
Tamer: A Sandbox for Facilitating and Automating IoT Malware
Analysis with Techniques to Elicit Malicious Behavior

Shun Yonamine, Yuzo Taenaka and Youki Kadobayashi
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

Keywords: Sandbox, IoT, Malware, Dynamic Analysis, Automated Analysis, ARM.

Abstract: As malware poses a significant threat to IoT devices, the technology to combat IoT malware, like sandbox,
has not received enough attention. The majority of efforts in existing researches have focused on x86-flavored
binaries that are not used for IoT devices. In fact, we have witnessed that many samples of IoT malware that
can be observed in the wild are ARM binaries. In this paper, we propose a novel sandbox for analyzing Linux
malware including IoT malware. Our sandbox system, called Tamer, supports dynamic analysis for ARM
binaries and has some features to automate and facilitate IoT malware analysis, like the automated interaction
mechanism and the fake network environment for dynamic analysis. In addition, our system adopts features,
like dynamic binary instrumentation and virtual machine introspection, which may allow retrieving further
insights from malware. With the dataset of real-world malware, we demonstrated that our sandbox system can
analyze IoT malware which is specifically designed for infecting IoT devices. Through an analysis experiment
on a large number of IoT malware samples, we demonstrate a possibility that our system could facilitate a large
scale analysis in an automated manner and retrieve further insights from IoT malware.

1 INTRODUCTION

With the spread of IoT devices, IoT malware has been
increasingly sophisticated time by time. Some recent
studies have promoted awareness of the threats from
IoT malware (Cozzi et al., 2018; Cozzi et al., 2020;
Carrillo-Mondéjar et al., 2020). Sandbox is one of
the malware analysis methods that enable extracting
the details of malware behavior. As sandbox lets mal-
ware run on a real system, it is useful to investigate
various malware behavior on certain conditions of the
system. In addition to this feature, sandbox attracts
attention as the solution of analyzing a large number
of malware samples systematically and automatically.
These features are expected to contribute to follow-
ing the trend of IoT malware growing and changing
quickly.

In past, researchers have proposed novel sandbox
systems that are capable of automated dynamic mal-
ware analysis, and each of them handles specific use-
cases (Cuckoo, 2013; Willems et al., 2007; Bayer
et al., 2006; Monnappa, 2015). However, the ma-
jority of previous works have focused on analyzing
conventional malware, and the sandbox for IoT mal-
ware has not received enough attention and not been
explored in detail. In particular, existing sandbox sys-

tems (Cuckoo, 2013; Monnappa, 2015) mainly target
on x86 architectures but do not support architectures
like ARM that are majorly used by IoT. While meth-
ods for facilitating dynamic analysis have matured
through previous studies, these are mainly adjusted
for x86 architectures. Since the execution environ-
ment of ARM is different from x86 architectures, it
requires additional features to facilitate IoT malware
analysis.

In this paper, we propose a novel sandbox, called
Tamer, for analyzing IoT malware. Different from
existing sandboxes which mainly target on x86 ar-
chitectures, our sandbox system supports architec-
tures that are used by IoT devices, such as ARM. As
a feature to elicit network behavior from the target
malware sample, we construct a fake network envi-
ronment where a sandbox machine and pseudo-C&C
server are connected. The fake C&C server allows
observing network data that could be exchanged be-
tween malware and the C&C server. Further, by lever-
aging expect1 utility, Tamer automatically operates
the Linux machine where is the execution environ-
ment of IoT malware. In addition, Tamer supports
advanced binary techniques like dynamic binary in-

1https://linux.die.net/man/1/expect

Yonamine, S., Taenaka, Y. and Kadobayashi, Y.
Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior.
DOI: 10.5220/0010968300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 677-687
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

677



strumentation (DBI) and virtual machine introspec-
tion (VMI).

For evaluation, we conduct several malware anal-
ysis experiments on the dataset of real-world malware
samples. We show that our sandbox system promotes
deeper details about the malware behavior. The eval-
uation supports evidence that how Tamer sandbox can
serve as a choice for IoT malware analysis.

This paper makes the following contributions:

• We propose a novel sandbox, called Tamer, for an-
alyzing IoT malware. Tamer supports analyzing
binaries for ARM, an architecture mostly used in
IoT devices. In addition, Tamer has key features
to facilitate IoT malware analysis: The fake net-
work is a dedicated environment to facilitate ana-
lyzing the network behavior of malware using the
fake C&C server. The auto-manipulation mecha-
nism using the expect allows to performing be-
havior analysis in an automated manner. More-
over, to the best of our knowledge, Tamer is the
first sandbox that attempts to combine advanced
binary analysis techniques such as DBI and VMI.

• Through the experimental evaluation on the
dataset of real-world malware, we demonstrated
that our system can analyze IoT malware which is
dedicated to infecting IoT devices. Moreover, the
result of an analysis experiment on a large volume
of samples suggests that our system can analyze a
huge amount of IoT malware samples in an auto-
mated manner, and may highlight recent trends in
IoT malware families.

• We will release the details of the implementa-
tion of Tamer as open-source, and the list of md5
hashes of malware samples in the dataset, at the
following link2. We expect that some outcomes
we observed through analyzing a large number
of samples could be interesting to security re-
searchers. This is for promoting to replicate our
experiments and obtain the same observations.

2 RELATED WORKS

2.1 Observing Landscape of IoT
Malware

Why the ARM based Linux Malware Matters: In
this study, we focus on the Linux malware for the
ARM architecture since this architecture is popular
for consumer IoT devices and commonly targeted by
IoT malware. In fact, our position can be supported

2https://github.com/shun-yo/Tamer

by some studies. In the recent study (Cozzi et al.,
2020), they explored a large number of malware sam-
ples that have been submitted to VirusTotal over a pe-
riod of almost four years (from January 2015 to Au-
gust 2018). In their dataset, the ARM 32-bit malware
accounted for the largest number of samples, 39.05%
of the total 93,652 samples.

Furthermore, according to the VirusShare dataset
(VirusShare, 2020), a repository of malware sam-
ples, the ARM architecture accounted for the ma-
jority of Linux malware samples collected in the re-
cent period (from Feburary 2019 to April 2020). In
detail, from our survey on the dataset referred to
VirusShare ELF 20200405, the ARM accounted for
one-third or 13,963 out of a total of 43,553 samples.
In short, based on these observations, we claim that
the anti-malware methodology that focuses on ARM
malware is worth considering.

2.2 Existing Sandbox Systems

To date, various sandbox systems have been proposed
and each of these focuses on various use-cases to
combat the malware. In general, the purpose of sand-
boxes has focused on behavioral analysis and the in-
formation obtained from the analysis is used for up-
dating intrusion detection system’s signatures or re-
moving malware from an infected machine, and so
on (Willems et al., 2007). Although various methods
have been explored as sandbox systems have evolved,
we have witnessed that sandbox systems for analyz-
ing IoT malware have not received enough attention.

As an example, Willems et al. designed CWSand-
box (Willems et al., 2007), a sandbox that aims to
generate the machine-readable report to initiate auto-
mated responses. However, their sandbox is for ana-
lyzing malware targeting Windows systems, not IoT
malware. In addition, as the authors admitted that
CWSandbox might cause some harm to other ma-
chines connected to the network, their sandbox does
not have some tricks to make the sandbox separated
from the Internet.

Regarding a limitation of CWSandbox, here we
could suggest that the network setting should be paid
more cautious in IoT malware analysis. The reason
is, in many cases, network activity by IoT malware
involves destructive functions (e.g. DDoS attack,
Brute-force attack to propagate through SSH/Telnet).
Therefore, to construct a dedicated network setting
for malware analysis, it is also necessary to set up a
server that serves as a listener for the C&C connec-
tion.

Bayer et al. proposed Anubis (Bayer et al., 2006),
a novel sandbox for automated malware analysis. Un-

ForSE 2022 - 6th International Special Session on FORmal methods for Security Engineering

678



Table 1: Setting for 32-bit ARM Linux.

Hardware ARM Versatile/PB(ARM926EJ-S)
Architecture ARM v5
Kernel Linux 3.2.1
Memory 256MB
Virtual Disk debian squeeze armel standard.qcow2 (Debian.org, 2014)

Table 2: System specification inside Tamer.

OS CPU Memory

Host machine Ubuntu14.04(x86 64)
Intel

Xeon Silver
@1.80GHz*4

16GB

Sandbox
machine

32-bit ARM Linux
(kernel ver: 3.2.1)

QEMU 256MB

Fake C&C
server

Linux
(Debian 9.12 i386)

QEMU 1 GB

fortunately, their sandbox is for analyzing Windows
malware. Besides, their work is not motivated to mon-
itor network behavior. As with Willems et al., their
study does not care about the network environment
for monitoring network behavior by malware. In de-
tail, while the purpose of their sandbox is to under-
stand functionalities of a given malware sample, their
aim is to get the knowledge about the functionality of
malware for removal.

While CWSandbox (Willems et al., 2007) and
Anubis (Bayer et al., 2006) focus their scope on Win-
dows malware, Limon (Monnappa, 2015) is a sand-
box for analyzing Linux malware. Limon has a min-
imal mechanism for observing network behavior. It
uses simulated network services with the inetsim
(inetsim, 2020) on the analysis machine and allows
monitoring network behavior by malware (like they
analyzed Tsunami (Monnappa, 2015)). However,
Limon does not support analyzing ARM binaries.
In detail, analysis methods used by Limon leverage
features of VMware that are for x86 architectures,
and are not applicable to ARM. Similarly, Cuckoo
(Cuckoo, 2013) is an open-source sandbox, but it does
not support analyzing ARM binaries.

Overall, to the best of our knowledge, at the time
of writing, sandbox systems for IoT malware have
not received enough attention. Even though several
works aim to handle Linux malware that could relate
to IoT, they do not take into account some features
that are necessary to facilitate IoT malware analysis
(e.g. ARM support, dedicated network settings).

3 SYSTEM OVERVIEW OF
TAMER SANDBOX

First of all, to be able to run and analyze ARM bina-
ries, we need dedicated platforms for ARM, including

CPU and OS. Thus, we choose to use QEMU emula-
tor to run a dedicated ARM based Linux on an emu-
lated CPU. For 32-bit ARM Linux machine, we use
Debian Linux where the kernel was cross-compiled
for ARM architecture, as we describe in Table 1. In
our setting, we use qemu-system-arm in accordance
with options “-M versatilepb” to emulate ARM
board for general-purpose Linux target. To analyze
the dynamic behavior of IoT malware, our proposed
system, Tamer, has three components. There are, 32-
bit ARM Linux machine for a sandbox where a target
sample is executed, the fake network where a sand-
box machine locates, an analysis tool to analyze the
execution trace log which can be obtained after exe-
cuting malware is finished. The execution trace log
records the full system activities and allows replay-
ing it for analysis. To support analysis using execu-
tion trace log, our system leverages PANDA (Dolan-
Gavitt et al., 2015), a framework that is built upon
the QEMU emulator, while we slightly modified it
for our purpose. Note that PANDA supports dynamic
binary instrumentation (DBI) and virtual machine in-
trospection (VMI). Thus, the current design of Tamer
leaves analysts an option to use advanced binary anal-
ysis techniques like taint analysis.

The fake network is a network whose setting is
controlled for malware analysis. This is a host-only
network and mainly serves two purposes. First, by
setting it as a closed network, it promises to prevent
attacking packets from going outside the network.
This feature is preferable to maintain safety for mal-
ware analysis. Second, since network routing in the
fake network is controllable by iptables, it allows
redirecting network connections from the sandbox to
the fake C&C server we set up. In short, these features
of the fake network allow observing network behavior
of malware in a safer manner, besides the fake C&C
server serves functionality to elicit network behavior
of malware. Finally, we show the specifications of the
machines inside our system in Table 2.

Figure 1 shows that how our system works by
combining those components described above. In our
system, first, a target malware sample is put into the
sandbox machine or Linux. Then, the malware is
launched during a fixed timeout (currently set 3 min-
utes) and the execution trace log is retrieved. To be
more precise, our proposed system allows observing
network behavior by using the fake C&C server even
if a C&C server where the target is supposed to con-
nect has already been closed. Finally, our analysis
tool analyzes execution trace and obtains dynamic in-
formation of malware.

In the rest of this section, we describe details to
make our system follow our concepts.

Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior

679



Host machine (ubuntu 14.04)

QEMU QEMU

Fake network

With iptables, 
connections by malware are 
redirected to the honeypot.

Tool analyzes execution trace 
and obtains dynamic information.

After executing malware has finished,
execution trace log is obtained.

put
binary

(2) Execute malware on the sandbox in the Fake network

(3)

(4)
(5)Obtains output

Sandbox
(32-bit ARM Debian 

Linux)

Fake C&C 
server

(cowrie honeypot)

C&C channel

execution
trace

Analysis
result
as

Output

Analysis tool
(arm_syscallmon)

malware
as 

input

(1)

Figure 1: Inside Tamer and analysis flow.

172.20.0.1

xxx.xxx.xxx.xxx:8000

* fakedns redirects any traffic to this honeypot
* cowrie simulates SSH and Telnet
* inetsim simulates major network services

eth0

br0

172.20.222.240 172.20.100.100

Only access to the malware repository 
is allowed.

tap1 tap2

Fake network
172.20.0.0/16

Host machine
(Malware repository)

Virtual switch by Tap interface
(controlled by iptables)

Fake C&C
Sandbox
machine

(ARM Linux)

Figure 2: Fake network to emulate C&C server.

3.1 Fake Network Environment

The fake network is a controlled network environment
for malware analysis and isolated from the Internet.
There are two advantages to use the fake network.
First, it prevents connections by malware to propa-
gate infection from going outside the network. This is
for conducting IoT malware analysis in a safer man-
ner. Second, it redirects connections from the sand-
box to the fake C&C server. This is for inspecting the
malware’s network behavior. Commonly, malicious
behavior of malware relies on C&C communication
therefore analyzing the network behavior is important
to understand malware. To make the fake network
isolated and accessible from a sandbox machine, we
carefully designed the routing setting with iptables.
The network in which the target malware is executed
is illustrated in Figure 2.

In order to set up the fake network, we first cre-
ate a virtual bridge using brctl (LinuxFoundation,
2020) utility as shown in Figure 2. Then we cre-
ate two TUN/TAP interfaces, namely tap1 and tap2,
and bind both of them to the br0. This setting allows
the sandbox machine to access the malware repository

Table 3: Tools installed on Fake C&C.

Software Purpose

Cowrie honeypot SSH/Telnet listener
fakedns Respond to DNS query with fake IP addr
inetsim Emulate common network services

which is located outside the Fake network. We note
that this setting is for putting a target sample into the
sandbox machine. Of course, network connections
except for access to the malware repository are not
permitted.

On the other hand, the fake C&C server emulates
network services to handle requests from the sand-
box where a malware sample has launched. As de-
scribed above, network connections from the sand-
box are redirected to the fake C&C server. Table
3 shows software or tools that are installed on the
Fake C&C server. To handle SSH/Telnet connections
that are commonly requested by IoT malware, we
use Cowrie (Michel Oosterhof, 2014) honeypot which
serves as SSH/Telnet server. In particular, the major-
ity of IoT malware attempts to propagate through SSH
or Telnet. Moreover, the proposed system leverages
inetsim to emulate common network services. This
aims to handle requests that may be sent by malware.
Moreover, fakedns respond to DNS queries with the
IP address of the fake C&C server. This allows redi-
recting network connections using domain names.

3.2 Automated Interaction Mechanism

The proposed system has a mechanism to automat-
ically manipulate the sandbox machine, in this case
ARM Linux. The manipulation can be programmed
by a user. We developed a script to achieve this mech-
anism. Specifically, the script we developed leverages
the expect to automate interaction with the sandbox.
With this script, we manipulate the sandbox in an au-
tomated manner.

The aim of this feature is, for malware analysis,
it is necessary to operate the sandbox where a tar-
get malware is to be launched. To be more precise,
it needs at least 2 steps in the sandbox. Those steps
are namely, (1)putting a target sample in the sand-
box at first, and then (2)executing it, as shown in Fig-
ure 1. In order to manipulate the sandbox, we lever-
age sendkey which is, a command which can be uti-
lized through the QEMU console3. This command in-
vokes keyboard events in the guest machine. With this
command, we can manipulate the sandbox or Linux
through keyboard operation.

3https://en.wikibooks.org/wiki/QEMU/Monitor

ForSE 2022 - 6th International Special Session on FORmal methods for Security Engineering

680



wget http://<repository ’s ipaddr >:8000/<FILENAME >

-O ./iotmal

chmod +x iotmal

./iotmal

List 1: Example of steps to launch malware for dynamic
analysis.

(qemu) begin_record iotmal_ <FILENAME >_<DATETIME >

...wait for 3 minutes...

(qemu) end_record

List 2: Operation through QEMU console to save the
execution trace log for PANDA.

3.3 Automating Steps to Launch
Malware in the Sandbox

As described before, the automated interaction mech-
anism is one of the key features of our system. This
is actually an automatic interaction mechanism using
the expect, which can be attached from external the
QEMU. In other words, this is an ad-hoc solution and
easy to attach. From that point, this feature is dif-
ferent from existing approaches that rely on the con-
trol by an agent installed in the guest machine. In the
following, we describe the advantage of our system.
The advantage is that our system allows automating
several steps that are needed to be performed on start-
ing malware analysis. These steps are, for example,
putting a target binary into the sandbox machine and
then executing it. We describe these steps in the fol-
lowing.

In the Linux machine, a malware sample is down-
loaded before being executed. To do this, using the
expect module, commands (as shown in List 1) are
inputted in the Linux machine and executed. In the
List, once the sandbox machine downloads a file, it
gives the exec permission to the file and executes it.

Further, before the sample is executed, the proce-
dure for logging the execution trace is invoked. After
a fixed timeout, currently set to 3 minutes, it stops the
logging, as shown in List 2.

3.4 External Tool for Analyzing
Dynamic Behavior of Malware

After executing malware in the sandbox is finished,
we can obtain the execution trace log. The execution
trace log is a file that records the entire OS events that
have been invoked in the guest machine. The system
events recorded in the execution trace can be replayed
on PANDA (Dolan-Gavitt et al., 2015) built upon the
QEMU. In short, here we analyze the replayed sys-
tem events. In order to analyze malware’s behav-

Table 4: Files accessed by IoTReaper with sys open.

Path

/tmp/client.run
/dev/watchdog
/dev/misc/watchdog
/etc/hosts
/etc/resolve.conf

ior, we developed a tool, named arm syscallmon,
to analyze the execution trace log. We developed
this analysis tool as a PANDA plugin. Currently, this
prototype focuses the main functionality on examing
syscalls that a target malware sample invoked. In de-
tail, arm syscallmon leverages dynamic binary in-
strumentation (DBI) to monitor instructions that in-
voke syscall in the guest machine upon the QEMU.
On the other hand, to identify the process of target
malware, it leverages virtual machine introspection
(VMI) to reference task struct data in the kernel.

4 EXPERIMENTAL EVALUATION

In this section, through several experiments to ana-
lyze the behavior of IoT malware, we demonstrate the
capability of Tamer from multiple perspectives. In
short, we show that Tamer performs features as fol-
lows:

• It allows retrieving information for understanding
dynamic characteristics of malware.

• It allows analyzing malware which is designed for
IoT devices.

4.1 Capability for IoT Malware
Analysis

In order to show the capability of our sandbox, this
experiment analyzes a malware sample and retrieves
dynamic characteristics or runtime information, such
as syscalls, files, unique strings, etc. As a sample
of IoT malware, we analyzed a real-world malware,
IoTReaper4 (FortiGuard, 2017). This malware is no-
torious as a variant that targets IoT devices. Besides,
the only binaries found were ARM executables.

4.1.1 Use Case: System Call Monitoring

Through system call monitoring, the proposed system
obtains the information that relates to the dynamic
behavior of the target malware. This use-case aims
to understand about dynamic characteristics that the
malware will pose once it has launched, e.g., kind of

4MD5: ca92a3b74a65ce06035fcc280740daf6

Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior

681



Figure 3: Fakedns returns IP address of Fake C&C.

syscalls, files that the malware will access, and data
that will be written into the file or left on the vic-
tim’s machine. In particular, the data that malware
has left on the system can be leveraged in order to de-
tect infection and remove malware from the system
(Bayer et al., 2006). Note that behavior analysis is
performed on the execution trace log which records
the entire system activity. The analysis tool we devel-
oped will examine the execution trace log and retrieve
information on the syscalls that were invoked during
the malware was running.

Next, we present some examples of the analysis
results obtained from analysis using Tamer. Here,
we focus on the arguments of the system calls. For
this, Tamer allows retrieving information that indi-
cates characteristics of malware’s behavior. As an ex-
ample, Table 4 shows details of files that a target mal-
ware tried to access. It is likely that information on
files accessed by malware is beneficial to understand
the severity of the threat that the malware poses.

From the output we obtained from the proposed
system, we expect that these information can be use-
ful to understand the dynamic characteristic of the tar-
get malware. For instance, details of the files accessed
by malware brings insights to consider countermea-
sures against malware (as Cozzi et al. have conducted
an investigation to spot the light on the recent trend
of Linux malware (Cozzi et al., 2018)). This result
shows that our system reveals the runtime behavior
invoked IoT malware.

4.1.2 Use Case: Eliciting the Network
Fingerprint

This use-case aims to observe the malware’s dynamic
behavior from the network perspective. The benefit
of network behavior analysis is that it allows obtain-
ing network data that are exchanged between malware
and the C&C server. In addition, this experiment also
supports evidence that the fake C&C elicits the net-
work behavior of malware by acting as a server that
receives data sent from malware.

As shown in Figure 4, our sandbox has retrieved
network data that the target malware was supposed to

Figure 4: Network behavior of IoTReaper requests com-
mands from adversary.

Figure 5: IoTReaper notifies the adversary once it has been
launched in the victim machine.

send to a C&C server. At first glance, these data are
intending requesting commands from a C&C server
controlled by an attacker (a target sample namely
IoTReaper is requesting a Lua script). These data
are seemingly characteristic and are expected to be
used as network signatures for detection. Similarly,
these characteristics can also be seen in the packets
used to notify the attacker that the IoTReaper has been
launched on the victim machine, as shown in Figure
5. This result shows that the fake C&C server enables
handling the connection from malware to retrieve the
network data sent from malware. To be more specific,
as described before, by crafting network routing with
iptables, the network connection that a malware ini-
tiates is redirected to a fake C&C server. For this, it
allows obtaining data sent by malware. In addition,
as shown in Figure 3, fakedns commits to redirect
malware’s connections by responding to DNS queries
with an IP address of the fake C&C server.

From these results, we have confirmed that our
proposed sandbox system has successfully observed
network data that the malware generates. Actually, we
have obtained data that are characteristic. Besides, the
result shows that the honeypot we set up has served as
a fake C&C server. Those malicious network behav-
ior are not observable without the effort of the fake
C&C server, since in many cases, real C&C servers

ForSE 2022 - 6th International Special Session on FORmal methods for Security Engineering

682



Table 5: Dataset (family names are referenced from labels
by TrendMicro).

Malware family Number of samples

Trojan.Linux.MIRAI.SMMR1 100
Backdoor.Linux.GAFGYT.SMMR3 100
Backdoor.Linux.BASHLITE.SMJC 100

Total 300

wget http://<repository ’s ipaddr >:8000/<FILENAME >

-O ./iotmal

chmod +x iotmal

strace -tt -f -s 2048 -y -o log.txt ./iotmal

curl -T log.txt http://<repository ’s ipaddr >:8000/

log_iotmal_ <FILENAME >_<DATETIME >.txt

List 3: Logging syscall with strace command for large scale
analysis.

where the malware connects to are already closed at
the time of analysis. In short, the fake C&C server
successfully served as a C&C server where the mal-
ware was supposed to connect. This result shows that
Tamer can retrieve network data generated by mal-
ware without the presence of an original C&C server.

4.2 Capability for Automation:
Example of Large Scale Analysis

One of the use cases of automated approach in mal-
ware analysis is to analyze a large number of sam-
ples and understand their population characteristics.
In this section, we show that the automation mecha-
nism of our system can analyze trends in IoT malware
characteristics.

On the dataset available from VirusShare, which
is namely referred to as VirusShare ELF 20200405,
we analyzed 100 samples for each family consisting
of Mirai, Gafgy, and Bashlite. Table 5 shows the de-
tails of our dataset consisting of Mirai, Gafgyt, and
Bashlite. According to searching VirusTotal with the
MD5 hash of ELF file, TrendMicro labeled each cat-
egory of samples as shown in the table. In total, we
have analyzed 300 samples.

Our analysis experiment is based on analyzing
system calls invoked by malware. First, once a target
malware sample fetched from our malware repository
is executed, syscalls are logged for a fixed timeout
(set to 2 minutes). For monitoring system calls, we
use strace5, a utility that is appropriate for a large
scale analysis from the aspect of time efficiency and
the ease of setting. Next, after syscall logging is fin-
ished, the output file by strace will be sent to the
repository to be saved. Then, the sandbox will be re-
stored to the original state using a snapshot. These

5strace: linux syscall tracer. https://strace.io

[ [96mBOT JOINED [97m] Arch: [96mARM4T [97m||

Type: LITTLE_ENDIAN]

[*] N0D3 1NF3CT3D | |

\33[0;32 mConnected | IP: <IP ADDR > | Type: SERVER

| Version: Build 2

List 4: Example of printable strings in notification banner
(Bashlite).

POST /cgi-bin/ViewLog.asp HTTP/1.1 Host: <IP ADDR

>:80 Connection: keep -alive Accept -Encoding:

gzip , deflate Accept: */* User -Agent:

python -requests /2.20.0 Content -Length: 227

Content -Type: application/x-www-form -

urlencoded /bin/busybox wget http://<IP

ADDR >/lockfilebins.sh; chmod +x lockfilebins.

sh; ./lockfilebins.sh

List 5: Example of printable strings in HTTP requests (by
Bashlite).

steps are repeated for all samples. As a result, we can
be prepared to analyze system calls for all 300 target
samples.

In system call monitoring, we mainly focus on
system calls that relate to file access and network ac-
tivity. Thus, here we analyze invoked system calls
focusing on open, access and send. Our position is
that the details of files accessed by the malware are
important, since many malicious behaviors involve
file activity. Therefore, from the perspective of file
access behavior, we examine files opened or used by
malware. On the other hand, from the perspective of
network activity, we focus on the data that were sent
by malware. The reason is that oftenly network data
is characteristic and may indicate signs to infer the
adversary’s intention. In this experiment, the network
behaviors we focus on are namely notifying the suc-
cessful infection and HTTP requests. This is because
these two network behaviors are commonly exhibited
by IoT malware and oftenly indicate the printable data
that are characteristic. As examples, List 4 and List 5
show the network data that are sent by malware when
it has been executed in the victim machine.

To be more specific, our analysis is based on
examining arguments of syscalls. To analyze files
needed by malware, we examine arguments of open
and access. In particular, malware oftenly invokes
access to check if a specific file exists in the infected
machine. Further, to obtain the network data, we ex-
amine send to retrieve the data used in an argument.

The results of this experiment highlight what kind
of characteristics each family of IoT malware is likely
to exhibit. We describe examples as follows: First,
Table 6 summarizes files that the samples have ac-

Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior

683



Table 6: Interesting File paths in open by Mirai, Gafgyt and
Bashlite.

Path Mirai(%) Gafgyt(%) Bashlite(%)

/dev/misc/watchdog 67 80 19
/dev/watchdog 67 80 19
/dev/FTWDT101 watchdog 49 0 0
/proc/ 48 4 3
/proc/net/tcp 47 4 3
/dev/FTWDT101 watchdog 43 0 0
/proc/<PID>/fd 30 1 0
/proc/<PID>/exe 25 0 0
/proc/stat 23 0 11
/sbin/watchdog 20 0 0
/proc/<PID>/maps 19 3 3
/dev/watchdog0 15 0 0
/etc/default/watchdog 15 0 0
/dev/FTWDT101/watchdog 12 0 0
/bin/watchdog 11 0 0
/etc/watchdog 9 0 0
/proc/net/route 3 100 83
/etc/ld.so.cache 3 0 12
/etc/rc.d/rc.local 1 6 17
/etc/resolv.conf 0 0 16

Table 7: Files used in access.

Path Mirai(%) Gafgyt(%) Bashlite(%)

/usr/bin/python 2 80 43
/etc/ld.so.nohwcap 3 0 12
/etc/resolv.conf 0 0 16
/usr/sbin/telnetd 0 0 1
/usr/bin/apt-get 0 0 2

Table 8: Printable strings found in send for network activ-
ity.

Mirai(%) Gafgyt(%) Bashlite(%)

Notifies infection 0 12 64
HTTP requests 0 8 21

/proc/stat
/bin/watchdog
/proc/<PID>/maps
/proc/net/tcp
/etc/watchdog
/proc/<PID>/exe
/dev/misc/watchdog
/dev/FTWDT101_watchdog
/dev/FTWDT101\ watchdog
/proc/<PID>/fd
/dev/FTWDT101/watchdog

mirai_01,1,0,1,1,0,0,1,1,0,1,0
mirai_02,1,1,1,0,0,0,1,1,1,0,0
mirai_03,1,0,1,0,0,0,1,1,1,0,0
mirai_04,1,1,1,0,1,0,1,1,1,0,1
mirai_05,0,1,0,0,1,0,1,1,0,0,1
mirai_06,1,0,0,0,0,0,1,1,1,0,0
mirai_07,1,0,0,1,0,0,1,1,1,0,0
mirai_08,1,0,1,0,0,0,1,1,1,0,1
mirai_09,0,0,1,1,0,0,1,1,1,1,0

Monitored files

(in the infected machine)

Features for each sample

(represents whether if opened a file or not)

Figure 6: Example of features used for hierarchical cluster-
ing.

cessed with “open”. For each file opened in the in-
fected machine, the table shows the number of sam-
ples which have accessed those. This table shows
the trend that Mirai variants tend to access various
files for the watchdog. On the other hand, as for
a file /proc/net/route including network informa-
tion, all the Gafgyt samples have accessed it. Such
a trend is also seen in the majority of Bashlite sam-

Figure 7: Example of hierarchical clustering in Mirai vari-
ants, split into three clusters.

ples. This result suggests that the details of files ac-
cessed by malware may be used to distinguish char-
acteristics for each family. Next, Table 7 summarizes
files that the samples accessed by invoking “access”.
From the table, it indicates that Gafgyt is more sensi-
tive to the presence of a file “/usr/bin/python” in
all families. In other words, this characteristic may
differentiate Gafgyt from other families. Next, Table
8 describes how many of the samples in each family
have posed the network behaviors specific to IoT mal-
ware. Note that these network behaviors handle net-
work data like List 4 and List 5. As shown in Table 8,
from network perspective, Bashlite tends to indicate
more characteristics than Mirai and Gafgyt. Overall,
this result indicates that the presence of network be-
havior differentiates Bashlite from other families.

Finally, we apply a hierarchical clustering method
to the features we obtained through a large scale anal-
ysis. This aims to retrieve further information on
the IoT malware family. As an example, we take 9
samples of Mirai and visualize their relationship as
a dendrogram. For this purpose, we first focus on
some files opened by these Mirai samples as features.
Specifically, for each sample, we make a sequence
of binary representing whether if the sample opened
each file. Then, we use these sequences as features
(Figure 6) and apply hierarchical clustering to make a
dendrogram. To measure distances between samples,
we use Jaccard distance, like some studies (Jang et al.,
2011), since this is adequate in cases where binarized
data are used. Eventually, as shown in Figure 7, Mirai
variants can be split into multiple clusters. This re-
sult shows a possibility that our system can identify a
group of samples having similar dynamic characteris-
tics. Besides, this visualization indicates the charac-
teristics that malware may exhibit. The figure shows
that even though some malware samples are given the
same label (Trojan.Linux.MIRAI.SMMR1, actually),
they are slightly different from each other. Moreover,

ForSE 2022 - 6th International Special Session on FORmal methods for Security Engineering

684



!"!!!!#$%&''!()!*!+,''-./'012'31

!"!!!!#$%)''!!(&%(+#''1435'6712'012'892'1):

!"!!!!#$;!''!<=!<)+%''34='712'012'<

!"!!!!#$;<''><(!<(+%''34='312'312'!"><'''

!"!!!!#$;&''?!!!!=+$''3@9'9!2'A/*9B?!5C''

!"!!!!#$;)''&)!!#7+$''8(9'9!2'3@9D5@@13EBB8-F@7GD).-BBHB5.IB@.BJJJK

L5@@13EMM8-F@7GD).-MNHO5.IP@.PJJJL'QO'R+=30@+'31+)070+('=G'-*8I*9+'

*4@5.9

!"!!!!#$<!''7<7+77+=''=8'3G-D0-1D14@3''

!"!!!!#$<<''?!;!,=+$''8(9'9;2'A/*9B?!5C''

!"!!!!#$<&''!!;!#;+$''8(9'9;2'A9;C

!"!!!!#$<)''%(%!<=+%''34='9%2'712'!"%(

!"!!!!#$$!''!;!!*!+,''-./'9!2'9;

!"!!!!#$$<''!%,!*!+,''-./'9,2'9%

!"!!!!#$$&''!#7777+=''=8'3G-D0-1D9+*81*@5

Figure 8: A portion of the identified code block of Amnesia
(This example uses radare2 for the display.).

this result actually supports evidence that analyzing
a large number of samples allows retrieving more in-
sights than a case only analyzing a single IoT malware
binary. We expect that, by focusing on the character-
istics that malware is likely to exhibit, it allows ana-
lysts to understand the severity of the threat.

4.3 A Case Study of DBI/VMI: Identify
the Malware Behavior

This experiment shows advantages of DBI/VMI that
Tamer can support. For this experiment, we take the
analysis of Amnesia6, an IoT malware. According
to experts (Unit42, 2017), this malware has the de-
structive functionality to delete all files once it de-
tects the analysis environment by checking for spe-
cific files(e.g. /sys/class/dmi/id/sys_vendor) .

Identifying malware behavior automatically is in-
sufficient to traditional analysis methods. Traditional
analysis methods, like monitoring system calls and
network data, focus only on information about indi-
vidual actions. There is a challenge that a single ac-
tion is not insufficient, and it is necessary to take mul-
tiple actions into account. Therefore, we expect that
such a situation requires using advanced binary tech-
niques like DBI/VMI.

For this experiment, in order to identify malware
behavior by taking multiple system actions into ac-
count, we apply dynamic taint analysis (Schwartz
et al., 2010) that is based on DBI/VMI. Specifically,
we hooked a invokation of system call when the mon-
itored file(/sys/class/dmi/id/sys_vendor) was
read, and set that data to be tracked. By tracking data
flow using taint analysis, instructions related to op-
erations on the data in the monitored file can be col-
lected. As a result, we obtained information about
instructions that are included in a basic block of the
destructive function of Amnesia. This result supports
evidence that, by tracking data flow, it is feasible to
extract information to identify the type of malware

6MD5: 1497740fa8920e4af6aa981a5b405937

behavior. Finally, Figure 8 shows an example of the
outcome extracted by Tamer. This figure shows the
code block involved in operating the monitored file.

5 DISCUSSION

5.1 Applications for Generating Dataset

Our sandbox serves functionalities that can find ap-
plications in some security fields. We describe some
cases in the following: First, one example is based on
a perspective of network-level detection. We assume
that our sandbox can be leveraged to collect network
fingerprints. As described in Section 4, our system is
capable of observing some parts of network interac-
tion between the malware and the C&C. In particular,
the characteristics of the network traffic generated by
malware can be applied to build a signature for de-
tection. Next, from a perspective of host-based detec-
tion, we expect that the researcher uses our sandbox to
generate a dataset about host-based behavior. For in-
stance, as shown in Section 4, we have demonstrated
that our sandbox allows retrieving a list of syscalls
that the target malware invoked.

5.2 Limitations

Our sandbox system is based on QEMU emulator.
This means that, if malware detects being executed
inside the QEMU, it may change the behavior to hin-
der behavioral analysis. While the evasion malware
problem is out of scope for this paper, some previous
works have explored insightful knowledge (Bulazel
and Yener, 2017). On the other hand, the drawbacks
against VM evasion malware are an inevitable subject
on debating about malware analysis methods. There-
fore, we hope that our approach will also be consid-
ered as an alternative method for analyzing malware.

Besides, regarding evasion techniques of mal-
ware, there is a possibility that our system could be
thwarted when malware detects PTRACE used by
strace. As for this, we acknowledge that collect-
ing system behavior using strace is straightforward.
Thus, it is necessary to keep considering another tech-
nical option that could complement the disadvantages
of our technical choice. For instance, eBPF (eBPF,
2020), installed in the modern Linux kernel, allows
running monitoring programs in the kernel so that it
may be expected as a more advanced system monitor-
ing method than strace.

Moreover, as for network behavior analysis by
Tamer, we acknowledge that the analysis outcomes
for network behavior (like shown in Section 4.3) are

Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior

685



Table 9: The differences of functionalities between Tamer and Linux-based sandboxes.

Support
ARM

Support
Multi-architecture

Support
C&C listener

Support
DBI/VMI

Limon(Monnappa, 2015) No No Yes No
Cuckoo(Cuckoo, 2013) No No No No
IoTBOX(Pa et al., 2016) Yes Yes No No
V-Sandbox(Le and Ngo, 2020) Yes Yes Yes No
Tamer Yes No Yes Yes

only a part of the network data of the malware and the
current design of our fake network is simple. Thus, to
elicit deeper conversation between malware and C&C
server, it could require more elaborate efforts, like
the protocol reversing to generate the exact command
data accepted by the target malware.

5.3 Comparison with Similar Studies

We describe the differences between Tamer and ex-
isting studies. First of all, while the sandbox for
IoT malware has received less attention, we witnessed
some studies that handled the analysis environment
for IoT malware. Pa et al. (Pa et al., 2016) have
proposed IoT sandbox (IoTBOX) which analyzes the
Telnet-based attacks against various IoT devices run-
ning on various CPU architectures including x86,
ARM, MIPS, and so on. Their work mainly aims for
analyzing network behavior, however, our aim is on
analyzing IoT malware characteristics from perspec-
tives of network-level and host-level. Le et al. have
proposed V-Sandbox (Le and Ngo, 2020) for dynamic
analysis of IoT botnet. Besides, V-Sandbox supports
analyzing binaries for various CPU architecture, and
provides C&C server simulator to support the abil-
ity to make C&C connections. We acknowledge that,
different from IoTBOX and V-Sandbox, our system
does not support multi-architecture CPUs. However,
Tamer combines advanced binary analysis techniques
such as DBI and VMI that are not supported by pre-
vious works.

Further, though they are not necessarily referred
to as sandboxes, related to dynamic analysis for IoT
systems, Avatar (Zaddach et al., 2014) and its succes-
sor Avatar2 (Muench et al., 2018) are sophisticated
frameworks to tackle complex problems in dynamic
analysis for embedded system firmware. In particu-
lar, Avatar(s) act as a software proxy between QEMU
and the physical hardware in order to allow analyz-
ing embedded system’s behavior involving operation
to the physical device. But, we assume that Avatar(s)
are not necessarily suited for automated analysis since
they require to be configured for situations depending
on the physical devices.

Overall, Tamer serves another perspective from
existing studies. We acknowledge that this study ben-

efits from existing technologies, but we have assem-
bled these into a unique combination. Thus, we as-
sume that Tamer may act as another option for IoT
malware analysis. Furthermore, in the current proto-
type, Tamer supports IoT malware analysis only for
the ARM. But, we believe that our approach based
on the auto-manipulation using expect can be gener-
alized to other architectures, like we conduct analysis
with strace in Section 4.3. Finally, a summary of the
diffrerences between Tamer and existing Linux-based
sandboxes are shown in Table 9.

6 CONCLUSION

This paper presents a sandbox system for analyzing
Linux malware samples that infect IoT devices. Our
sandbox, called Tamer, has some features to auto-
mate and facilitate IoT malware analysis, like the au-
tomated interaction mechanism using the expect util-
ity and the fake network environment that we care-
fully designed. Moreover, Tamer adopts features
like DBI and VMI in a unique combination, which
may allow more advanced analysis. We demonstrated
that our sandbox system can analyze IoT malware
(e.g. IoTReaper, Amnesia) that are designed to in-
fect IoT devices. Through a large scale analysis,
we have demonstrated that our system can analyze a
large amount of IoT malware samples in an automated
manner, and highlight recent trends in IoT malware.
From the analysis result, we have suggested a pos-
sibility that our system can identify a group of sam-
ples having similar dynamic characteristics. We ac-
knowledge that further development and evaluation is
needed to support our claim. In our future work, we
will extend performing analysis on a large volume of
malware and focus on extracting useful information
for malware countermeasure in more detail. We hope
that our study fosters discussion about the methodol-
ogy to understand the dynamic characteristics of IoT
malware.

ForSE 2022 - 6th International Special Session on FORmal methods for Security Engineering

686



REFERENCES

Bayer, U., Moser, A., Kruegel, C., and Kirda, E. (2006).
Dynamic analysis of malicious code. Journal in Com-
puter Virology, 2(1):67–77.

Bulazel, A. and Yener, B. (2017). A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: Pc, mobile, and web. In Proceedings of the
1st Reversing and Offensive-oriented Trends Sympo-
sium, pages 1–21.

Carrillo-Mondéjar, J., Martı́nez, J., and Suarez-Tangil, G.
(2020). Characterizing linux-based malware: Find-
ings and recent trends. Future Generation Computer
Systems, 110:267–281.

Cozzi, E., Graziano, M., Fratantonio, Y., and Balzarotti, D.
(2018). Understanding linux malware. In 2018 IEEE
symposium on security and privacy (SP), pages 161–
175. IEEE.

Cozzi, E., Vervier, P.-A., Dell’Amico, M., Shen, Y., Bilge,
L., and Balzarotti, D. (2020). The tangled genealogy
of iot malware. In Annual Computer Security Appli-
cations Conference, pages 1–16.

Cuckoo (2013). Automated Malware Analysis. https:
//www.cuckoosandbox.org/.

Debian.org (2014). “Debian Squeeze and Wheezy
armel images for QEMU”. https://people.debian.org/
∼aurel32/qemu/armel/.

Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., and Whe-
lan, R. (2015). Repeatable reverse engineering with
panda. In Proceedings of the 5th Program Protection
and Reverse Engineering Workshop, page 4. ACM.

eBPF (2020). “eBPF - Introduction, Tutorials & Commu-
nity Resources”. https://ebpf.io/.

FortiGuard (2017). Reaper: The Next Evolution of IoT Bot-
nets. https://www.fortinet.com/blog/threat-research/
reaper-the-next-evolution-of-iot-botnets.

inetsim (2020). “INetSim: Internet Services Simulation
Suite”. https://www.inetsim.org/.

Jang, J., Brumley, D., and Venkataraman, S. (2011). Bit-
shred: feature hashing malware for scalable triage and
semantic analysis. In Proceedings of the 18th ACM
conference on Computer and communications secu-
rity, pages 309–320.

Le, H.-V. and Ngo, Q.-D. (2020). V-sandbox for dynamic
analysis iot botnet. IEEE Access, 8:145768–145786.

LinuxFoundation (2020). “networking:bridge [Wiki]”.
https://wiki.linuxfoundation.org/networking/bridge.

Michel Oosterhof (2014). “Cowrie SSH/Telnet Honeypot”.
https://github.com/cowrie/cowrie.

Monnappa, K. (2015). Automating linux malware analysis
using limon sandbox. Black Hat Europe 2015.

Muench, M., Nisi, D., Francillon, A., and Balzarotti, D.
(2018). Avatar2: A multi-target orchestration plat-
form. In Proc. Workshop Binary Anal. Res.(Colocated
NDSS Symp.), volume 18, pages 1–11.

Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T.,
Kasama, T., and Rossow, C. (2016). Iotpot: A novel
honeypot for revealing current iot threats. Journal of
Information Processing, 24(3):522–533.

Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All
you ever wanted to know about dynamic taint anal-
ysis and forward symbolic execution (but might have
been afraid to ask). In Security and privacy (SP), 2010
IEEE symposium on, pages 317–331. IEEE.

Unit42, P. A. N. (2017). New IoT/Linux
Malware Targets DVRs, Forms Bot-
net. https://unit42.paloaltonetworks.com/
unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/.

VirusShare (2020). “VirusShare”. https://virusshare.com/.
Willems, C., Holz, T., and Freiling, F. (2007). Toward au-

tomated dynamic malware analysis using cwsandbox.
IEEE Security & Privacy, 5(2):32–39.

Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.
(2014). Avatar: A framework to support dynamic se-
curity analysis of embedded systems’ firmwares. In
NDSS, volume 23, pages 1–16.

Tamer: A Sandbox for Facilitating and Automating IoT Malware Analysis with Techniques to Elicit Malicious Behavior

687


