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Abstract: Camera trap sequences are a treasure trove for wildlife data. Camera traps are susceptible to false triggers
caused by ground heat flux and wind leading to empty frames. Empty frames are also generated if the animal
moves out of the camera field of view in between the firing of a shot. The time lost in manually sieving the
surfeit empty frames restraint the camera trap data usage. Camouflage, occlusion, motion blur, poor illumina-
tion, and a small region of interest not only make wildlife subject detection a difficult task for human experts
but also add to the challenge of sifting empty frames from animal containing frames. Thus, in this work, we
attempt to automate empty frame removal and animal detection in camera trap sequences using deep learning
algorithms such as vision transformer (ViT), faster region based convolution networks (Faster R-CNN), and
DEtection TRansformer (DETR). Each biodiversity hotspot has its characteristic seasonal variations and flora
and fauna distribution that juxtapose the need for domain generalization and adaptation in the leveraged deep
learning algorithms. Therefore, we address the challenge of adapting our models to a few locations and gen-
eralising to the unseen location where training data is scarce.

1 INTRODUCTION

Ecological object detection has recently gained mo-
mentum due to the availability of high-tech non-
intrusive and unobtrusive camera traps (Norouzzadeh
et al., 2018) (Zhang et al., 2016) (Figueroa et al.,
2014). Camera traps are being widely deployed to
continuously observe natural habitats for months or
even years, recording the rarest events occurring in
nature (Norouzzadeh et al., 2019) (Swinnen et al.,
2014) (Zhou, 2014). A colossal amount of data is
generated in the process. Biologists and conserva-
tion activists need to sift the generated data for vital
statistics on species locations, population sizes, inter-
actions among species, behavioural activity patterns,
and migrations.

Camera traps are heat triggered or motion sensed
devices that passively record wildlife presence. Cam-
era traps are prone to false triggers from moving vege-
tation, ground heat flux, passers-by, and wind (Beery
et al., 2019). The camera trap can record an empty
frame if the animal moves out of the field of view in
between the trigger and the shot capture delay. Thus,
more than 70% of camera trap images do not contain
animal (Cunha et al., 2021) (Swanson et al., 2015)

(Beery et al., 2019). Therefore, as a precursory to an-
imal detection empty frames need to be removed.

The primary challenges in empty frame removal
and animal detection in camera trap sequences are
camouflage, motion blur, occlusion, poor and varying
illumination, cropped out subject, subject too close
or too far, varying animal poses and optical distor-
tion due to fixed camera angles (Norouzzadeh et al.,
2018) (Weinstein, 2018) (Beery et al., 2018). The ex-
igence of empty frame segregation and animal detec-
tion in camera trap images can be attributed to the
sparsity and sporadicity of subject content (Cunha
et al., 2021). The subject is seldom in the centre and
balanced with the background. Most images are diffi-
cult even for human eyes for identifying the presence
of an animal. Frequently only a part of the animal is
seen in low contrast frames due to dominant nocturnal
wildlife and camouflage (Beery et al., 2018) (Norouz-
zadeh et al., 2018). The time lost in manual review
and annotation is a bottleneck curtailing the use of
camera traps for comprehensive large-scale environ-
mental studies (Weinstein, 2018).

In our work, we elucidate a deep learning ap-
proach for automatic empty frame removal and detec-
tion and localisation of animals in their natural sur-
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roundings. We use a contemporary object detection
model; faster region convolutional network (Faster R-
CNN) (Ren et al., 2015), a relatively recent trans-
former encoder-decoder based detection model; DE-
tection TRansformer (DETR) (Carion et al., 2020),
and a solely attention based classification model; Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2020). We
perform our experimental studies on Caltech camera
traps (CCT) dataset (Beery et al., 2018). The pro-
posed approach can enable the extraction of valuable
information from camera trap sequences speedily and
eliminate human bias. Every biome has its distinctive
vegetation, soil, climate, and wildlife. Therefore, we
critically assess the prowess of the above mentioned
deep learning algorithms on domain adaptability and
generalisability in empty frame removal task.

In a nutshell, our contributions are as follows:
(1) solve empty frame removal task in camera trap
sequences and beat the state-of-the-art using deep
learning algorithms such as ViT, Faster R-CNN and
DETR, (2) animal detection in camera trap dataset
and set a benchmark performance (3) demonstration
of domain adaptability and generalisability trade-off
of each model along with a critical assessment of the
algorithms, (4) elucidating the prowess of the best
performing models through attention maps, and (5)
a two-stage pipeline for processing camera trap se-
quence to detect animals.

The rest of this paper is organized as follows: Sec-
tion II briefly reviews related works on wildlife detec-
tion and camera trap sequences. Section III presents
our proposed empty frame removal and animal detec-
tion approach, and Section IV describes the experi-
ments, results, inferences and discusses the proposed
pipeline. At the end Section V concludes the paper.

2 LITERATURE REVIEW

In the recent past, there has been a significant up-
surge in research endeavours by the deep learning
community to develop reliable animal detection algo-
rithm. Animal detectors are not only useful for col-
lecting ecosystem statistics but also for developing
collision avoidance systems (Matuska et al., 2016).
Matsuka et al.(Matuska et al., 2016) used scale in-
variant feature transform (SIFT) (Lindeberg, 2012)
and speeded up robust features (SURF) (Bay et al.,
2006) for local feature description. Then combined
support vector machines (SVM) (Cortes and Vapnik,
1995) with radial base function and bag of visual key-
point method for background subtraction and region
of interest (ROI) detection. After localising the ROI,
continuously adaptive mean shift (CAMShift) algo-

rithm was applied to find optimal object size, posi-
tion, and orientation. But this methodology has the
limitation that if the animal is static for too long, the
detector will produce a false negative. As discussed
in (Emami and Fathy, 2011) (Hidayatullah and Konik,
2011), CAMShift has reliable performance with sin-
gle hue object tracking and in scenarios where object
colour has high contrast with the background colour.
But fails miserably with multi-hue object tracking and
cases where the object blends with the background.
Over a million years of evolution, organisms adjusted
to their surroundings by camouflaging. Blending with
the backdrop, birds and animals are the lion’s share
successful in survival and procreation. Therefore, the
deployment of CAMShift algorithm in the wildlife
detection system does not seem to be a wise decision.

Figueroa et al. (Figueroa et al., 2014) and Swin-
nen et al.(Swinnen et al., 2014) relied on handcrafted
feature to detect animals. Low-level pixel changes
were used as a delimiter between frames containing
animals and not containing animals. These techniques
have a strong correlation with environmental circum-
stances for accurate detection. Natural habitats are
prone to seasonal changes, day-night lighting varia-
tion, mist, and haze. For the current task at hand,
we should work out a modus operandi which ideally
has a low correlation with seasonal and day-to-day
changes in environmental conditions. Furthermore,
all the enlisted algorithms (Figueroa et al., 2014)
(Swinnen et al., 2014) (Emami and Fathy, 2011) (Ma-
tuska et al., 2016) work best on medium to large mam-
mals. The performance significantly degrades when
ROI is smaller.

In (Zhou, 2014) the effectiveness of diverse fea-
ture generation algorithms for animal detection such
as local binary pattern (LBP) (Guo et al., 2010) and
histogram of gradients (HOG) (Dalal and Triggs,
2005) is investigated. LBP introduced by Ojala et
al. (Ojala et al., 1996) was designed for monochrome
static images and has the limitation that the feature
size increases with the number of neighbours. Tor-
ralba and Olivia (Torralba and Oliva, 2003) studied
the statistical properties of natural images. Their re-
sults concluded that without segmentation or group-
ing stages low-level features can be used for object
localisation. Zhang et al. (Zhang et al., 2016) con-
structed iterative embedded graph cut (IEC) method
for region proposal. This technique is not robust to
background variations and produces false positives
due to moving clouds, waving leaves, and shadows.
Although after several cross-frame fusion better re-
sults may be obtained.

Ensemble of CNN archetypes such as VGG (Si-
monyan and Zisserman, 2014), AlexNet (Krizhevsky
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et al., 2012), ResNet (He et al., 2016), GoogLeNet
(Szegedy et al., 2015) and NiN (Lin et al., 2013) was
used for automatic counting and detecting animals
in Snapshot Serengeti dataset (Norouzzadeh et al.,
2018). As Bounding Box is not available with the
Snapshot Serengeti dataset, counting was treated as a
classification problem with ±1 error tolerance.

More recently, approaches predicated on deep
convolutional neural networks (DCNN) such as Faster
R-CNN (Ren et al., 2015) and its predecessors Fast
R-CNN (Girshick, 2015) and R-CNN (Girshick et al.,
2014) are attaining the state-of-the-art performance.
Customarily, these algorithms are comprised of two
major segments. The first segment generates object
region proposals at different scales and locations and
the second segment performs foreground identifica-
tion to tell if the region proposal truly contains an ob-
ject or not. Beery et. al (Beery et al., 2018), exploited
the theme of generalization across datasets, back-
drops, and locations using Faster R-CNN with ResNet
and Inception backbone. Schneider et. al (Schneider
et al., 2018) demonstrated the detection capabilities
of Faster R-CNN and YOLOv2.0 on Reconyx camera
trap and Snapshot Serengeti datasets. Since natural
scenes are cluttered, these methods generate a large
number of region proposals. They ignore the unique
spatio-temporal features in the context of animal de-
tection from camera trap images (Zhang et al., 2016).
Faster R-CNN algorithm needs many passes through
a single image to detect all the objects.

Few works address the problem of automating
empty frame removal. Cunha et al. (Cunha et al.,
2021) examined the trade-off between precision and
inference latency on edge devices in empty frame re-
moval task. The use of attention mechanisms in ob-
ject detection is recently gaining prevalence. In the
recent past, a few approaches amalgamated convolu-
tional features and attention mechanisms.

3 PROPOSED STUDY, DATASET
AND DATA SPLITS

A very demanding and tiring aspect of unsheathing
vital statistics from camera trap sequences is empty
frame removal followed by detecting animals in the
sea of natural background clutter. Thus, to reduce the
time lost in manual review and eliminate human bias
we propose to solve the empty frame removal and
animal detection task in camera trap sequences. We
leverage ViT, DETR, and Faster R-CNN architecture
for this purpose. The contributors of the CCT dataset
used Faster R-CNN for their experimental analysis
and had set a benchmark (Beery et al., 2018). Faster

R-CNN from its inception is widely used across man-
ifold applications and domains for object detection.
Thus, as an obligatory choice, we employ Faster R-
CNN for empty frame removal and animal detection
task for comparisons.

But, the CCT dataset is laden with challenges
such as the dominance of low-contrast images, a
small range of tones, varying subject size, pose varia-
tions, and occlusions. Most existing deep learning ap-
proaches use state-of-the-art convolutional neural net-
work (CNN) backbones for object detection such as
faster region based CNN (Faster R-CNN) (Ren et al.,
2015), single shot detector (SSD) (Liu et al., 2016)
and you look only once (YOLO) detection algorithms
(Redmon and Farhadi, 2017). But convolution op-
eration has the limitation that all image pixels are
treated equally (Wu et al., 2020). Semantic concepts
with long-range dependence are often lost. Edges and
corners are easily captured by convolution filters but
sparse high-level concepts escape the sieve (Wu et al.,
2020). Therefore, for camera sequences, we need a
paradigm of detectors that alleviates the above stated
impediments.

Animals in the wild are often occluded which
needs that despite discontinuity in animal image pix-
els the distant but related animal features be in-
terweaved. Therefore, we choose to experiment
with DETR; a relatively recent paradigm of detec-
tors that reason about the relations of the animals
with the global image content. DETR based upon
encoder-decoder mechanism employing multiple at-
tention heads performs global reasoning. Global rea-
soning aids the model in making decisions about oc-
cluded and obscured object parts. Occlusion and low
illumination being the most common ailment of the
dataset, transformer architecture should have a clear
advantage here.

Transformers lack inductive biases such as local-
ity and translation equivariance inherent to CNNs
(Dosovitskiy et al., 2020). Intuitively, the lack of
locally restrictive receptive field and translation in-
variance in transformers can be desirable for empty
frames segregation tasks. Vision Transformer (ViT)
(Dosovitskiy et al., 2020) is a pure transformer model.
It inputs the image as a sequence of patches in the
form of tokens. The image patches tease out patterns
efficiently. Therefore, inspired by ViTs success in vi-
sion and to pose empty frame segregation purely as a
classification problem we roped in ViT.
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3.1 Caltech Camera Traps (CCT)
Dataset

There are 243,100 frames from 140 locations in the
Southwestern United States. The object categories
seen in this dataset are bobcat, opossum, coyote, rac-
coon, bird, dog, cat, squirrel, rabbit, skunk, lizard,
rodent, badger, deer, cow, fox, car, badger, fox, pig,
mountain lion, bat, and insect. Approximately 70%
of frames are blank. CCT dataset has a subset dataset
called Caltech Camera Traps-20 (CCT-20) (Beery
et al., 2018). It contains 57, 868 images across ran-
domly chosen 20 locations from 140 locations of CCT
dataset.

3.1.1 Data Split for Empty Frame Removal

The image distribution for any camera trap sequence
in general and CCT dataset, in particular, is skewed
towards empty frames as seen in Figure 1. To elimi-
nate bias we balance the number of empty frames and
animal frames at each location. For training data, we
choose empty and animal images from the 20 loca-
tions same as in CCT-20 dataset. For testing we cre-
ate two sets; (1) ‘cis’: the test data from locations
seen by the model during training and (2) ‘trans’: the
test data from locations unseen by the model during
training as in (Beery et al., 2018). To balance the
number of animal and empty frames at each train-
ing location we take the minimum of the maximum
number of animal and empty frames at each location.
We extract 8,028 images containing equal numbers
of animal and empty frames. We use 70% of the ex-
tracted images for training and 30% for testing the
model. Therefore, we have 5,638 training examples
and 2,390 testing examples as in Figure 2 for seen
locations. To analyze domain adaptation vs. domain
generalization we pulled out 1,195 empty and animal
frames each from locations other than 20 training lo-
cations. These 2,390 images have background charac-
teristics different from locations seen during training.

Figure 1: Number of empty and animal frames vs. locations
in entire dataset.

Figure 2: Number of examples vs. locations in dataset for
empty frame removal experiments.

3.1.2 Data Split for Animal Detection

Every location in CCT dataset has its characteris-
tic flora and fauna, seasonal variations, frequency of
occurrence of species, and day and night duration.
Therefore, to critically assess the robustness and ac-
curacy of the leveraged algorithms in the light of do-
main generalisation we use completely disjoint loca-
tion sets for train and test. From 140 locations in the
CCT dataset, we use 100 locations ‘cis’ for model
training and 40 unseen ‘trans’ locations for test. We
have 37,356 training images with 39,361 annotations
and 24,489 test images with 25,571 annotations.

4 EXPERIMENTS, RESULTS AND
DISCUSSIONS

Our experimental analyses are bifurcated into; (1)
empty frame removal experiments and (2) animal de-
tection in camera trap sequences.

4.1 Empty Frame Removal

We use ViT, Faster R-CNN, and DETR for segre-
gating empty frames from animal frames. We pose
empty frame segregation as a binary classification
problem. The two classes are frames containing an-
imal (animal frames) and frames without animals
(empty frames). We use percentage accuracy as the
evaluation metric. We train the models on ‘cis’ loca-
tions and test the prowess on both ‘cis’ and ‘trans’ test
sets.

4.1.1 Experiments with Vision
Transformer(ViT)

Empty frames are natural backdrops without any ob-
ject. The non-empty frames are natural backdrops
with an animal. Therefore, to model empty frame
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segregation purely as a classification task we lever-
age ViT. We train two models: (1) The first model
adapts better i.e. the best model on ‘cis’ locations. In
this case, the model is trained till the test accuracy on
the ‘cis’ location is maximum. (2) The second model
generalises better i.e. the best model on ‘trans’ loca-
tion. In this case, the model is trained till the best ac-
curacy on ‘trans’ location is obtained. The ViT mod-
els are trained using AdamW (Loshchilov and Hutter,
2018) with a weight decay of 0.0001 and an initial
learning rate of 0.001. We employ random horizontal
flip, random rotation, and random zoom with a factor
of 0.2 as data augmentation techniques.

Results from Best Model on ‘cis’ Locations: We
obtain an overall accuracy of 87.28% on ‘cis’ and
66.28% on ‘trans’ (Table 1). This can be accredited to
the generalization gap. On ‘cis’, the performance for
empty frames is better and on the flip side for ‘trans’
the performance on animal frames is better. In cam-
era trap sequences the backdrop for both frames con-
taining animals and empty frames for a particular lo-
cation is the same. Therefore, for ‘cis’ locations the
model has a bias towards empty frames. In contrast,
for ‘trans’ locations some species are common as in
‘cis’ but the backdrop is different resulting in better
performance for animal frames.

Table 1: Accuracy in % from ViT best model on ‘cis’ loca-
tions.

Animal Empty Total
‘cis’ 84.60 89.96 87.28

‘trans’ 69.29 63.26 66.28

Results from Best Model on ‘trans’ Locations:
We obtain an overall accuracy of 67.15% on ‘cis’ lo-
cations and 72.93% on ‘trans’ locations (refer to Ta-
ble 2). Astoundingly, on ‘cis’ locations the animal
performance improved from 84.60% to 93.72% and
empty frames performance dwindled from 89.96% to
40.59% in comparison to ‘cis’ best model (from Ta-
ble 1 and Table 2). Every location has its charac-
teristic vegetation and camera field of view. There-
fore, in the case of ‘trans’ locations the empty frames
are completely unseen. Hence, ‘trans’ best model has
very high accuracy for animal frames but much lower
empty frame performance.

Table 2: Accuracy in % from ViT best model on ‘trans’
locations.

Animal Empty Total
‘cis’ 93.72 40.59 67.15

‘trans’ 88.37 57.49 72.93

4.1.2 Experiments with Faster R-CNN

We wield pretrained Faster R-CNN with ResNet-101
backbone available in Detectron2 codebase (Wu et al.,
2019). The empty frames are annotated with a null
tensor; [0,0,0,0] bounding boxes; to indicate 0 di-
mensions and null area for no subject content. An
empty frame is considered correctly classified if the
confidence threshold and predicted bounding boxes
are null tensors. We use SGD with a momentum of
0.9. Beginning at 0.001 we decay the learning rate by
0.05 after every 1000 epochs.

Results from Faster R-CNN: We obtain an overall
accuracy of 65.35% from ‘cis’ locations and an over-
all accuracy of 64.27% from ‘trans’ locations (Table
3). Faster R-CNN is an object detection algorithm.
Therefore, the accuracy for detecting animals is much
higher for both ‘cis’ and ‘trans’ location sets. There
are many false positives in this case; defeating the ob-
jective of empty frame removal.

Table 3: Accuracy in % from Faster R-CNN.

Animal Empty Total
‘cis’ 98.74 31.96 65.35

‘trans’ 95.06 33.47 64.27

4.1.3 Experiments with DETR

For segregating empty frames from animal frames us-
ing DETR, we pose empty frame removal as a by-
product of the detection problem. The DETR model
is finetuned with AdamW (Loshchilov and Hutter,
2018) with a learning rate at 0.0001. Random hori-
zontal flips is used as a data augmentation technique.
We train DETR on animal instances from ‘cis’ and fil-
ter out empty frames using confidence thresholding.
In the training set, all the animal instances are associ-
ated with a confidence score greater than 0.95 (refer
to Figure 3). Therefore, we choose 0.95 as the confi-
dence threshold for segregating empty frames. During
testing, a frame is considered empty if the confidence
score associated with the frame for animal presence is
less than 0.95.

Results from DETR: From DETR we obtain an
overall accuracy of 80% on ‘cis’ locations and overall
accuracy of 76.57% on ‘trans’ locations (see Table 4).
The accuracy obtained on identifying frames contain-
ing animals is appreciable 98.49% on ‘cis’ locations
and 90.71% for ‘trans’ locations. We infer that DETR
has the least generalisation gap due to the encoder-
decoder attention mechanism.
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Figure 3: Number of animal frames in training set vs. con-
fidence score from DETR.

Table 4: Accuracy in % from DETR.

Animal Empty Total
‘cis’ 98.49 61.51 80.00

‘trans’ 90.71 62.43 76.57

The inferences drawn from the above studies are
given in the next subsection. These inferences will
be used to narrow down upon the most suitable deep
learning algorithm for empty frame removal.

4.1.4 ViT, Faster R-CNN or DETR?

‘cis’ Location Performance: Among the three
deep learning techniques, the highest overall accuracy
on the ‘cis’ locations (87.28%) is given by ViT (best
model on ‘cis’ locations).

Faster R-CNN, ViT (best model on ‘trans’ loca-
tions), and DETR for animal containing frame have
accuracy more than 90% but for empty frame, the ac-
curacy is 40.59%, 31.96% and 61.51% respectively.
These models will detect animals with high accuracy
but a large mass of empty frames will be wrongly
identified as animal containing frames. Thus the pri-
mary motive of removing empty frames will not be
solved. On the contrary, an important consideration
for infrequently encountered and rare species is that
we want to retain any frame containing even slight
traces of a species. Hence, in such a scenario we
might relax empty frame removal if the cost is los-
ing frames containing uncommon species. DETR and
Faster R-CNN bequeath us with nearly the same ac-
curacy on animal frames (98.49% and 98.74% re-
spectively). But DETR has an upper hand on empty
frame performance by nearly 30% in comparison to
Faster R-CNN. Therefore, while dealing with rare
species we should employ DETR. Most camera trap
sequences produce a colossal amount of data with
more than 70% empty frames. Therefore the sweet
spot between reducing the burden of manual empty
frame removal and retaining rare species lies in the
usage of ViT(‘cis’ best model.)

‘trans’ Location Performance: The highest over-
all accuracy on ‘trans’ locations 76.57% is given by
DETR. DETR generalises well to new locations as it
focuses on animal presence. From the DETR self-
attention maps we observe that DETR coalesces dis-
tant semantic concepts well as all the background
pixels are interweaved and differentiated from object
pixels (Figure 6). Therefore, DETR provides nearly
the same accuracy on empty frame for both ‘cis’ and
‘trans’ locations (61.51% and 62.43% respectively).

At the same time, if we want to retain the maxi-
mum number of frames containing animals belonging
to extremely rare species Faster R-CNN is the most
suitable model.

Figure 4: Attention map for: (a) frame containing animal
at location 88, (b) frame containing animal at location 7, (c)
empty frame at location 130 and (d) empty frame at location
40.
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ViT- Appraisal through Attention Map: Despite
the multitude of challenges, including varying poses,
camouflage, occlusion due to tree branches and
leaves, low contrast, and poor illumination ViT fo-
cuses its attention solely upon the animal (refer to
Figure 4 (a) and (b)). From Figure 4 (b) we see that
even though animal is not salient due to low con-
trast, no tonal gradient, and low illumination the at-
tention rightly focuses itself on the animal. In spite
of background clutter, deceiving animal-like objects,
and presence of colour tones similar to that of ani-
mals in empty frames the attention is not localised,
it is scattered and dispersed throughout the frame as
seen in Figure 4 (c) and (d). Therefore, through visual
scrutiny of attention maps, we see that ViT rightly fo-
cuses on the animals.

In the next section, we present results on detecting
(localising) animals in camera trap sequences from
frames containing animals.

4.2 Animal Detection

For detecting animals in camera trap sequences we
use Faster R-CNN and DETR. The evaluation met-
ric used for the animal detection task is COCO Aver-
age Precision (AP). COCO AP 0.5−0.95 denotes the
average over multiple IoU (Intersection over Union)
threshold from 0.5 to 0.95 with a step size of 0.05.
The detection above the IoU threshold is taken as the
correct detection. COCO AP 0.5 is Average Precision
above 0.5 IoU threshold.

4.2.1 Animal Detection Results

From Table 5 it is observed that DETR outperforms
Faster R-CNN in the animal detection task. This ob-
servation could be accredited to the knitting of sparse-
high level semantics together in camera trap images
done by the fusion of convolutional backbone, atten-
tion mechanism, and encoder-decoder architecture in
DETR. Hence, for further scrutiny, we employ DETR.
The reason for the better performance of DETR is ex-
plained as beneath.

Table 5: Detection performance using DETR and Faster R-
CNN in AP(COCO AP 0.5-0.95).

Faster R-CNN DETR
AP 0.5-0.95 52.1 53.4

Sequence Analysis of Camera Trap Images with
Results from DETR: Since camera trap images are
a sequence of images, not all frames captured are
equal. After a trigger to shoot images it is an opti-
mistic conjecture to assume that at least one frame

can capture the animal. Therefore, as in (Beery et al.,
2018), we exploit frame information in two ways:

1. Most Confident: From a sequence of images, if
the most confident detection from all the frames
in a sequence has an IoU greater than 0.5 we con-
sider the animal has been correctly located.

2. Oracle: From a sequence of images, if the
highest IoU between the predicted bounding box
and ground truth bounding box (amongst all the
frames in a sequence) is greater than 0.5 we con-
sider the animal has been correctly located in that
sequence.

For sequence analysis, we remove the images with
multiple animals to have a clear case for choosing
the highest IoU and highest confidence amongst a se-
quence of frames.

Treating all the frames equally i.e. without se-
quence information we obtain an average precision
of 89.2 (COCO AP 0.5) (refer to Table 6). With se-
quence information Most Con f ident and Oracle we
wield average precison of 91.4 and 94 (COCO AP
0.5) respectively. The frame sequences in this dataset
vary from 1-5 in length. Hence, it is appropriate to
evaluate the performance using sequence information.
94 COCO AP 0.5 points seem to be an upstanding
score considering the preposterous challenges of the
dataset; camouflage, motion, blur, occlusion, poor il-
lumination, negligible tonal range, cropped out sub-
ject, subject too close or too far, varying animal poses,
and optical distortion due to fixed camera angles.

Table 6: Sequence analysis of camera trap images with re-
sults from DETR.

No sequence
information

Most
confident Oracle

AP 0.5-0.95 55.4 61.2 68.5
AP 0.5 89.2 91.4 94

DETR Detection Performance Scrutiny:. To ap-
praise the performance of DETR on CCT se-
quence 1000 images are randomly selected for visual
scrutiny. Near flawless detection is observed in most
of the daytime images (image(1) in Figure 5) and in
fair proportion of low-light images (image(2) and im-
age(3) in Figure 5). Despite the rationale that lumi-
nance and colour gradient is pivotal for shape and
depth inference by any algorithm, DETR performs
well on a fair share of images that have nearly flat
or very weak luminance gradient and negligible range
of tones.

Many failure cases involve deceiving animal-like
background clutter (image(4)), or very low visibility
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Figure 5: DETR detection output on CCT dataset from left
to right and top to bottom: (1) IoU equal to 0.99 (2) IoU
equal to 0.79 (3) IoU equal to 0.63 (4) False positive; IoU
equal to 0.39 (5) False negative detection (6) False positive
detection (The bounding boxes in red are ground truth and
blue are predicted).

Figure 6: Visualization of DETR encoder self-attention
weights for a CCT image; first column top and bottom: self
attention map for reference point belonging to the object;
second column: original image; third column top and bot-
tom: self attention map for reference point belonging to the
object and belonging to background respectively.

either due to low-light (image(5)), or extreme camou-
flage (image(6)). Indeed in such cases, it is difficult
to see the animal, and there seems to be only a possi-
bility but no guarantee of animal presence.

In Figure 6, we visualise DETR encoder self-
attention using four reference points. Self attention
for a sample point indicates the likelihood of remain-
ing points being positively related to it. By visualising
how the model encodes the object, we gain intuition
whether the model is accurately knitting context se-
mantics while maintaining spatially-distant concepts.
So, in Figure 6 we see that for the three reference
points belonging to the object, the model assigns max-
imum weight to pixels belonging to the subject. Even
if there are three different spatially apart reference
points belonging to the object, the self-attention ma-
trix visualised is nearly the same. Thus, giving less
weight to background pixels, the model filters out
irrelevant parts of the image endowing itself with
the ability to make precise judgements. Also, for
a background reference point, the entire background
is weighted higher than object pixels. This gives us
the insight that indeed DETR encoder is maintaining
long-range dependencies (by weaving the background
pixels together throughout the image). The ability
to capture dependencies beyond the limited receptive

Figure 7: Proposed pipeline for empty frame removal and
animal detection.

field of a convolutional filter is the key to better per-
formance of DETR than Faster R-CNN on the CCT
dataset. This further allows the model to gain wider
intuition for detecting obscured animal parts.

Based on the results from section 4 (empty frame
removal and empty frame detection) we propose an
end-to-end pipeline for animal detection from camera
trap sequences.

4.3 Discussion on a Proposed Pipeline
for Camera Trap Image Analysis

Encouraged by our results, we propose an end-to-end
pipeline for empty frame removal and animal detec-
tion task in camera trap sequences (refer to Figure 7).
Given a camera trap sequence, the proposed pipeline
removes the empty frames using ViT (best model on
‘cis’) and then locates animals with a bounding box
using DETR. It is observed that in CCT dataset 70%
of the frames are empty. The proposed pipeline is ap-
plied to the entire data and 99.4% of the total empty
frames are discarded. Only 0.6% of the total number
of empty frames remain along with frames contain-
ing animals. At the same time, we have lost 0.2% of
the frames that contain animals. In the next stage of
the pipeline, it is seen that 87.29% of animals are de-
tected with IoU greater than 0.5. IoU greater than
0.5 is a widely used threshold for object detection
tasks. We observe that 98.56% of animal frames are
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detected with IoU greater than 0.3. With IoU above
0.3, the task of locating animals becomes very easy in
extremely low light and low contrast images.

5 CONCLUSION

In this work, we address the empty frame removal
problem and the animal detection challenge in camera
trap sequences. In tandem, we investigate the applica-
bility of ViT, DETR, and Faster R-CNN for this task.
Our experiments reaffirm the generalisation gap in the
context of unseen test data. We culminate our experi-
mental study with proposal of a two-stage pipeline for
mining vital statistics from camera trap sequences. In
the first stage we filter out empty frames and in the
second stage, we perform wildlife detection and local-
isation. Balancing the trade-off between retaining all
frames containing animals and filtering out all empty
frames we adopt ViT(best model on ‘cis’) for remov-
ing empty frames and DETR for detecting animals.
Despite heavy background clutter, camouflage, size
and pose variations, occlusion, progressive illumina-
tion changes from day to night, and seasonal varia-
tions in flora and fauna in camera trap data we ob-
tain a competitive accuracy. We shall extend our work
to make the empty frame removal and animal detec-
tion pipeline even more robust, especially under ex-
treme low-light and low-contrast conditions. Hence,
develop practically deployable wildlife detection sys-
tems. Further, we plan to incorporate open set recog-
nition, zero-shot learning, and few-shot learning for
generalising to unseen locations.
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