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Abstract: Adversarial examples are machine learning model inputs that an attacker has purposefully constructed to cause
the model to make a mistake. A recent line of work focused on making adversarial training computationally
efficient for deep learning models. Projected Gradient Descent (PGD) and Fast Gradient Sign Method (FGSM)
are popular current techniques for generating adversarial examples efficiently. There is a tradeoff between
these two in terms of robustness or training time. Among the adversarial defense techniques, adversarial
training with the PGD is considered one of the most effective ways to achieve moderate adversarial robustness.
However, PGD requires too much training time since it takes multiple iterations to generate perturbations. On
the other hand, adversarial training with the FGSM takes much less training time since it takes one step to
generate perturbations but fails to increase adversarial robustness. Our algorithm achieves better robustness to
PGD adversarial training on CIFAR-10/100 datasets and is faster than PGD string adversarial training methods.

1 INTRODUCTION

Adversarial examples are machine learning model in-
puts that an attacker has purposefully constructed to
cause the model to make a mistake. A good adver-
sarial example from MIT is the one that produced
the 3D-printed turtle that, when viewed from almost
any angle, modern ImageNet trained image classifiers
misclassify as a rifle (Athalye et al., 2018) . Other re-
search has found that making imperceptible changes
to an image can fool a medical imaging system into
correctly classifying a benign mole as malignant with
100 percent certainty (Finlayson et al., 2019) and that
a few pieces of tape can fool a computer vision sys-
tem into incorrectly classifying a stop sign as a speed
limit sign (Eykholt et al., 2018). One of the few de-
fenses against adversarial attacks that can resist pow-
erful attacks is ’adversarial training’, a network is ex-
plicitly trained on hostile samples. Unfortunately, tra-
ditional adversarial training on a large-scale dataset
like ImageNet is impracticable due to the enormous
expense of providing solid adversarial samples. A re-
cent line of work focused on making adversarial train-
ing computationally efficient for deep learning mod-
els. Projected Gradient Descent (PGD) and Fast Gra-
dient Sign Method (FGSM) are popular current tech-
niques for generating adversarial examples efficiently.

There is a tradeoff between these two in terms of ro-
bustness or training time.

Among these defense techniques, adversarial
training with the PGD is considered one of the most
effective ways to achieve moderate adversarial ro-
bustness. However, PGD requires too much train-
ing time since it takes multiple iterations to generate
perturbations. On the other hand, adversarial train-
ing with the FGSM takes much less training time
since it takes one step to generate perturbations but
fails to increase adversarial robustness. Eric Wong
(Wong et al., 2020) showed that adversarial training
with the FGSM, when combined with random initial-
ization, is as effective as PGD-based training with the
lower computation time cost. This paper proposes our
method, ”Momentum Iterative gradient sign methods
with Reuse of Perturbations (MIRP).” These perturba-
tions introduced between epochs performs better than
PGD, which was previously believed to be ineffective,
rendering the method no more costly than standard
training in practice. Our algorithm achieves better ro-
bustness to PGD adversarial training on CIFAR-10,
CIFAR-100 datasets and is faster than PGD string ad-
versarial training methods.

Deep neural networks (DNNs) have been recently
achieving state-of-the-art performance on image clas-
sification datasets such as ImageNet. For example,
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He et al.(He et al., 2016) have achieved 96.43 % top-
5 test accuracy with their ResNet architecture, which
is difficult to exceed for humans. (Szegedy et al.,
2014) discovered it is possible for a network to mis-
classify an image by adding a very small perturba-
tion to it which humans will not notice the difference.
These perturbed inputs are termed as adversarial ex-
amples. The existence of adversarial examples poses
a threat to the security of systems incorporating ma-
chine learning models. For example, autonomous cars
could be forced to crash, intruders could confound
face recognition software or SPAM filters and other
filters can be bypassed. Also, adversarial examples
can often be generated not only with access to the
model’s architecture and parameters, but also without
it. Therefore, it is important to understand the weak-
ness of our models and come up with ways to defend
them against potential adversaries. One popular ap-
proximation method successfully used in adversarial
training is the PGD attack as it remains empirically
robust to this day.

2 BACKGROUND

In this section, we provide the background knowledge
as well as review the related works about adversarial
attack and defense methods. Given a classifier f(x): x
ε X −→ y ε Y that outputs a label y as the prediction
for an input x, the goal of adversarial attacks is to seek
an example x* in the vicinity of x but is misclassified
by the classifier. Specifically, there are two classes
of adversarial examples - non-targeted and targeted
ones. For a correctly satisfied input x with ground-
truth label y such that f(x) = y, a non-targeted adver-
sarial example x* is crafted by adding small noise to x
without changing the label, but misleads the classifier
as f(x*)!=y; and a targeted adversarial example aims
to fool the classifier by outputting a specific label as
f(x*) 6= y*, where y* is the target label specified by
the adversary, and y* 6= y. In most cases, the Lp norm
of the adversarial noise is required to be less than an
allowed value as ‖x∗−x‖p ≤ ε, where p could be 0,
1, 2...Below text provides details of FGSM and PGD
adversarial attacks.
Fast Gradient Sign Method (FGSM): FGSM per-
turbs clean examples x for one step by the amount of
ε along the input gradient direction (Goodfellow et al.,
2015):

xadv = x + ε . sign(∇xl(h(x),y)).
Project Gradient Descent (PGD): PGD (Goodfel-
low et al., 2015) perturbs a clean example x for a num-
ber of T steps with smaller step size. After each step
of perturbation, PGD projects the adversarial example

back onto the ε - ball of x, if it goes beyond:
xi = (xi-1 + α . sign(∇xl(h(xi-1),y))
where α is the step size, and xi is the adversar-

ial example at the i-th step (x0 = x). The step size
is usually set to ε/T ≤ α < ε for overall T steps of
perturbations.

Neural networks are trained with first-order gra-
dient descent algorithms. There exist two families
of gradient descent algorithms: accelerated stochas-
tic gradient descent (SGD) and adaptive learning rate.
SGD based algorithms include Momentum and Nes-
terov based methods. Adaptive learning rate include
Adam, Adadelta, Adabelief. DNN’s trained with
SGD based algorithms has a strong generalization
ability with low convergence rate which is vice-versa
in adaptive family based algorithms. In general, solu-
tion based on these optimization families are consid-
ered for improving the transferability of adversarial
examples.

Among many attempts (Metzen et al., 2017; Dong
et al., 2017; Pang et al., 2017; Kurakin et al., 2017; Li
and Gal, 2017; Tramèr et al., 2018; Papernot et al.,
2016) , adversarial training is the most extensively in-
vestigated way to increase the robustness of DNNs
(Kurakin et al., 2017; Tramèr et al., 2018; Goodfellow
et al., 2015). However, running a strong PGD adver-
sary within an inner loop of training is expensive, and
some earlier work in this topic found that taking large
but fewer steps did not always significantly change
the resulting robustness of a network (Wang, 2019).
Thus, an inherent tradeoff appears between computa-
tionally efficient approaches which aim at solving the
optimum perturbation value in few iterations as pos-
sible and approaches which aim at solving the same
problem more accurately but with more iterations. To
be more specific, the PGD attack uses multiple steps
of projected gradient descent (PGD), which is accu-
rate but computationally expensive where as Fast Sign
Gradient Method (FGSM) uses only one iteration of
gradient descent which is computationally efficient.

To combat the increased computational overhead
of the PGD defense, some recent work has looked at
’Fast and Free Adversarial training’ where modified
FGSM adversarial training achieves a accuracy clo-
sure to the model trained with PGD attacks. These
include improvements include top performing train-
ing methods from DAWNBench competition (Cole-
man et al., 2017) are able to train CIFAR-10 and
CIFAR-100 architectures to standard benchmark met-
rics in mere minutes, using only a modest amount of
computational resources. Although some of the tech-
niques can be quite problem specific for achieving
bleeding edge performance, more general techniques
such as cyclic learning rates (Smith and Topin, 2019)
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and half-precision computations (Micikevicius et al.,
2018) have been quite successful in the top ranking
submissions, and can also be useful for adversarial
training.

3 MIRP

With the Fast Adversarial training (Wong et al.,
2020), updated FGSM training combined with ran-
dom initialization is as effective as defense with PGD-
based training. The key difference here is to use
perturbation from the previous iteration as the initial
starting point for the next iteration i.e., starting with
the previous minibatch’s perturbation or initializing
from a uniformly random perturbation allow FGSM
adversarial training to succeed at being robust to full-
strength PGD adversarial attacks. FGSM with ran-
dom initialization algorithm is shown below:

Algorithm 1: FGSM with random initialization adversarial
training for R epochs, given some radius ε, step size α, and
a dataset of size M for a network fθ.

for t = 1...R do
for i = 1...M do

δ = Uniform (-δ,δ)
δ = δ+(α∗ sign(∇δl( fθ(xi +δ);yi))
δ = max(min(δ;ε);−ε)
θ = θ− (∇δl( fθ(xi +δ);yi))

end for
end for

Also, with Boosting algorithm (Dong et al., 2018)
(which doesn’t use sign(.) method) achieves better
performance than FGSM but with PGD attacks its ac-
curacy drops to 0. On the above basis, we propose
a new algorithm to use Momentum iterative gradi-
ent sign adversarial training with random initializa-
tion for the perturbation as shown below.

Algorithm 2: MIRP adversarial training for R iterations, T
epochs, given some radius ε, N PGD steps, step size α, and
a dataset of size M for a network fθ.

for t = 1...T do
for i = 1...M do

for j = 1...R do
m j+1 = µ∗m j +

(∇δl( fθ(xi+δ);yi))
‖(∇δl( fθ(xi+δ);yi))‖L1

δ = δ+(α∗ sign(m j+1))
δ = max(min(δ;ε);−ε)

end for
θ = θ− (∇δl( fθ(xi +δ);yi))

end for
end for

3.1 Tables

Below tables shows the test accuracy and the train-
ing time of the different models tested on different
datasets.

Table 1: Standard and robust performances of various ad-
versarial training methods on CIFAR-10 dataset

Method PGD / Time
MIRP 50.59 / 47 min

Std Momentum Iterative 0 / 47.12 min
FGSM with random

initialization 47.53 / 24.6 min
PGD 49.75 / 89.6 min

Table 2: Standard and robust performances of various ad-
versarial training methods on CIFAR-100 dataset.

Method PGD / Time
MIRP 28.22 / 44.55 min

Std Momentum Iterative 0 / 44.16 min
FGSM with random

initialization 24.88 / 23.19 min
PGD 27.36 / 92.16 min

Here, Standard Momentum Iterative method is
based on (Dong et al., 2018), FGSM with random
initialization is based on (Wong et al., 2020). We
used same configuration settings like step size, cyclic
learning rate and mixed precision arithmetic as per
Eric Wong (Wong et al., 2020). All experiments using
MIRP are carried out with random starting points and
step size alpha = 1.25*epsilon. All PGD adversaries
used at evaluation are run with 10 random restarts for
50 iterations with ε = 8/255. Speedup with mixed-
precision was incorporated with the Apex amp pack-
age at the O2 optimization level without loss scaling
for CIFAR-10/100 experiments. All experiments are
tested on Nvidia T4 machine.
Reuse between Epochs: We tested multiple combi-
nations between momentum iterative gradient values
and perturbation and below are the inferences drawn:

Table 3: Performance of MIRP on CIFAR-10 dataset with
varying m and δ.

m , δ PGD / Time
Non-zero, Non-zero 50.59 / 47 min

Non-zero, Zero 0 / 47.5 min
Zero , Non-zero 50.39 / 45.8 min

Zero , Zero 0 / 47.12 min

Decaying Factor (µ): Tested various values of De-
caying factor from 0.1 to 0.6 and could see that model
starts overfitting for any value beyond 0.1 as shown
below:
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Table 4: Performance of MIRP on CIFAR-10 dataset with
varying decaying factor.

Decaying factor PGD / Time
0.1 50.59 / 47 min
0.6 49.19 / 50.8 min

Here, Non-zero refers that the values are retained
between batches and Zero refers to that the values are
initialized to zero between batches.

4 CONCLUSIONS

Our findings show that MIRP adversarial training,
when used with random initialization, can in fact be
more effective as the more costly PGD adversarial
training. As a result, we are able to learn adversarially
robust classifiers for CIFAR10/100 in minutes. We
believe that leveraging these significant reductions in
time to train robust models will allow future work to
iterate even faster, and accelerate research in learning
models which are resistant to adversarial attacks.
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haria, M. A. (2017). Dawnbench : An end-to-end deep
learning benchmark and competition.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and Li,
J. (2018). Boosting adversarial attacks with momen-
tum. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9185–9193.

Dong, Y., Su, H., Zhu, J., and Bao, F. (2017). Towards
interpretable deep neural networks by leveraging ad-
versarial examples. ArXiv, abs/1708.05493.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A.,
Xiao, C., Prakash, A., Kohno, T., and Song, D. (2018).
Robust physical-world attacks on deep learning mod-
els.

Finlayson, S. G., Bowers, J., Ito, J., Zittrain, J., Beam, A.,
and Kohane, I. S. (2019). Adversarial attacks on med-
ical machine learning. Science, 363:1287 – 1289.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Ex-
plaining and harnessing adversarial examples. CoRR,
abs/1412.6572.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

Kurakin, A., Goodfellow, I. J., and Bengio, S. (2017).
Adversarial machine learning at scale. ArXiv,
abs/1611.01236.

Li, Y. and Gal, Y. (2017). Dropout inference in bayesian
neural networks with alpha-divergences. In ICML.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B.
(2017). On detecting adversarial perturbations. ArXiv,
abs/1702.04267.

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F.,
Elsen, E., Garcı́a, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., and Wu, H. (2018).
Mixed precision training. ArXiv, abs/1710.03740.

Pang, T., Du, C., and Zhu, J. (2017). Robust deep learn-
ing via reverse cross-entropy training and threshold-
ing test. ArXiv, abs/1706.00633.

Papernot, N., Mcdaniel, P., Wu, X., Jha, S., and Swami, A.
(2016). Distillation as a defense to adversarial per-
turbations against deep neural networks. 2016 IEEE
Symposium on Security and Privacy (SP), pages 582–
597.

Smith, L. N. and Topin, N. (2019). Super-convergence: very
fast training of neural networks using large learning
rates. In Defense + Commercial Sensing.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. (2014). Intriguing
properties of neural networks. CoRR, abs/1312.6199.
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