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Hearing-impaired people are exposed to greater dangers in everyday life, due to the fact that they are not able

to perceive danger and warning signals. This paper addresses this problem by developing an application, that
could help by classifying and detecting the direction of ambient sounds using Microsoft HoloLens 2 devices.
The developed application implements a client-server architecture. The server-side REST-API supports not
only the classification of sounds from audio files via deep-learning methods, but also allows the results of the
sound source localization to be saved and read. The sound source localization is performed by a Maix Bit mi-
crocontroller with a 6-channel microphone array. For the user integration and interaction with the application,
a 3D scene has been designed using Unity and the Mixed Reality Toolkit (MRTK). The implemented applica-
tion showcases how classification and direction detection of ambient sounds could be done on the Microsoft

HoloLens to support hearing-impaired people.

1 INTRODUCTION

According to World Health Organization (WHO),
approximately 446 million! people suffer from dis-
abling hearing loss (Berra et al., 2020). To help
those people, the solution includes the development of
new supporting wearable technologies. The following
paper describes the development of an application,
which can be used for ambient sound source local-
ization and classification on the Microsoft HoloLens
2 to support hearing-impaired people. Therefore, this
paper presents the development process of such an ap-
plication. The resulting application is a proof of con-
cept Mixed Reality (MR) application running on Uni-
versal Windows Plattforms (UWPs) such as Microsoft
HoloLens 2. The aim of the application is twofold: on
the one hand, the application records, saves, and clas-
sifies sounds from the surrounding environment and
presents the results on the 3D scene. On the other
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hand, the results of the sound source direction de-
tection, which is performed with a microphone array,
are permanently queried and displayed on the scene.
Sound classification is performed on a server using a
neural network. In Section 2 the fundamentals, in-
cluding a short overview of sensor substitution, Con-
volutional Neural Network (CNN) and some related
works will be described. After that, the design and
implementation of the UWP application will be de-
scribed in more detail in Section 3. The results of
an evaluation will be presented and discussed in Sec-
tion 4. Section 5 concludes the paper and gives some
insights about future works.

2 FUNDAMENTALS AND
RELATED WORKS

2.1 Sensor Substitution

Human beings have various senses at birth. These in-
clude seeing, hearing, touch, tasting, and smelling.
The organs responsible for these senses are the eye,
the ear, the skin, the tongue, and the nose. These
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organs function as sensors, enabling people to per-
ceive their immediate environment using only these
senses. A failure or disease of a sensory organ can
occur not only at birth, but also during the growing
process. This can lead to considerable problems in ev-
eryday life, leading to neurodegenerative diseases and
depression (Bach-y Rita and Kercel, 2003). Thanks
to scientific and technological progress, it is nowa-
days possible to compensate or treat a damaged or
diseased sensory organ by using sensor substitution
(Bach-y Rita and Kercel, 2003).

A failure of an organ does not affect the whole sense,
but only the part which is responsible for the transmis-
sion of the signal to the brain, as it is commonly the
case by the retina in the eye, or the Cochlea in the ear
(Bach-y Rita and Kercel, 2003). Besides, by sensor
substitution there is a possibility to replace a failed
sensor (sense) with another one, for example see-
ing by hearing, seeing by feeling and hearing (Deroy
and Auvrey, 2012), hearing by seeing and reading or
hearing by feeling or touching (Ciesla et al., 2019).
To sum up, sensor substitution is about coupling an ar-
tificial receptor with the brain via a Human Machine
Interface in order to restore a lost sense. Here, in the
damaged organ, the signal perceived by the receptor
is transmitted directly to the brain, where impressions
are created. This is possible due to brain plasticity.
The term brain plasticity refers here to the ability of
the central nervous system to adapt itself when needed
by changing its structural organization and function.
This includes neurochemical, synaptic, receptor, and
neuronal structural changes (Bach-y Rita and Kercel,
2003).

2.2 Hearing Enhancement with
Augmented Reality

According to (Mehra et al., 2020), people with hear-
ing loss may carry more cognitive load to deal with
complex acoustic environments. They have to spend
more effort in order to fully understand speech in
these situations. The treatment of Hearing Loss (HL)
is commonly undertaken with hearing aids. This
can be described as a multichannel wide dynamic
range compression, which enhances the perception
of soft sounds while keeping louder sounds within
a comfortable range. However, hearing aids present
some considerable limitations. Firstly, sufficiently
increasing the intelligibility of speech in noisy en-
vironments may be challenging. Secondly, the cur-
rent hearing technologies seem not to always match
the user’s needs in complex everyday situations. The
most advanced devices provide only modest addi-
tional benefits, even with additional features. Cur-
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rent ear-centered, multi-microphone hearing aid solu-
tions have limited spacing between microphones, and
current state-of-the-art beamforming and machine-
learning technologies do not allow for the required
source separation and sound enhancement. This ear-
centric form factor also puts tight constraints on the
computation and memory resources available due to
limited battery capacity and power budget.

Due to the above-mentioned limitations, the authors
stated that there is a real need for new technologies
that would help hearing-impaired people by giving
them additional support in problematic listening sit-
vations. So, the authors suggest that an Augmented
Reality (AR) platform, which is described as an inter-
dependent hardware, software, and algorithmic sys-
tem consisting of a collection of constituent technolo-
gies, would give such additional support. According
to the authors, an AR platform can be a single de-
vice or a collection of interlinked wearable devices
working together, which could serve as a frontend to
current and future hearing solutions.

To help solve some problems of listening situ-
ations like the cocktail-party problem for example,
the authors introduced and described one potential
configuration of an AR platform named AR hearing-
enhancing device, which combines AR glasses, cloud,
hearing aids, and input device.

Another way to support people with hearing loss

in problematic listening situations would be to give
real-time speech-to-text captioning displayed in the
AR glasses display system. This has been success-
fully demonstrated by (Slaney et al., 2020) with a mo-
bile accessibility app designed for the deaf and people
with hearing loss, where speech and sound are tran-
scribed to text and displayed on the screen.
To sum up, the authors stated that a combination of
multimodal egocentric sensing, a Machine Learning
(ML) backbone, and a socially acceptable form factor
point toward a future where an AR platform could be-
come the ideal choice to help overcome challenges in
compensating for hearing loss.

2.3 Support of Hearing-Impaired
People with Mixed Reality

To our knowledge, the present work is the first to deal
with classification and detection of direction of ambi-
ent sounds on Microsoft HoloLens to support hearing-
impaired people. However, two projects are related to
the sensor substitution, with the focus on ML, using
image classification and object detection on the Mi-
crosoft HoloLens. In the first one, a system for object
detection on the HoloLens to assist the blind has been
developed (Eckert et al., 2018). The approach here
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was similar to that of the present work. By this sys-
tem, using a speech command such as Scan or simply
the HoloLens Clicker enables the user to take a pic-
ture of all objects present in the field of view and out-
put the results of object recognition as sound.

The second project deals with the direct use of Deep
Learning models on the Microsoft HoloLens 2%. In
that work, a MR application has also been imple-
mented, which allows the classification of captured
images directly on the Microsoft HoloLens 2 using its
embedded chip. To perform classification of the im-
age, a CNN model trained based on EfficientNetBO
has been used.

2.4 Ambient Sound Classification

Convolutional Neural Networks (Krizhevsky et al.,
2012) refer to a particular type of neural network that
has become widely used in computer vision for im-
age classification or detection tasks. The success of
CNNs in image recognition and classification has led
to their adoption for audio data classification (Piczak,
2015).

Like classical neural networks, a CNN consists of in-
puts, hidden layers, and output layers. In CNNs, a
different number of convolutional layers come after
the input layer, depending on the network architec-
ture. For example, after the image matrix is passed
to the input layer it undergoes a sequence of opera-
tions named convolutions followed by dimension re-
duction (sub sampling), and the class or category of
the image is conveyed through a multilayer percep-
tron to the output layer. Any number of filters with
different filter masks can be used in the convolutional
layers. The filters extract features from the images
that are learned by the network throughout the train-
ing process. In the Sound Event Detection (SED)
field, CNNs are used specifically for the classifica-
tion of so-called Mel scaled spectrograms generated
from single audio files. There are also works ap-
plying advanced architectures from the Natural Lan-
guage Processing (NLP) field, such as Bidirectional
Encoder Representations from Transformer (BERT)
(Devlin et al., 2019) for the same task. Increas-
ingly, attention-based mechanisms are added on top
of CNNs to form CNN-attention hybrids, which help
sound classification because they better capture the
global context (Kong et al., 2020). These models
were also used in the DCASE 2021 challenge on de-
tection and classification of sound events (Nguyen
et al., 2021b). (Gong et al., 2021) went further by
introducing Audio Spectrogram Transformer (AST),

Zhttps://github.com/doughtmw/
HoloLens2-Machine-Learning, accessed 2021-11-26

a convolution-free, purely attention-based model in-
spired by the success of such models in vision tasks,
which provides state-of-the-art performance on some
popular audio classification datasets.

3 DESIGN AND
IMPLEMENTATION

In Figure 1 the architecture of the overall system is
shown. At the center of the system is the Microsoft
HoloLens 2 on which the implemented MR applica-
tion will be deployed. The user interacts with the ap-
plication through speech commands and by clicking
on configured buttons. The implemented MR applica-
tion accesses an implemented REST interface on the
server-side, that classifies sounds recorded using the
embedded microphone on the Microsoft HoloLens 2
device. The reason for outsourcing the classification
on a server is that the preprocessing of the recorded
clips currently cannot be done locally on the client.
Sound source localization is performed by the micro-
controller Maix Bit. The results from this will be
written to the ESP32 Thing via the Universal Asyn-
chron Receiver Transmitter (UART) interface and fi-
nally sent by Bluetooth to a connected device. Di-
rect communication between the ESP32 Thing and
Microsoft HoloLens proved to be complex. Instead,
the data is read using the Android application from
(Mense, 2020) and sent to the server using the Repre-
sentational State Transfer (REST)-API.

3.1 Training of a Classification Model

Ambient Sound classification is the first task the de-
veloped application should perform. To solve this
task, a classification model is needed. For training, we
used the Environment Sound Classification Dataset
(ESC-50) dataset (Piczak, 2015), which is a collec-
tion of 2000 audio clips grouped in 50 categories of
everyday sounds. Each clip was recorded with a sam-
ple rate of 44.1kHz in mono. The dataset provides
5 splits for comparable cross-validation. First, we
trained a CNN similar to the one in (Kumar et al.,
2018) from scratch, which only achieved a mean ac-
curacy of 71%, so we instead decided to focus on
state-of-the-art models for audio classifications. At
the time of writing, the best performing model on the
ESC-50 dataset is Audio Spectrogram Transformer
(AST)? (Gong et al., 2021). AST is a convolution-
free, purely attention-based model which reaches an

3https://github.com/YuanGongND/ast, accessed

2021-11-25
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Figure 1: Diagram of the technical architecture of the implemented application.

accuracy of 88.7% (ImageNet pre-training) and
95.6% (ImageNet and AudioSet pre-training) on
ESC-50. 5-fold cross-validation training was per-
formed for 25 epochs based on the splits provided
by the dataset, and based on a model pre-trained on
both ImageNet and AudioSet (Gemmeke et al., 2017),
making use of cross-modality transfer learning from
images to audio data. Table 1 summarizes the overall
achieved accuracies by the trained model from scratch
ESC50Net and the AST-architecture.

Table 1: Achieved accuracy (%) by ESC50Net and the AST-
architecture using cross-validation.

3.2

Fold ESC50Net AST
topl acc. (%) | topl acc. (%)
1 71 94.75
2 67 98.25
3 71 95.00
4 77 96.25
5 69 95.00
Mean | 71 ] 95.80 |

Server-side Ambient Sound
Classification

The ambient sound classification is performed by a
Flask* (Grinberg, 2018) (version 1.1.2) application

“https://palletsprojects.com/p/flask/

accessed

2021-11-26
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that was developed and hosted on the server. This is
due to the fact that the supporting libraries for audio
conversion have been missing on the HoloLens. The
Flask application provides a REST Interface, which
supports the client-server communication through
Application Programming Interface (API) endpoints.
For this application, four endpoints are needed:

1. POST /api/classifier: Send audio files to the
server. The result contains the top 3 predicted
classes, including probabilities as JSON data.

2. POST /api/direction: Send sound localization
results from the Android App to the server.

3. GET /api/direction: Get the latest sound local-
ization results from the server as JSON data.

4. GET /api/amplitude: Get the maximum ampli-
tude value from the localization results as JSON
data.

In order to perform inference of received audio files
on the server, the best trained model is loaded into the
developed Flask application.

3.3 Detection of Direction of Sound

Detecting the direction of sound is made difficult by
factors like reflection, polyphony, interference, and
non-stationary sound sources (Nguyen et al., 2021a).
Modern datasets used for sound event localization and
detection, like the one used in DCASE 2021 Task 3
(Politis et al., 2021), use either first-order Ambisonics
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or microphone arrays for the recordings. To approach
this, we decided to go with a microphone array (see
Figure 2) with integrated direction detection.

Figure 2: Portability of the hardware used for sound direc-
tion detection.

The sound source localization is performed on a
Maix Bif® microcontroller with a microphone array.
The module includes 7 microphones of which 6 are
arranged in a circle around a central one. The micro-
phone module communicates with the Inter-IC-Sound
(I2S) protocol®. To provide a Bluetooth interface for
the localization data, a Sparkfun ESP32 Thing’ is at-
tached to the Maix Bit via UART. The ESP32 Thing
forwards the UART data to a Bluetooth interface.
The above-mentioned hardware together with an An-
droid application for sound classification and direc-
tion determination has been developed in (Mense,
2020). An image of the solution is displayed in Fig-
ure 2. This application was integrated as a proxy in
the developed version of the MR application, as the
data from the sound source localization could not be
read directly from the hardware using the MR appli-
cation. Figure 3 shows the results of the application
in a test.

3.4 User Interaction

To help the user in the interaction with the applica-
tion, a 3D scene was designed using the game en-
gine Unity and the MRTK®. The MRTK provides a

Shttps://dl.sipeed.com/shareURL/MAIX/HDK/
Sipeed-Maix-Bit/Specifications, accessed 2021-11-25

Ohttps://wiki.sipeed.com/soft/maixpy/en/develop_kit_
board/maix_bit.html, accessed 2021-11-25

7https://github.com/sparkfun/ESP32_Thing,
2021-11-25

8https://docs.microsoft.com/en-us/windows/
mixed-reality/develop/unity/mrtk-getting-started, accessed
2021-11-26

accessed
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Figure 3: Presentation of the result from direction determi-
nation. The direction of the sound is displayed as coming
from west-north direction in the middle.

set of components and features that accelerate cross-
platform development of MR applications®.

In this work, the version 2019.4.8f1 of Unity is used
in addition to the MRTK!? (version 2.7.0).

The designed user interface is displayed in Fig-
ure 4. The most confident class of the top 3 predicted
classes is displayed with its probability and inference
time at the top. In the center, the direction of the loud-
est ambient sound is shown by a 3-dimensional arrow.
The buttons for starting and stopping the application
can also be triggered by voice commands.

While the application is running, an audio clip is
recorded and sent to the server every five seconds to
determine the class of the sound.

4 EVALUATION AND
DISCUSSION

In order to evaluate the performance of the imple-
mented application, several experiments were per-
formed. The experimental setup consisted of:

1. A Bluetooth speaker PPA401BT-B,

2. A smartphone Samsung Galaxy S20 FE,
3. Alaptop Acer Aspire E5-573G,
4

. The hardware device containing the Sparkfun
ESP32 Thing and Maix Bit, and

5. The module Maix R6+1 Microphone Array.

9https://docs.microsoft.com/en-us/windows/
mixed-reality/mrtk-unity/, accessed 2021-11-26
Ohttps://docs.microsoft.com/en-us/windows/
mixed-reality/mrtk-unity/release-notes/
mrtk-27-release-notes ?view=mrtkunity-2021-05, accessed
2021-11-26
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Probability: 100%.

Figure 4: Screenshot of the application running on the Microsoft HoloLens 2.

The speaker used as the sound source was placed
around the microphone array for the direction detec-
tion. Audio recording was done using the embedded
microphone on the devices.

For the experiments, a sound clip containing a mix
of several sound classes was played using the speaker,
which was placed in a distance d < 1.5 meter left,
right, above and behind the microphone array or Mi-
crosoft HoloLens 2. Direction detection and sound
classification were then performed both using the An-
droid application and the MR application. Classifica-
tion and direction detection was performed 10 times
over the course of 50 seconds, the results for the direc-
tion detection are summarized in Table 2. During this
experiment, 40 inferences have been conducted on a
NVIDIA Titan Xp GPU with a mean preprocessing
and inference time of 308 ms.

Table 2: Direction detection results. Mean detection from
10 classifications for each direction.

Direction | Result | Expected | Deviation
Right 82.5° 90° 7.5°
Front 346.5° 0° 13.5°
Left 279° 270° 9°
Behind 174° 180° 6°
Mean 9°

Similar to (Eckert et al., 2018) the voice command
recognition for the two configured commands “start
recording” and “stop recording” has been evaluated.
The results are shown in Table 3.
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Table 3: Voice command recognition using the HoloLens.

Not
Command | Recognized | recognized | Sum
start rec. 11 20 31
stop rec. 13 2 15

The direction detection works good in a lab sce-

nario, with a mean deviation of 9°. During exper-
iments in the wild, some problems of microphone-
arrays could be noticed. For example sound reflec-
tions on walls could deviate the direction detection.
Inference times are reasonable for a proof-of-concept
but overall, the latency of the classification could be
improved if the preprocessing and inference could be
done on the HoloLens.
For the sound classification, on the other hand, we
did not manage to reproduce the AST performance
on the development dataset. Possible reasons include
the microphone characteristics as well as the fact that
the sound was played using a speaker. To improve
the microphone performance, several microphones or
a 3D microphone (e.g., Ambisonics) could be used in
future works.

S CONCLUSIONS

This paper described the implementation of a proof
of concept MR application providing classification
and direction detection of ambient sounds on the Mi-
crosoft HoloLens 2 to support hearing-impaired peo-
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ple. While the results of the experiments leave room
for improvement, especially in terms of the sound
classification, we are confident that future work can
build on this and improve the performance, for exam-
ple by using Ambisonics microphones.
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