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Abstract: With the incidence of the Covid-19 pandemic, institutions have adopted online learning as the main lesson
delivery channel. A common criticism of online learning is that sensing of learners’ affective states such as
engagement is lacking which degrades the quality of teaching. In this study, we propose automatic sensing of
learners’ affective states in an online setting with web cameras capturing their facial landmarks and head poses.
We postulate that the sparsely connected facial landmarks can be modelled using a Graph Neural Network.
Using the publicly available in the wild DAiSEE dataset, we modelled both the spatial and temporal dimen-
sions of the facial videos with a deep learning architecture consisting of Graph Attention Networks and Gated
Recurrent Units. The ablation study confirmed that the differencing of consecutive frames of facial landmarks
and the addition of head poses enhance the detection performance. The results further demonstrated that the
model performed well in comparison with other models and more importantly, is suited for implementation
on mobile devices with its low computational requirements.

1 INTRODUCTION

The Covid-19 pandemic has transformed the way
education is delivered globally. With face-to-face
lessons curtailed, educational institutions have little
choice but to transition to online lessons with the help
of video conferencing and related technologies. Many
educators and learners have however, critiqued that
online lessons are impoverished in the affective and
social interaction aspects and thus cannot completely
replace traditional face-to-face delivery.

In a face-to-face classroom setting, teachers con-
tinuously monitor the emotional state of their learners
to gauge their level of understanding and engagement.
Contingent on the learners’ cognitive state, the teach-
ers can then adapt their tutoring style dynamically for
example by slowing the pace of delivery or redirect-
ing the learners’ attention to the content material to
optimize the learning. On the other hand, in an on-
line lesson, learners hide behind the veil of a virtual
screen. This is further exacerbated by a large class
of online learners to a single teacher in a typical on-
line session which constraints an individual learner’s
video to be a small window on the teacher’s console,
making it difficult for the teacher to infer their learn-
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ers’ affective state. To enhance the learning in online
lesson delivery, it is thus essential to augment online
lessons with automatic sensing of learners’ affective
or cognitive state.

Previous studies on emotion sensing have tapped
on modalities such as audio (Sezgin et al., 2012;
Guhan et al., 2020), body postures (D’Mello and
Graesser, 2009), facial images and videos (Whitehill
et al., 2008; Grafsgaard et al., 2013) as well as phys-
iological signals such as ECG (Belle et al., 2012).
The prevalence of web cameras and their use in vari-
ous virtual learning platforms resulted in their exten-
sive use for assessing learners’ facial emotions. It
is thus no coincidence that majority of recent works
on automatic sensing of learners’ emotions leverage
on facial images and videos captured using web cam-
eras. The affordability, unobtrusiveness and ubiquity
of web cameras as compared to other sensors further
adds to their use for emotion sensing.

Studies have shown that basic emotions such as
happiness and sadness are not relevant to the learn-
ing process (Pekrun et al., 2002, 2007). Academic
emotions or affect such as frustration, boredom, con-
fusion and engagement are the ones which influence
the learning process. The ability of expert human tu-
tors to achieve enhanced learning outcomes has been
widely attributed to their ability to sense the affec-
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tive states of the learners and to continually adapt
their tutoring strategies in response to the dynamically
changing affective states throughout the tutoring ses-
sion. Sustaining the incidences of positive affect e.g.
engagement and suppressing the incidences of nega-
tive affect e.g. boredom, the tutor (which can be hu-
man or computer) can enhance the interest and moti-
vation of the learner in the learning process.

Facial emotion recognition can be broadly cate-
gorized into static and dynamic facial emotion recog-
nition. Static facial emotion recognition techniques
use static facial images as inputs while dynamic facial
emotion recognition techniques use videos as inputs.
Static facial emotion recognition techniques model
only the spatial dimensions while on the other hand,
dynamic facial emotion recognition model not only
the spatial but also the temporal dimensions. By in-
cluding temporal dimensions in the model, dynamic
facial emotion techniques are known to offer higher
accuracies of facial emotion detection as compared to
static facial emotion recognition techniques.

In this paper, we focus on the detection of aca-
demic emotions as they are more relevant in a class-
room or online teaching scenario. The detection of the
academic emotions is however challenging as they are
more subtle as compared to the basic emotions and
thus the significance of this research. In an online
learning context, with the successful detection of the
academic emotional states of a learner e.g. when a
learner is disengaged, bored or frustrated, a human or
computer tutor can then enact appropriate pedagogi-
cal interventions to avert detrimental effects such as
the learner giving up on the learning altogether.

Micro facial expressions changes is correlated to
facial emotions and the detection and monitoring of
facial landmarks movements is one of the established
methods for tracking facial expressions. The net-
work of facial landmark points can be formulated as
a grid and this makes it amenable to be represented
as a graph where each landmark point can be mod-
elled to be spatially related to other landmark points.
This motivates our study on the modelling of facial
landmark changes through Graph Attention Network
(GAT) (Veličković et al., 2018) using the Dataset for
Affective States in E-Environment (DAiSEE) dataset
(Gupta et al., 2016).

In short, our contributions can be summarized as
follows:

• We proposed a novel spatial temporal GAT based
model to detect fast changing intensity levels
of academic emotions which include frustration,
boredom, engagement and confusion.

• We captured facial landmark points and head
poses as inputs as opposed to facial images, result-

ing in a computationally lighter academic emotion
detection model which is more adequate for de-
ployment on mobile devices.

• Our empirical results showed that the proposed
graph based model outperforms Convolutional
Neural Network (CNN) based models such as In-
ceptionNet.

2 RELATED STUDIES

Prior studies have shown a tight coupling between
head pose and engagement. A study by Asteriadis
(Asteriadis et al., 2009) documented the use of head,
eye and hand movements to gauge children’s level of
interest and attention in the context of reading an elec-
tronic document. Gaze Tutor (D’Mello et al., 2012),
an intelligent tutoring system used a commercial eye
tracker to identify the engagement of learners from
their eye gaze patterns and attempts to re-engage the
learner with dialogue moves. Tracking eye gaze al-
lows one to capture instances of inattention where the
head is stationary while eye focus on somewhere off-
screen but tracking head pose is still relevant in nu-
merous instances where user turns head away from
the screen.

A CNN architecture was proposed in a study by
Murshed et al. (2019) to classify engagement levels
for the DAiSEE dataset. The proposed CNN archi-
tecture is then compared against three other popular
CNN architectures after re-categorizing the original
four levels of engagement into three levels – not en-
gaged, normally engaged and highly engaged. The
authors merged the labels of bored, frustrated and
confused into the non-engaged category. The pro-
posed model achieved an average accuracy level of
92.33% for the DAiSEE dataset. The authors did not
model the temporal aspect but instead aggregated the
facial frames into sliding window width of 5.

The Dataset for Affective States in E-Environment
(DAiSEE) is the first multi-label academic emotions
video classification dataset collected in the wild by
(Gupta et al., 2016). It consists of 9068 snippets
from 112 users and annotated with the affective states
and intensity levels of boredom, frustration, confu-
sion and engagement. The authors used Inception-
Net, C3D and Long-term Recurrent Convolution Net-
work (LRCN) deep learning models to classify the af-
fective states and found the LRCN model to be the
best performing model (with reported accuracies of
53.7%, 57.9%, 72.3% and 73.5% for boredom, en-
gagement, confusion and frustration). The results of
this study confirmed that temporal classifiers tend to
outperform static classifiers for the classification of
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affective states related to learning.
Liao et al. (2021) proposed the Deep Facial Spa-

tiotemporal Network (DFSTN) comprising of a pre-
trained SE-ResNet-50 for extracting the facial spatial
features and passing them into an LSTM network with
Global Attention module to generate an attentional
hidden state. With the modelling of both spatial and
temporal features, the authors managed to attain an
accuracy of 58.84% on the four levels of engagement
as labelled in the DAiSEE dataset.

A combination of ResNet and Temporal Convolu-
tional Network (TCN) hybrid deep learning architec-
ture was used in a study by Abedi and Khan (2021)
for engagement detection in the DAiSEE videos. The
pre-trained 2D ResNet extracts the spatial features
while the TCN analyses the temporal changes in the
video frames. A weighted cross entropy loss func-
tion is employed to tackle the issue of imbalanced
dataset (low proportion of lower levels of engagement
as compared to the higher levels of engagement). An
accuracy of 63.9% is achieved on the four levels of
engagement of the DAiSEE dataset. A point to note is
that the previous two studies only focus on the detec-
tion of engagement and not the other academic emo-
tions.

The study by Ngoc et al. (2020) inspires us to
model facial landmarks as a graph attention network
for the detection of academic emotions. In their study,
the authors constructed a graph representation of fa-
cial landmarks using Graph Neural Network (GNN)
and employed a Gated Linear Unit (GLU) as the tem-
poral block to predict seven basic emotions, namely
anger, contempt, disgust, fear, happiness, sadness,
and surprise. The authors justify that facial landmark
points have a sparse relation with spatially adjacent
landmark points and in addition, a continuous rela-
tion of facial landmarks on the temporal axis as cap-
tured in a facial video makes them amenable to be-
ing modelled with a temporal graph network. The
proposed network achieved an accuracy of 96.02%,
69.64% and 32.64% on the CK+ dataset, MMI and
AFEW dataset (for classification of basic emotions
and not academic emotions) respectively. This com-
pares well with other state of the art benchmarks and
justifies the use of graph neural network to model fa-
cial landmark points for facial emotion recognition.

Inspired by the previous work and the success
of attention mechanism in previous studies, we em-
ployed the GAT for modelling the spatial features of
facial landmarks. The previous study (Liao et al.,
2021) used a pre-trained SE-Resnet-50 for extracting
facial spatial features from facial images. In contrast,
for our study, we used GAT which attends over the
neighbours of each facial landmark node in a graph

structure for computing a hidden representation for
individual frame of facial landmarks. The temporal
dimensions of hidden representations of facial land-
marks and head poses are then modelled with the
Gated Recurrent Unit (Cho et al., 2014). We postu-
late that the inclusion of head pose will improve the
performance of the detection of academic emotions.
We also intend to incorporate this affect sensing mod-
ule in a mobile-based intelligent tutoring system. The
computation complexity of the model is integral to
implementation on mobile devices as mobile devices
typically have lower processing power and storage.

3 METHODOLOGY

This section describes the processing pipeline and
proposed model architecture which uses both the GAT
and Gated Recurrent Unit (GRU) as seen in Fig. 1.

3.1 Facial Landmarks and Head Pose
Extraction

This study uses the DAiSEE dataset. Each DAiSEE
video is 10 seconds in duration and is captured at
a frame rate of 30 frames per seconds. The videos
were first segregated into the individual frames which
resulted in a total of 300 frames or static images
per video. We next used the Multi-Task Cascaded
Convolutional Neural Network (MTCNN) (Zhang
et al., 2016) algorithm to crop out the facial images.
MTCNN is employed here as it is balanced in both
speed and performance as compared to other algo-
rithms.

The cropped facial images were resized to 112 by
112 pixels before being passed to the Practical Facial
Landmarks Detector (PFLD) (Guo et al., 2019) for
extraction of the facial landmarks. PFLD is used here
as it achieves good performance across challenging
datasets with low computational requirements. Out
of the 98 facial landmark points extracted by the pre-
trained PFLD model, we excluded the facial landmark
points that outlined the outer shape of the face as they
were not correlated to affective states (Ngoc et al.,
2020). In total, 65 facial landmark points that out-
lined the brow, eye, nose and mouth were used. The
head pose angles of roll, pitch and yaw were also ex-
tracted from PFLD model.

We extracted facial landmark points from each 10
seconds video and for a video rate of 30 frames per
second, this equates to a total of 300 frames of fa-
cial landmarks. Only 30 frames (1 frame picked at a
fixed interval of every 10 frames) were used as input
into the model. For videos with less than 15 frames,
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Figure 1: Modelling workflow and architecture.

we interpolated additional frames between consecu-
tive frames to make up 30 frames. Some of the videos
with less than 15 frames of facial landmarks extracted
were dropped. We postulate that the rate of movement
of each facial feature contributes to the tracking of
emotions. Thus across consecutive frames, we calcu-
lated the difference of the vertex coordinates for each
facial vertex which symbolizes the rate of change of
the facial features and input the rate of change of fa-
cial features into the model instead of the raw facial
landmark coordinates.

The facial landmarks are formulated into the
shape N x T x V x 2 where N denotes the batch size,
T denotes the temporal width of 29 frames, V denotes
the facial landmark vertex and the last dimension of 2

stores the x and y coordinates of the facial landmark
point. We also formulated head poses into features
with shape (N x T x H) where N denotes the batch
size, T denotes the temporal width. The last dimen-
sion of H=3 stores the roll, pitch and yaw values.

Across the 9068 DAiSEE videos, there were 144
videos in which facial landmarks cannot be extracted
(no face can be detected in the video). Another 47,
49 and 17 videos were excluded from the train, vali-
dation and test videos respectively as there were less
than 15 frames of facial landmarks which can be ex-
tracted. In total, only 2.8% of the entire dataset of
videos were discarded.
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3.2 Graph Construction

Graphs are data structures that allow us to model a
set of objects (vertices) and the relationships between
them (edges) (Zhou et al., 2020). To transform the
facial landmarks into a graph, each facial landmark
point constitutes a vertex on our graph and the edges
are formed with the Delaunay method. The Delau-
nay triangulation method (Lee and Schachter, 1980)
has been used for construction of the graph struc-
ture linking the vertices in a number of previous stud-
ies (Fabian Benitez-Quiroz et al., 2016; Ngoc et al.,
2020) that used facial landmarks for the detection of
facial action units.

3.3 Spatial Temporal Graph Attention
Network (STGAT)

The STGAT model is illustrated in Fig.1. The input
to each GAT layer is a set of node features,

h = {~h1, ~h2, . . . , ~hN},~hi ∈ RF (1)

where N = 65, denoting the number of facial land-
marks and F = 2 as each node feature consists of the
x and y coordinates of the facial landmark point.

Within each GAT layer, we apply a linear trans-
formation to encode the input features into embedded
features.

z(l)i =W (l)h(l)i (2)

Next, a pair-wise un-normalized attention score is
computed between two neighbours using the equation
below and a drop out is then applied during training.
The embedded features of the two nodes are concate-
nated and then dot product with a learnable weight
vector a before applying a LeakyReLU to the prod-
uct.

e(l)i j = LeakyReLU
(
~a(l)

T
(

z(l)i ||z
(l)
j

))
(3)

The next equation applies a softmax to normalize the
attention scores on each node’s incoming edges.

α
(l)
i j =

exp
(

e(l)i j

)
∑k∈N(i) exp

(
e(l)ik

) (4)

Finally, the embeddings from neighbours are aggre-
gated together and scaled by the attention scores.

h(l+1)
i = σ

(
∑

j∈N(i)
α
(l)
i j z(l)j

)
(5)

We use Exponential Linear Units (ELU) as the acti-
vation function σ. W and a are weight matrices, l

denotes the layer and N(i) denotes the set of one-hop
neighbours of node i.

The max pooling operation then selects the maxi-
mum value across the facial landmark vertices to gen-
erate the embedding for the entire facial graph. The
facial graph embedding is then concatenated with the
head pose embeddings (after passing through a fully
connected layer) before being passed to the GRU to
model temporal features. GRU resolves the prob-
lem of vanishing gradient typically associated with a
standard Recurrent Neural Unit. The output from the
last GRU is then passed through Batch Normalization
layer (BN), ELU activation layer to 2 layers of Fully
Connected (FC) or linear, BN and ELU layers (FC1
and FC2) to produce the predicted scores for 4 levels
of boredom, engagement, frustration and confusion.

4 MODELLING

With the use of Optuna library (Akiba et al., 2019) for
hyperparameter tuning, we trained the STGAT using
the train dataset and optimized the model for the best
set of hyperparameters using the validation dataset.
To train STGAT, we use the Root Mean Squared Prop-
agation (RMSProp) (Tieleman et al., 2012) optimizer
to train for a maximum of 40 epochs. An early stop-
ping algorithm was employed to stop the experiments
if the loss on the validation set did not reduce for con-
secutive 4 epochs.

We ran a total of 50 Optuna trials and saved the
model which gave the lowest loss for each trial as well
as their corresponding set of hyperparameter values.
The hyperparameters include the learning rate, the
hidden layer dimensions for GATs and GRU, FCs and
the dropout rate for the drop out layers. A batch size
of 64 and learning rate of 1×10−3 (selected through
Optuna trials) was used for model inference. Table
1 shows the final configuration for the model that is
used to generate the accuracies using the test dataset.

The overall accuracy was calculated by averag-
ing the detection accuracies across the four states of
boredom, frustration, engagement and confusion. The
model which gave the best overall accuracy score
among the trials was selected to be used for the eval-
uation of the performance using the test dataset.

4.1 Loss

We used a combination of the softmax and center loss
(Wen et al., 2016) as the final loss function. We noted
that with the softmax loss alone, the proposed model
was not able to discriminate between the four levels
of academic emotions. With the center loss function,
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Table 1: STGAT model configuration.

Configuration No. of heads Dropout Input dim. Output dim.
Multi-head GAT 6 0.5 2 80

GAT 1 0.5 480 48
GRU - - 48 112
FC - - 3 112

FC1 - - 224 128
FC2 - - 128 4

Table 2: Accuracies of STGAT face only, STGAT raw landmark models versus STGAT model.

Models Boredom Engagement Confusion Frustration
STGAT face only 41.8% 49.6% 67.5% 78.0%

STGAT raw landmark 40.0% 49.6% 67.5% 78.0%
STGAT 46.2% 49.6% 67.5% 78.0%

the model needs to learn the center for the deep fea-
tures in each class and minimize the distance between
the features and its class center, resulting in better dis-
crimination. The softmax loss function is defined as

Ls =−
m

∑
i=1

log
exp(W T

yi
xi +byi)

∑
n
j=1 exp(W T

j xi +b j)
(6)

where xi ∈ Rd denotes the ith deep feature, belonging
to the yth class and Wj ∈ Rd denotes the jth column
of the weights W ∈ Rd×n and b ∈ Rn is the bias term.
The center loss function is denoted by

Lc =
1
2

m

∑
i=1
‖xi− cyi‖

2
2 (7)

where cyi is the yith class center of deep features. The
final loss function is then denoted by

L = Ls +λLc (8)

where λ (which is set to 0.2 in our experiment) is used
for balancing the softmax and center loss functions.

4.2 Ablation Study

Other than facial landmarks, head pose was also ac-
quired from PFLD model. To investigate whether the
addition of head pose improves the performance of
our model, we constructed a model that uses only
facial landmarks (referred to as STGAT face only
model) which is similar to the STGAT model outlined
in Fig. 1 but without the input of head poses to the
GRU layer.

To verify that the differencing of facial land-
mark coordinates across consecutive facial landmark
frames enhances the performance of STGAT, we com-
pare it against another model (referred to as STGAT
raw landmark) that takes in the raw facial landmark
coordinates and head poses as input.

We followed the same workflow described in
Methodology section for both STGAT face only
model and STGAT raw landmark where the models
were trained using the train dataset and optimized for
the best set of hyperparameters using the validation
dataset. The same optimizer and loss function were
used and the hyperparameters were selected by using
Optuna to run for 50 trials.

As seen in Table 2, although the accuracies for en-
gagement, confusion and frustration are similar for
both STGAT and STGAT face only models, the de-
tection accuracy for boredom improves by 4.4% from
41.8% to 46.2% with the inclusion of head pose. Sim-
ilarly, comparing the STGAT and STGAT raw land-
mark models, the detection for boredom improves
by 6.2% for STGAT versus STGAT raw landmark
model.

5 RESULTS AND DISCUSSION

The performance of STGAT as compared to other
models is shown in Table 3. The accuracies for the
detection of academic emotions for the first 5 models
are retrieved from the study by Gupta et al. (2016).
As compared to the other models, STGAT outper-
forms InceptionNet Video and performs on par with
C3D Training but lags behind LRCN. It is worth not-
ing however that the authors stated that they recreated
the DAiSEE videos by treating every alternate frame
as continual affective states for LRCN to achieve a
higher performance.

In addition, LRCN consists of a combination of
CNNs (to model the spatial dimension) connected
to Long Short Term Memory modules (LSTMs) for
modelling of the temporal dimensions which is com-
putationally heavier as compared to our proposed
model which consists of a light pre-trained facial
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Table 3: Accuracy of models across all four levels of boredom, engagement, frustration and confusion.

Models Boredom Engagement Confusion Frustration
InceptionNet Frame 36.5% 47.1% 70.3% 78.3%
InceptionNet Video 32.3% 46.4% 66.3% 77.3%

C3D Training 47.2% 48.6% 67.9% 78.3%
C3D FineTuning 45.2% 56.1% 66.3% 79.1%

LRCN 53.7% 57.9% 72.3% 73.5%
STGAT 46.2% 49.6% 67.5% 78.0%

landmark interference PFLD model, a relatively small
GAT (only 65 nodes) and GRUs. To put in perspec-
tive, ResNet-50 a CNN that is 50 layers deep, trained
on more than one million images from the ImageNet
database, has close to 2.6 million parameters and is
about 98 MB in size when compressed. ResNet-50
was used in studies by Abedi and Khan (2021) and
Liao et al. (2021). In contrast, the proposed STGAT
model has less than 115 thousand parameters and only
480 KB in size. With the inclusion of PFLD’s 1.27
million parameters and 6.9 MB in size, it is still about
14 times smaller than ResNet-50. Running on an Intel
i3 with 4 core processor, 16 GB RAM and a NVidia
GeForce GTX1660 super GPU with a batch size of
64, STGAT took 1.46 ms for face cropping and fa-
cial landmarks inference. Added to that, STGAT took
about 4.8 ms to output the affective states giving a
total inference time of about 6.26 ms. Both training
and inference of deep learning models containing mil-
lions of parameters demand computational resources
that are beyond the constraints of typical mobile de-
vices (Wang et al., 2018). Specifically, the memory
and battery resource of mobile devices are key consid-
erations. For model inference, a basic requirement is
the model must be small enough to at least fit into the
limited on device memory and even if the model can
be compressed to fit, a computationally heavy model
will also rapidly deplete the battery of the mobile de-
vice. Both the computational and storage consider-
ations are pivotal for implementation on mobile de-
vices. A lighter model results in faster detection of the
fast changing affective states of learners and depletes
battery slower while a smaller sized model allows it
to be deployed on a wide range of mobile devices in-
cluding those with lesser on device memory.

Balancing for speed versus performance, we
chose to use the pre-trained PFLD 0.25x model for
facial landmarks detection. The larger pre-trained
PFLD models gives better detection accuracies but re-
sults in slower inference. In addition, PFLD is also
not the current state of the art model for facial land-
mark detection. Thus, we hypothesize that with better
facial landmark detection, the performance of STGAT
should further improve.

6 CONCLUSION

In conclusion, we have demonstrated the feasibility
of detecting academic emotions by proposing a graph
based model using GAT and GRU that modelled both
the spatial and temporal dimensions of facial land-
marks. The ablation study also showed that the ad-
dition of head poses into STGAT and the differencing
of consecutive frames of facial landmarks further en-
hance the accuracy of detection specifically for bore-
dom. Although the results showed that the overall
performance of STGAT is not state of the art, the pro-
posed model has low computational requirements and
is adequate for implementation on mobile devices.
We contend that with the availability of better per-
forming facial landmark detection models, the per-
formance of facial landmarks graph neural network
based model should improve further and this will be a
direction for future research.
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