Kim and K. Kim, 2018). Bi
et al. (Bi and Wang, 2019) proposed an EEG spectral
image classification with a multi-task learning strat-
egy based on a convolutional high-order Boltzmann
machine. Since current wearable EEG devices allow
long-term noninvasive recording of brain signals out-
side of a laboratory (Casson, 2019), ML-driven wear-
able EEG is an important research area for the early
detection of dementia.

2.2 Human Activities

Patients of MCI and PwDs are characterized by decre-
ments in instrumental activities of daily living (IADL)
(Sacco et al., 2012; Lindbergh et al., 2016). PwDs
often show specific patterns of behavioral and psy-
chological symptoms of dementia, such as hyperac-
tivity (van der Linde et al., 2016). By monitoring and
recognizing their daily activities using wearable de-
vices, we may be able to detect the specific behav-
ioral patterns of dementia. Besides, the amount of
social interaction and physical activity in the lifestyle
of older people directly affects cognitive decline that
may progress to dementia (Kelly et al., 2017; Najar
et al., 2019). Thus, human activity recognition (HAR)
can be used as an assessment tool for estimating the
risk of dementia.

HAR using wearable devices is a popular appli-
cation area of ML. To capture human motion, we can
use sensors in smartphones or smartwatches placed on
the user’s body. The sensors include accelerometers,
gyroscopes, and inertial measurement units. By ap-
plying various ML methods to the sensor data, such as
CNN with transfer learning (Akbari and Jafari, 2019),
we can recognize the activities of the user correctly.

Although using HAR with ML could be useful
for the early detection of dementia, currently, there
is little available literature on this topic. Bringas et
al. (Bringas et al., 2019) proposed a method that
processes accelerometer data of Alzheimer’s patients
and a CNN that classified the stage of the disease.
They applied it in a case study with thirty-one patients
with AD, in which the classification success rate was
ninety-one percent. Li et al. (Li et al., 2018) showed
time-aware Toeplitz inverse covariance-based cluster-
ing (Hallac et al., 2017) and CNN for predicting AD
using actigraphy data provide a solution for continu-
ously monitoring changes of physical activity of sub-
jects in daily living environments. Abnormal behav-
iors related to the stage of dementia can be detected
by monitoring daily life patterns. Arifoglu et al. (Ar-
ifoglu et al., 2020) applied graph convolutional net-
works to HAR, and abnormal behaviors related to de-
mentia were detected using activity recognition con-
fidence probabilities. Using long short-term memory
(LSTM) networks, Zhan et al. (Zhan and Haddadi,
2019) proposed a system to predict patients’ activities
and timing to enable caregivers to provide timely and
appropriate care. Okada et al. (Okada et al., 2019)
used IoT sensors and mobile robots to monitor daily
activities and interactions of PwDs at home. They
proposed an ML-based estimation method, e.g., Ran-
dom Forest (RF), for the dementia stages based on
the sensor data. González Dı́az et al. (González Dı́az
et al., 2013) showed a support vector machine (SVM)
based method of recognizing IADL from an egocen-
tric camera view as a context for Alzheimer’s disease
research.

2.3 Gait Patterns

Gait analysis is a study of the body movements during
walking, that is, human locomotion. It is known that
mobility disorders, such as freezing of gait (FOG), are
often identified as early symptoms of AD and PDD
(Shull et al., 2014; Block et al., 2016). Mc Ardle et
al. (Mc Ardle et al., 2018; Mc Ardle et al., 2020)
proposed an application of wearable technology as a
clinical tool to differentiate the subtypes of dementia.
Xie et al. (Xie et al., 2019) showed that a sensor-
based wearable device for gait measurement might be
a convenient tool for screening cognitive impairment
called amnestic mild cognitive impairment.

To identify irregularities in gait patterns in older
persons with cognitive decline and dementia, moni-
toring their gaits using ML-driven mobile and wear-
able devices can be used to detect digital biomark-
ers of dementia. Xu et al. (Xu et al., 2018) pro-
posed an improved subsequence dynamic time warp-
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ing, a pattern matching method of two time-sequence
data to detect FOG, a typical symptom of PDD.
Rodrı́guez-Martı́n et al. (Rodrı́guez-Martı́n et al.,
2017) proposed detecting FOG using SVM through
a single waist-worn triaxial accelerometer. Zhang et
al. (Zhang et al., 2020) presented an ML-based PD
diagnostic model that exploited PD pathological in-
formation from two independent accelerometers and
gyroscope records.

2.4 Eye Movements

Tracking eye movements can be a practical diagnos-
tic tool in assessing dementia (Crawford et al., 2005;
Marandi and Gazerani, 2019). Subtle impairments
in cognitive inhibition of people in the early stages
of AD can be detected using relatively simple eye-
tracking paradigms (Wilcockson et al., 2019; Carr and
Grover, 2020).

Recent progress in eyeglass-type wearable devices
has shown the potential of wearable eye-tracking for
mental health monitoring in daily life settings (Vidal
et al., 2012; Liu et al., 2019; Li et al., 2020). Pavisic et
al. (Pavisic et al., 2017) proposed an ML approach us-
ing a classification method based on the smooth pur-
suit of raw eye-tracking data and significant correla-
tions between eye-tracking metrics and standard vi-
sual cognitive estimates of young-onset Alzheimer’s
disease. To assess apathy in patients with AD, Chung
et al. (Chung et al., 2018) used recurrent neural net-
works to detect differences between visual scanning
behaviors on emotional and non-emotional stimuli to
classify apathetic and non-apathetic AD patients.

2.5 Linguistic Features

Dementia can affect a person’s speech, language,
and conversational interaction capabilities (Peelle and
Grossman, 2008; Colman and Bastiaanse, 2011;
Reilly et al., 2011). With the recent advances in
speech recognition systems on mobile devices, it may
be possible to record and analyze the speech of older
people to detect and assess abnormalities in their lan-
guage and conversations.

The Alzheimer’s Dementia Recognition through
Spontaneous Speech Challenge (Luz et al., 2020) pro-
vided a benchmark dataset of spontaneous speech. In
the challenge, different approaches to the automated
recognition of AD based on the dataset were com-
pared. Searle et al. (Searle et al., 2020) analyzed
spontaneous speech datasets and compared perfor-
mance across numerous classification models of AD
and prediction of MMSE scores. They showed that an
SVM model and a “DistilBERT” model (Sanh et al.,

2020) showed good prediction performance.
Beltrán et al. proposed an ML-based approach us-

ing the microphones of wearable sensors to detect au-
dible cues of problematic behaviors, such as tapping
and mumbling (Beltrán et al., 2019). They classified
the audio signals based on the hidden Markov model
and SVM. Rosas et al. (Rosas et al., 2019) analyzed
the lexicon (mental dictionaries and the ability to un-
derstand complex words) and the speech fluency of
PwDs. They proposed two ML algorithms to auto-
matically classify the presence/absence of dementia.
Troger et al. (Tröger et al., 2017) showed an ML-
based dementia screening tool trained on the French
Dem@Care corpus (Karakostas et al., 2016). Utiliz-
ing vocal features, they confirmed the prediction ac-
curacy of 89%. Karlekar et al. (Karlekar et al., 2018)
proposed a CNN-LSTM model based on the Demen-
tiaBank dataset (Boller and Becker, 2005) to classify
AD. Orimaye et al. (Orimaye et al., 2018) also used
the DementiaBank dataset to realize a combination of
deep neural networks and deep language models for
classifying diseases. Several types of research (Chi-
naei et al., 2017; Pan et al., 2019; Kong et al., 2019;
Di Palo and Parde, 2019) apply ML to the Demen-
tiaBank dataset. Zhou et al. (Zhou et al., 2019) ap-
ply a natural language processing approach to extract
lifestyle habits from free-text electronic health record
data. They found that patients with AD were exposed
to more potential risk factors than the comparison
group. Such a method implemented on a smartphone
can be a novel assessment tool for estimating the risk
of dementia.

3 DISCUSSIONS

Based on the results of the previous section, we dis-
cuss the status and issues of the studies.

3.1 Use of Clinical Datasets

Although there are many studies on ML-driven mo-
bile/wearable technologies, there are still few appli-
cations to early detection of dementia. A reason is
that only a few datasets are appropriate as follows.

A dataset on oral speech during the clinical exam-
ination of dementia, called DementiaBank, is avail-
able for linguistic analysis. As the dataset has al-
ready been used for international competitions, the
latest deep learning algorithms have been applied ac-
tively for linguistic analysis. In gait analysis research,
some researchers have developed datasets of gait dis-
orders, such as PD; they have focused on the diagno-
sis and treatment of gait disorders and applied ML to
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Table 1: Summary of the studies on ML and digital biomarkers.

Analysis Sensor Method Literature
Physiological signal EEG PCA (Al-Jumeily et al., 2014)

DNN (D. Kim and K. Kim, 2018)
convolutional Boltz-
man machine

(Bi and Wang, 2019)

Human activities accelerometer CNN (Bringas et al., 2019)
actigraphy TICC&CNN (Li et al., 2018)
door&motion sensor GCN (Arifoglu et al., 2020)
activity sensor LSTM (Zhan and Haddadi, 2019)
location&interaction
sensor

RF, SVM, GBDT, etc. (Okada et al., 2019)

egocentric camera SVM (González Dı́az et al., 2013)
Gait accelerometer micro features and

correlation
(Mc Ardle et al., 2018;
Mc Ardle et al., 2020; Xie
et al., 2019)

dynamic time warping (Xu et al., 2018)
SVM (Rodrı́guez-Martı́n et al.,

2017; Zhang et al., 2020)
Eye movement head-mounted infrared

eye tracker
Correlation&HMM (Pavisic et al., 2017)

display mounted infrared
eye tracker

RNN (Chung et al., 2018)

Linguistic analysis spontaneous speech (mi-
crophone)

SVM, GBDT, CRF
&DNN

(Searle et al., 2020)

SVM, HMM (Beltrán et al., 2019)
3-Layer NN, SVM (Rosas et al., 2019)
SVM (Tröger et al., 2017)
CNN, LSTM-RNN,
CNN&LSTM-RNN

(Karlekar et al., 2018)

D2NNLM (Orimaye et al., 2018)

detecting them. Thus, it is desirable to develop clin-
ical datasets applied to other analyses, such as eye-
tracking data of PwDs, when they see their doctors.

3.2 Daily Activity Records for Datasets

HAR is the research area where ML has been most ap-
plied in mobile wearable technology. As sensors built
in a smartphone or smartwatch are designed to sense
the user behavior, it is natural to use the sensor data
for ML. HAR can be an excellent tool for the early
detection of dementia by recognizing typical behav-
ioral patterns, such as wandering and changes in the
patterns.

However, there has been little research on diag-
nosing dementia using HAR. That is because it is dif-
ficult to observe and accumulate the ordinal behav-
ioral patterns of patients in the context of conven-
tional medical diagnoses. On the other hand, with the
widespread use of smartphones, it is becoming possi-
ble to sense and record the daily activities of older
people. If the data can be used, it may be possi-

ble to detect differences in behavior before and after
the onset of dementia. The daily activity records for
datasets, including continuous HAR data, need to be
developed for diagnosing dementia.

4 CHALLENGES

This section discusses future challenges to overcome
the issues described in the before section.

4.1 ML-driven Data Collection
Framework

Due to the difficulty in constructing datasets in daily
life, not much research has been conducted on ML-
driven wearable techniques for the early detection of
dementia. As current smartphone sensors can collect
human motions and conversations from a technical
point of view, a key issue is designing a service frame-
work that collects longitudinal data by monitoring the
user’s health status before the detection.
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Because the service framework is different from
ordinal diagnosis processes based on inspection data
conducted in medical institutions, the service should
be designed from an information service point of
view. For example, large web companies already pro-
vide several ML-driven consumer services based on
user models using longitudinal data of the users. They
adjust the models by comparing predicted results with
actual results and by measuring the interventions’ ef-
fect. In addition, based on longitudinal personal data,
the service can construct more precise user models
and find more appropriate interventions for each per-
son.

We believe that a future direction for early detec-
tion of dementia is creating a data collection frame-
work like web marketing technologies. The frame-
work should be a daily life support system that older
people use continuously. For example, it would pro-
vide speech recognition services to mediate other In-
ternet services. Moreover, it successively assesses
users’ health status based on the ML model. The
learning processes may be lifelong cycles, and the
model would evolve with the service continuously.

The data collection framework has the following
positive effects. First, the longitudinal data obtained
by the services will become the datasets to help diag-
nose the disease. High-quality longitudinal personal
data can construct a precise diagnostic and interven-
tional model for each person. Second, the detection
results can be validated with subsequent data for more
accurate future results. Third, voluntary participation
in the service may positively impact the users’ self-
healthcare. How to encourage voluntary participation
is an essential perspective considering social imple-
mentation.

4.2 Social Acceptance for Data
Collection Framework

Clinicians and patients need to understand the data
collection framework, which will help the framework
get social acceptance. Many people have a high de-
gree of confidence in traditional hospital diagnoses
and prefer to receive their diagnosis in a hospital.
Therefore, making clinicians and patients like to use
the sensing data at home medically is a key issue.

An answer can be providing incentives to them to
use the framework. For example, expectations and
interests in telemedicine services are rapidly increas-
ing due to the COVID-19 pandemic (Smith et al.,
2020). There is a growing need to shift to a new med-
ical service style. Clinicians and patients stay in dif-
ferent spaces, such as their homes, to remotely pro-
vide/receive the service. As telemedicine services are

becoming more popular, home-healthcare is also be-
coming a common medical service.

It is also important to provide daily information
services on wearable devices, such as speech recog-
nition service described at the before section, to sup-
port older people in the post-onset phase of dementia.
Useful information services can be incentives for us-
ing the framework.

There are more direct incentive approaches, such
as financial incentives for physical activity (Barte and
Wendel-Vos, 2017). Recently, implicit behavioral in-
centives such as nudges (Last et al., 2021) have also
drawn attention. The design of incentives to encour-
age users to use the ML-based healthcare framework
is a future challenge.

4.3 Personal Data and Privacy

A critical challenge for implementing the ML-driven
data collection framework is how to protect users’
privacy. Because it collects personal data from sen-
sors close to the human body (Atlam and Wills, 2020;
Kapoor et al., 2020), it may raise ethical challenges
(Maher et al., 2019; Chang et al., 2019; Burr et al.,
2020).Moreover, it is designed to focus on support-
ing individuals including those who have physical and
cognitive disabilities.

To prevent the issues associated with the current
healthcare services, some researchers have proposed
personal data management models focusing on user
privacy (Hasida, 2014; B. C. Singh et al., 2019; An-
ciaux et al., 2019). In the models, the users can man-
age their data on their own data storage, and they can
choose service providers to access their data and set
access limits.

5 CONCLUSIONS

We surveyed the literature on ML-driven wearable
technologies for early detection of dementia. We
found that the utilization and creation of datasets is an
essential issue for realizing the technologies. We de-
scribed that the datasets should be accumulated based
on an ML-driven data collection framework as a con-
tinuous healthcare service. We also discussed the is-
sues on socially acceptable implementation of the ser-
vice framework. We hope that such a data collection
framework becomes a part of future medical service
infrastructure to support users’ long-term health.
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