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Abstract: Cryptographic algorithms are used to ensure the communication channel between the transmitter and receiver.
However, these algorithms are focused on processing data blocks that consume a lot of computational re-
sources. Therefore, they have some constraints to be used in IoT devices. This work presents a lightweight
AES cryptographic algorithm designed for IoT devices with real-time operative system criteria to improve the
time response and with threads that can be suspended to leverage RAM resources for another task. As a result,
we design an AES algorithm with a cipher key updating process that uses 11k bytes of Flash, 820 bytes of
RAM, and a time response of around 14.5 us in real scenarios.

1 INTRODUCTION

Internet of Things (IoT) is a network of embedded
devices with microcontrollers, microprocessors, spe-
cific software, and sensors connected through the In-
ternet to collect and exchange data (Gehrmann and
Gunnarsson, 2019). Therefore, IoT provides shared
distributed resources and services to different organi-
zations, sites, or homes with the possibility to send
data to anyone, any device, and anytime (Latif et al.,
2020). IoT uses these embedded devices like tiny
computers with defined functionalities and integrates
a large variety of sensors with their principal aim to
convert a physical phenomenon or human behavior
into an electric signal (Rosero-Montalvo et al., 2021).
Thus, IoT brings us the possibility to acquire a large
amount of data, that through machine learning algo-
rithms, people can get the intrinsic knowledge from
the data to make our life more comfortable and con-
structive (Islam et al., 2019).

However, IoT requires robust protection against
possible attacks or vulnerabilities. The security of
IoT devices becomes important when linked to human
life or industrial procedures. Also, standard secu-
rity techniques such as cryptography algorithms with
user authentication are built to run in traditional com-
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puters (end-to-end manner) (Khan et al., 2021). Be-
sides, cryptography algorithms are developed to send
a considerable amount of information called ”blocks”,
and compiling them requires many computational re-
sources which IoT devices can not run due to com-
plexity. Also, the data acquired for the IoT device
does not fit in these blocks leaving empty spaces and
wasting memory. Therefore, these mentioned algo-
rithms can provide overhead the computational re-
sources of the IoT devices. Since they can only com-
pile lightweight software with a smaller number of
bits at a time with computational restrictions such as
RAM and Flash sizes, power consumption, process-
ing speed, and time response (Prakash et al., 2019).

Besides, IoT devices have different wireless pro-
tocols to establish communication between them with
a low data transfer rate to the cloud, which brings la-
tency issues in real-time applications if the system has
a long time response due to run cryptography algo-
rithms (Shah and Venkatesan, 2018).

Currently, there is a new tendency to implement
Trusted Execution Environments (TEE) to isolate
users on the cloud computing side. At the same
time, microprocessors are developed with a trusted
platform module (TPM) to protect specific software
from the rest of the system operative. Otherwise,
in an IoT environment, we can consider that the en-
tire microcontroller is trusted because the device runs
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only one application without multi-user security con-
cerns (Szymanski, 2017). With this assumption, the
leading security flaws happen outside the IoT device.
Therefore, the communication channel can be a secu-
rity concern since most IoT applications are designed
in standard wireless protocols such as 802.11 with
many vulnerabilities (Naru et al., 2017).

Thereby, new IoT devices are designed to avoid
security flaws concerning authentication, such as
Arduino IoT products incorporating a crypto chip
and specific libraries for the cloud services connec-
tion (Sung et al., 2018). The crypto chip is focused
on connecting the device to the cloud. However, in
wireless sensor networks, IoT devices constantly send
information between them, and just one (considered a
central node) is in charge of sending the information
to the cloud (Fotovvat et al., 2021). As a result, the
information sent to the cloud is protected. Neverthe-
less, this process does not ensure if a malicious user
has tampered with the IoT network.

The cryptography application in IoT devices also
brings constraints related to system time response. In
this scenario, it is essential to improve the code with
techniques to run in parallel instructions to use the
entire processor at once. A real-time operative sys-
tem carries on this process, inserting flaws to priori-
tize procedures and time slots to run each instruction.
Thereby, the processor is running the crypto library,
at the same time, is checking the battery, calibrating
sensors, and sending information to other devices.

With the above mentioned, this article presents a
hybrid cryptography algorithm with a real-time oper-
ative system and memory optimization criteria. This
process is carried on to send encrypted information
on a wireless sensor network without exceeding the
computational resources of a traditional IoT device
and leaving memory space to compile other function-
alities. To accomplish this goal, we assumed that the
IoT device and sensors are trusted, and only the wire-
less channel (802.11 n) is not. Also, we define at
first the average of RAM and Flash requirement for
the algorithm AES 128 from the lightweight crypto
library (8 bits) supported by Arduino to measure the
RAM increasing to deploy this stage. Later, we de-
sign the same application with software optimization
techniques and a real-time schedule to improve the
system time-respond. Also, we developed a secure
way to update the key without external messages from
the central node. The top results are the RTOS im-
plementation in the AES encryption/decryption algo-
rithm with only 820 bytes of RAM and 11K bytes of
Flash and the response time around 8 uS.

The rest of the manuscript is structured as fol-
lows: Section II shows representative works related

to cryptographic algorithms implemented in IoT de-
vices and WSN. Section III presents the experimental
setup with the assumptions to determine the RAM and
Flash requirements. Results are illustrated in section
IV with the real-time schedule and optimization cri-
teria. Finally, section VI shows relevant conclusions
and future works.

2 LITERATURE REVIEW

Lightweight cryptographic algorithms for IoT are an
emergent research field due to their relation to sen-
sitive information collected from human behavior.
However, the benefits of IoT come with many se-
curity challenges, and traditional cryptographic algo-
rithms need to adapt in hostile environments with con-
strained computational resources. Therefore, (Khan
et al., 2021; Fotovvat et al., 2021), present an ex-
tensive comparison of lightweight cryptographic al-
gorithms implemented in several scenarios where the
limitations of the IoT device restrict the possible secu-
rity implementations. Furthermore, (Guo et al., 2019)
designed a complexity reduction of the block encryp-
tion and their benefits in a complex task such as im-
age encryption. (Jalaly Bidgoly and Jalaly Bidgoly,
2019) presents a novel chaining encryption algorithm
for the LPWAN IoT network and the statistical propri-
eties of its method. Also, (Dang et al., 2021) encrypts
the information in LORA communication in a WSN.
Works such as (Naru et al., 2017; Prakash et al., 2019;
Ramesh and Govindarasu, 2020; Prakash et al., 2019;
Hijawi et al., 2021) present novel implementations on
lightweight cryptographic modifying the process of
traditional algorithms. Specifically, in real-time ap-
plications, works like (Gope and Hwang, 2016; Islam
et al., 2019) use robust hardware (FPGA or dual ARM
processors) than the traditional IoT devices. Finally,
(Tsai et al., 2018) presents to AES 128 secure channel
in LORAWAN communication for IoT environments.

In conclusion, all these works have presented so-
lutions for data privacy in IoT environments. How-
ever, this is not seen integrally with the primary objec-
tive of sending information to the Cloud, considering
the IoT device an extension of the trusted Cloud. For
this reason, the same security trends must be adopted
within the IoT environment so that later the integra-
tion of these IoT devices is transparent to more ex-
tensive networks. As a result, there are open issues
like designing a trusted environment in IoT environ-
ments with specific assumptions, optimizing the time
response, and implementing lightweight cryptogra-
phy algorithms on particular scenarios such as WSN
and IoT.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

104



3 EXPERIMENTAL SETUP

This section presents the description and configura-
tion of Advanced Encryption Standard. Then, we
present the assumptions and specific scenarios to de-
termine which is trusted and what is not in the IoT
device.

3.1 Advanced Encryption Standard

Advanced Encryption Standard (AES) is a symmetric
block cipher for encryption/decryption where a block
of plaintext is treated as a single block and is used
to obtain a block of ciphertext of the same size. AES
supports 128, 192, or 256 encryption keys. Also, AES
has five modes, Electronic Code Block (ECB), Cipher
Block Chaining mode (CBC mode), Cipher Feedback
mode (CFB mode), Output FeedBack mode (OFB
mode), and Counter mode (CTR mode) (Serra et al.,
2021). However, CBC mode is the most used because
CBC encrypts the result to the ciphertext block. In the
next block, the encryption results combine with xor
gate with plaintext block until the last block. There-
fore, even if this mode encrypts the same plaintext
block, it will get a different ciphertext block (Borges
et al., 2021).

3.2 Existing Libraries

Many libraries implement AES in computers and
servers in common programming languages to en-
crypt/decrypt big datasets. However, they are not
compressed into 8 or 16-bit architecture. In this sce-
nario, a few contributions exist to demonstrate the
functionality of AES into IoT devices uncommonly
send 16 bytes of data, such as in environmental con-
ditions or water quality analysis (Rosero-Montalvo
et al., 2021). In this article, we use two popular li-
braries as Lib one (Van Heesch, 2018) and Lib two
(Landman, ). However, the real-time operative sys-
tem has not been implemented in encryption libraries
yet.

3.3 Assumptions and Specific Scenario

The assumptions to design the AES encryp-
tion/decryption algorithm are: (i) the IoT device trusts
that data acquired from sensors have not been tam-
pered with in any form, (ii) all the software run-
ning into the IoT device is trusted, (iii) the RAM
must bein optimized to run complex tasks regarding
their computational constraints, (iv) the communica-
tion scheme is in star; slaves nodes send the infor-
mation to a single central node, (v) the central node

already has the encryption key before the system is
implemented, and (vi) the IoT device does not use 16
bytes in sensors data acquisition.

AES Description: is a synchronic cipher algorithm
that the transmitter and the receiver need to know the
cipher key. Therefore, updating the cipher key is a
complex task (asynchronous cipher). However, the
encryption key can be updated if two random numbers
are generated, the first to determine how many times
the encryption key is to be used. When the data send
number reaches this number, an XOR gate is executed
between the encryption key and the second random
number. Later, this second number is inserted in a
specific position in the ciphertext that only the central
node knows to update its cipher key in the following
shipments.

Allocating the key in the Flash memory can be
risky. Therefore, we use the EEPROM to hide the
key how as possible. To leverage RAM, the Rijndael
S-box is allocated into the flash. Finally, RTOS is im-
plemented to improve the time-respond performance
emulating symmetric multiprocessing into the IoT de-
vice.

Specific Scenario: The IoT system developed is an
autonomous robot working in greenhouses acquiring
data from environmental conditions. Therefore, the
sensors used are SCD30 for temperature, humidity,
and temperature. In addition, the VEML6075 is used
to measure levels of UV rays. Also, it is necessary
to acquire data from motors to get information about
their velocity and gyration. Fig. 1 shows the system
working on the greenhouse.

Figure 1: A robot working in the greenhouse.

RTOS Procedures: The autonomous robot has the
following steps: Motor control, receiving motor pa-
rameters, checking the battery, acquiring data, en-
crypting data, sending information. Hence, this re-
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search only presents the encryption data. The en-
cryption data has the stages: Plain text: 16 hex-
adecimal bytes, Data rotation: byte substitution
(x-box), and shift rows. Round key: circular byte
left shift, byte substitution (x-box), adding round con-
stant. Cipher-text: xor gate between Data rotation
and Round key.

4 RESULTS AND TESTS

This section shows the memory consumption of each
library used in this work and the way of the ROS.
Then, the summary of RAM, flash, and response time
are presented.

4.1 Memory Consumption

To determine the initial resources to compile the AES
algorithm, we define the memory and time-respond
of lib one and lib two. Then, we implemented the
algorithm with the majority of the variables in the
RAM without any optimization (Lib AES v1). Later,
we define the right size of each variable and put
some of them (considered as constants) in the FLASH
(Lib AES v2). Next, we define code blocks to make
threads, put them in RTOS architecture, and mea-
sure the time-respond and memory. Finally, regard-
ing the mentioned assumptions, we allocated the en-
cryption key in the ROM, hidden of the principal code
with aleatory updates explained in the next section
(AES-RTOS v3).

4.2 RTOS Implementation

AES algorithm has four threads defined, Plain
text: 16 hexadecimal bytes, Data rotation: byte
substitution (x-box), and shift rows. Round key: cir-
cular byte left shift, byte substitution (x-box), adding
round constant. Cipher-text: xor gate between
Data rotation and Round key. Therefore, we updated
the current design to fit into IoT devices as follows:
Plaintext: data acquisition from sensors, filling
empty spaces in hexadecimal code (the system uses
8 bytes). Also, the key-updated works as follows:
the encryption key is stored before the system runs
the first time (the central node also has the encryption
key for each IoT node), and one flag is high. When
the IoT device runs the first time and looks at the flag
in high, the IoT device runs the first random number
to determine how many times the ciphertext will send
with the same cipher key. When this number comes
to an end, the cipher key is updated, running an XOR
gate with a second 8-bit number. Then, this second

number is allocated in the Plaintext to be encrypted
and sent to the central node. Finally, the first random
number is generated again to repeat this process. The
system generates the first random number without is-
sues if a hard reset is generated, even if the flag is
low. The difference between the standard AES pro-
cess with the improved AES-RTOS is shown in Fig.
2.

Table V shows the summary of RAM, Flash, and
response time for each library. For example, lib one
uses much RAM, and lib two takes too long to encrypt
the text. Otherwise, Lib AES V1 and V2 need less
computational resources with better response time
than the last libraries. Otherwise, Lib AES-RTOS V3
consumes more Flash than the others; each thread has
an average of 60 bytes. However, RTOS has better
management of resources; priorities threads make it
feasible to suspend and reactivate them, freeing up
RAM. The library is available in: AES-RTOS Lib.
The pseudocode is presented in 1

Table 1: Summary of the Computational resources con-
sumption for each AES library.

Libraries FLASH RAM Time to respond
Lib one 6888 1065 3.05 us
Lib two 7468 800 14.36 us

Lib AES V1 5056 607 10.36 us
Lib AES V2 4626 353 5,10 us

Lib AES-RTOS V3 11228 818 8.36 us

4.3 Real Scenario

The proposed algorithm has been validated in a real
scenario by sending data from environmental condi-
tions inside the greenhouses. The data is acquired by
a network of sensors installed in autonomous robots
(1). Therefore, it is assumed that its design and func-
tion have been checked. The designed data frame
is sent through the wireless LoRa protocol with a 4-
bytes preamble, a 4-bytes header, and a 2-bytes end
of frame and error control. The lightweight library is
designed to compile data with 8bits size to compile
in 8 bits architecture such as many microcontrollers
used to developt IoT devices. Therefore, the designed
payload (16-bytes) includes the robot’s identification,
the sensor network’s data, motor movement parame-
ters, and, if necessary, the update of the key as fol-
lows: CO2: 2 Bytes, Temperature: 2 bytes, Humid-
ity:2 bytes, UV rays: 2 bytes, Battery state: 2 bytes,
motor A velocity: 1 byte, motor B velocity: 1 byte,
motor A gyration:1 byte, motor B gyration: 1 byte,
node identification: 1 byte, and key updated: 1 byte.
We have to add an extra function to divide one param-
eter into two bytes, requiring less memory to use 16
bits.
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(a) Traditional AES. (b) AES-RTOS implementation.
Figure 2: AES execution time comparison, execution time: (→).

Consequently, the AES algorithm was imple-
mented into the IoT device to get performance mea-
surements and determine if the server has issues de-
crying the information when the data frame traveled
for wireless communication. We tested the system
with the RTOS implementation and without them. As
a result, the system with RTOS has a time response
of around 14.5 us, and just encrypting the data and
sending it to the server takes 21.4 us; this is because,
with RTOS, we can run in parallel stages to improve
the performance. Also, we can stop the machine ef-
ficiently by changing the priority of each task or sus-
pending them. For this reason, the battery consump-
tion decreased around 15

5 CONCLUSIONS AND FUTURE
WORKS

Cryptographic algorithms allow us to ensure that the
data sent reaches its receiver safely. However, this
computational cost is essential in implementing a
more significant amount of code to strengthen the ap-
plication, such as machine learning algorithms. It has
been seen that the previous libraries have an adequate
consumption for microcontrollers with 8-bit architec-
tures. However, they are not intended for their gen-
uine use in real applications. For this reason, the
implementation of RTOS allows to determine pro-
cesses and know important information such as their
response time and memory size required to compile
them.

In addition, it helps code optimization by freeing
up RAM when suspending a thread. We were able to
show that despite optimally implementing AES, we
left much of the Flash and RAM free for other pro-
cesses by the microcontroller. For example, our li-
brary, compiled on an Arduino Uno, occupies 32%

of Flash and 39% of RAM with response times be-
tween 5 and 8 us. Also, if we use an ESP8266 board,
AES-RTOS uses 25% of the Flash and 33% of the
RAM with response times between 7 and 12 us. In
addition, the receiver with the highest computational
capacity can efficiently manage the exchange of keys,
and there was no loss of packets due to the update of
the encryption key. As a result, we leave space avail-
able for future work to implement machine learning
algorithms for on-site decision-making.
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