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Abstract: In MDE, models are meant to be transformed, thus model transformation is one of the basic pillars of MDE.
Besides generating source code, transformation is often used to refactor or optimize the models. While the the-
ory and application of graph transformations are active research fields for many years now, existing approaches
focus mainly on classic two-level meta-modeling setups. It is a promising research direction however to use
graph pattern-based transformations on multi-level models as well. This position paper proposes a textual
model transformation language — the DMLA Transformation Language (DTL) — which enables the defini-
tion of level-spanning transformation rules in a level-blind multi-layer environment.

1 INTRODUCTION

Model transformations are one of the key pillars of
model-driven engineering (MDE) (Sendall and Koza-
czynski, 2003) and are key to the productivity and
flexibility that make model-driven development so at-
tractive. This is reflected in the rapidly growing inter-
est in model transformations in academia and the in-
creasing sophistication of the transformation capabil-
ities offered by leading modeling environments, such
as the Eclipse Modeling Framework (EMF) (Stein-
berg et al., 2009). While the theory and application
of model transformations are active research fields
for decades, the most contemporary model transfor-
mation technologies suffer from the same fundamen-
tal weakness as the modeling languages are based on
the restriction to a two-level modeling architecture
that accommodates only one pair of classification lev-
els, the meta-model (types) and model (instances).
This makes it difficult for models, and transforma-
tion languages building on them, to handle scenarios
when there are more than just two classification levels
in a domain of interest without introducing the phe-
nomenon, called accidental complexity (Atkinson and
Kühne, 2008) into models and thus transformations.

Over the last few years, a paradigm for model
organization has emerged that supports an arbitrary
number of modeling levels, called multi-level mod-
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eling (Atkinson and Kühne, 2001). Multi-level
modeling aims to solve the shortcomings of classic
(meta-)modeling approaches such as OMG’s four-
level Meta-Object Facility (MOF) (MOF, 2005).

Multi-level modeling allows for an unlimited
number of instantiation levels as opposed to the four
levels prescribed by OMG. One of the main goals of
multi-level modeling is to reduce accidental complex-
ity, which refers to parts of the solution needed only
to express its multi-level nature, instead of describing
the domain in question (Atkinson and Kühne, 2008).
A good example of this is the application of the Item
Description (Coad, 1992) pattern to describe multi-
ple domain levels in object-oriented languages. The
main idea behind the pattern is that objects play the
role of classes, and as such, type-related information
can be encoded in them. This means that classifica-
tion is replaced by association, which — in addition
to objects representing class information — leads to
accidental complexity. Compared to classic model-
ing approaches, multi-level models are often reduced
in size, are more compact, and describe the target
domain more accurately. Therefore, many domains
can benefit from multi-level modeling. In recent
years, several research groups have developed proto-
type realizations and applications of multi-level mod-
eling environments, for example Melanee (Atkinson
and Gerbig, 2016), MetaDepth (de Lara and Guerra,
2010), MultEcore (Macı́as et al., 2018) or XModeler
(Frank, 2014).
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There exist many efficient methodologies to find
and replace patterns in classic meta-models, but these
methodologies suppose that all elements of the pattern
are on the same abstraction level. It is a promising
direction to use graph pattern-based transformations
on multi-level models as well. Our research aims at
this goal: creating an approach that supports model
transformation consisting of level-spanning patterns.
These patterns could capture domain concepts across
multiple abstraction levels, where the elements can
refer to each other independently of their abstraction
level. A typical modeling scenario for this is when
we have a domain concept containing several compo-
nents, some of which are concrete, while others are
more abstract, i.e. not yet specified completely.

In this position paper, we propose a model trans-
formation language — DMLA Transformation Lan-
guage (DTL) — which can capture level-spanning do-
main concepts in a multi-layer context and supports
model-to-model (M2M) transformations in our multi-
layer modeling framework, the Dynamic Multi-Layer
Algebra (DMLA) (Urbán et al., 2018; Urbán et al.,
2017). The feasibility of the language is demonstrated
by the manipulation of concrete domain models.

The structure of the paper is as follows. Section 2
is dedicated to discuss the related work showing how
other multi-level approaches support model transfor-
mation, while Section 3 describes the basics of our
multi-layer framework, DMLA. In Section 4 we elab-
orate on our motivation and compare multi-layer and
classic two-level model transformations in general.
Section 5 contains our contribution, where we present
DTL using illustrative examples. Concluding remarks
are outlined in Section 6.

2 RELATED WORK

The theory and practise of graph transformations are
well-studied, and the concept of model transforma-
tions applied to multi-level modeling is not novel.
Earlier works in the area have extended existing
model transformation languages to be able to manip-
ulate multi-level models and model hierarchies.

An important concern when discussing multi-level
approaches is the basis upon how they handle levels
(Atkinson et al., 2014). Approaches that acknowledge
the existence of explicit modeling levels are often re-
ferred to as level-adjuvant. Similar yet highly differ-
ent approaches have also emerged in the form of level-
blind approaches, which do not acknowledge explicit
instantiation levels, although they can still implic-
itly implement the concept of levels. To date, trans-
formations between multi-level models represented

using level-blind frameworks have barely been ex-
plored. Previous works have exclusively focused on
level-adjuvant model transformation methodologies
that enforce “strict metamodeling” principles (Atkin-
son, 1997). In (Atkinson et al., 2013), the authors
adapt ATL (Jouault et al., 2008) to manipulate multi-
level models built with the level-adjuvant Melanee
tool (Atkinson and Gerbig, 2016). In a similar man-
ner, (Lara et al., 2013) proposes the adaptation of ETL
(Kolovos et al., 2008) and other languages from the
Epsilon family for the application of model transfor-
mation rules into multi-level hierarchies created with
MetaDepth (de Lara and Guerra, 2010). A much more
formal approach can be found in (Wolter et al., 2020).
The authors represent multi-level models by multi-
level typed graphs whose manipulation and transfor-
mation are carried out by multi-level typed graph
transformation rules.

As opposed to the aforementioned level-adjuvant
approaches, our multi-layer approach, DMLA can
be considered level-blind since levels are not explic-
itly modeled. To our knowledge, no prior studies
have examined applying model transformation in a
level-blind environment. This position paper pro-
poses a textual model transformation language — the
DMLA Transformation Language (DTL) — which
enables the simple definition of transformation rules
in a level-blind environment.

3 DMLA

The main goal of Dynamic Multi-Layer Algebra
(DMLA) (Urbán et al., 2018; Urbán et al., 2017) is
to offer an environment in which one can model con-
cepts, connect these concepts and then refine them
step-by-step following a top-down method. DMLA
aims to provide a high-level of flexibility, but at the
same time a rigorous validation mechanism during re-
finement. Typically, one initially only has a vague
conceptualization of the domain concepts and only
gradually obtains a more concrete understanding of
them. Modeling in DMLA aims to follow and aid this
process by providing a multi-layer modeling environ-
ment.

In DMLA, the main relationship between ele-
ments at different levels of abstraction is “refinement”
which is used to gradually constrain concepts. Please
note that refinement in DMLA is special in nature,
its semantics is completely different from the classi-
cal object-oriented “specialization” or “instantiation”
relations. Refinement relates a DMLA entity to its
“meta” and the framework automatically validates if
there is indeed a valid refinement relationship be-
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tween the two entities. Note that while each en-
tity has a meta-entity, DMLA is a “level-blind” ap-
proach (Atkinson et al., 2014) since levels are not ex-
plicitly modeled. DMLA does not use a global level
organisation that requires refinement relationships to
align with each other in any way. Each modeled entity
can refer to any other entity along the meta-hierarchy,
as long as the validation rules are not violated.

Modeling entities, which have an internal struc-
ture, describe their setup by slots. The slots of an en-
tity set up its structure, for example a Bicycle has a
Wheels slot containing a list of references to Wheels.
At the topmost abstraction level, one does not usually
have much information about the exact structure and
the details of an entity, therefore slots are used merely
as placeholders. Further down one can refine the en-
tity: add new slots, refine slots or omit them. Only
optional slots (slots with cardinality 0..n) can be omit-
ted from an entity. Each of these decisions are vali-
dated against the validation formulae and constraints
describing the refinement rules of the entity.

Validation formulae can be attached to any entity
and since slots themselves are also modeled as enti-
ties, to any slots as well. These formulae may cus-
tomize the refinement rules of the given entity. The
formulae are specified as DMLA operations using the
built-in operation language. The operation language
is also completely modeled.

A constraint defines a reusable validation mech-
anism (e.g. type conformance check) attachable to
slots. Refinement of slots is usually driven by adding
new constraints and further down narrowing existing
ones, thus restricting the structure and/or the behav-
ior of the slot. DMLA offers built-in constraints for
re-occuring tasks and allows creating universal, or
domain-specific constraints in a flexible way. The two
most important built-in constraints kinds are: i) type
constraint restricting the type of the values to be put
in the slot (e.g. when filling the slot Frame in en-
tity RaceBike, one can only use refinements of Race-
Frame entity there), and the ii) cardinality constraint
prescribing the allowed number of refinements within
a given slot (e.g. Configuration may have zero-to-
many Components).

Although the basic, built-in entities are not de-
tailed in this paper, one of them, ComplexEntity,
should be mentioned since it acts as a base entity for
domain modeling. It has a slot called Fields. The car-
dinality of the slot Fields allows any number of refine-
ments (0..*) of any practically available type. Since
all slots in DMLA must have a meta, it is not possible
to add new features to an entity, unless the meta-entity
has an appropriate meta-slot. The Fields slot allows
one to extend entities with new slots. By omitting the

Figure 1: DMLA model fragment.

slot, refinements can deny the ability to introduce any
further slots.

Figure 1 shows a DMLA model fragment (an ex-
ample refinement chain), depicting entities as boxes.
This model fragment is also used in Section 4 and 5
to illustrate our level-spanning model transformation
concepts. ComplexEntity is represented by a rounded
rectangle indicating that it is not part of the domain
model, while concrete objects are differentiated from
more abstract entities by their gray color. The refine-
ment relationship between the entities are denoted by
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dashed arrows with “refines” stereotypes. For exam-
ple, RaceBike is a refinement of Bicycle.

The slots are shown embedded into entities simi-
larly to attributes of a class in UML class diagrams.
Attributes pointing to another entity are modeled by
slots and therefore visualized embedded in the box,
not as associations between the entities. Meta-slot
relationships are represented by Slot: MetaSlot la-
bels. In DMLA, slots can be explicitly kept (cloned)
or omitted. Whenever a new slot is introduced, it is
shown in bold (e.g. introducing slot Wheels in NCy-
cle). Constraints of slots are denoted above the cor-
responding slot in curly brackets with T: (type con-
straint) and C: (cardinality constraint).

The entry point of domain definition is the Com-
plexEntity. ComplexEntity uses a different notation
(rounded rectangle) compared to other entities, as it
is not part of the domain definition. This refinement
chain in the model exemplifies a key feature of the
underlying DMLA: step-wise refinement. One starts
from a highly abstract entity and refines it step-by-
step until a fully concretized object is eventually ob-
tained. For example, RaceBike references supported
frame type via a slot (Frame). When refining Race-
Bike and creating the Challenger entity, the type con-
straints applied on slot Frame are narrowed so that the
slot can contain only refinements of the Challenger-
Frame entity. Type constraints automatically ensure
that the concretization is always consistent whenever
the validation succeeds, thus there is no need to define
additional constraints.

4 MOTIVATION

In the scope of mainstream two-level modeling,
Model2Model transformation aims to provide a mean
to specify the way to produce target models from a
number of source models. For this purpose, it should
enable developers to define the way source model ele-
ments must be matched and navigated in order to ini-
tialize the target model elements. Formally, a simple
model transformation has to define the way for gener-
ating a model M2, conforming to a meta-model MM2,
from a model M1 conforming to a meta-model MM1.

Figure 2 summarizes a typical model transfor-
mation process in a standard modeling scenario. A
model M1, conforming to a meta-model MM1, is
transformed into a model M2 that conforms to a meta-
model MM2. The transformation is defined by a
model transformation language (such as ATL (Jouault
et al., 2008) or ETL (Kolovos et al., 2008)) that en-
ables to specify how one (or more) target model can
be produced from a set of source model. The MM1

Figure 2: Classic model transformation approach.

and MM2 meta-models, has to conform to a meta-
meta-model MMM (such as Ecore).

In the multi-layer setup of DMLA, however, it
cannot be presumed that all elements of the model
transformation pattern are on the same abstraction
level, like the modeling elements of M1 and M2, be-
cause there can be more than two meta-levels at a
time and meta-levels can also influence other levels
beyond the immediate one. For example, in the refine-
ment chain of figure 1 Configuration is refined five
times before it reaches its fully concretized state as
Bike1234 and the contained slots gain more and more
concrete information as we getting more and more
concrete along the refinement chain. Moreover, in
early phases of modeling at higher abstraction levels
one may not know the concrete name and the structure
of the modeling elements of lower levels for which
the transformation rule should be formulated. For ex-
ample, if one may want to formulate a transforma-
tion rule at the level of Configuration, extra conditions
need to be added in order to match the desired source
model elements at lower levels.

In the next section, we introduce our work-in-
progress transformation language which can be an
ideal candidate to capture level-spanning model ele-
ments in transformation rules across multiple abstrac-
tion levels.

5 THE TRANSFORMATION
LANGUAGE

By designing DMLA Transformation Language
(DTL), our primary goal is to provide a flexible and
concise way for the model-to-model transformation
of level-blind multi-layer models in DMLA. DTL is
very similar to ATL (Jouault et al., 2008) in that
in both languages transformation code is composed
of rules that define how source model elements are
matched and navigated to create and initialize the ele-
ments of the target models. Each transformation rule
contains a unique name. It is introduced by the key-
word rule that is followed by the rule’s name. Its logic
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is surrounded by curly brackets. In the source pattern
(from part), rules declare which element type of the
source model has to be transformed, while in the tar-
get pattern (the to part), rules declare to which ele-
ment(s) of the target model the source pattern has to
be transformed to. The implementation of the target
pattern declares the details of the transformation.

DTL is a hybrid of declarative and imperative
style. The basic style of transformation writing is
declarative, which means mappings and matching
rules can be easily expressed in the source pattern.
However, imperative constructs are provided in the
target pattern so that basic operations like add and
delete can also be expressed.

One of the most important features of DTL is that
it allows to customize the level-spanning model el-
ements to search in the refinement chain. For each
model element (entity, slot, constraint) one can spec-
ify additional conditions to restrict what is included
in the source model. It also possible to specify the
searching strategy for refinements: (i) inclusive tran-
sitive refinements with :| operator, (ii) exclusive tran-
sitive refinements with :ˆ operator and (iii) direct re-
finement with : operator. The term “inclusive tran-
sitive refinements” covers the matching modeling el-
ement and all of its refinements, while the term “ex-
clusive transitive refinements” excludes the matching
modeling element and only transitive refinements are
included. “Direct refinement” refers to the immediate
refinement of the matching modeling element.

In the following, we explain some of the features
of DTL through practical transformation rules formu-
lated for the domain model of Figure 1. For the sake
of clarity, we have slightly simplified the model frag-
ment of Figure 1, thus only those parts of the enti-
ties are displayed that are necessary to illustrate the
mechanisms of DTL. We use fictional requirements to
which we formulate transformation rules in order the
modify and refactor the original DMLA model frag-
ment.

REQ1: Each bicycle model has a regular sales
price.

Listing 1 depicts the transformation rule for
adding the Price slot to the inclusive refinements of
Bicycle entity. The slot is originated from Complex-
Entity.Fields, it has a Number type and zero-to-one
cardinality . Price slot is added with an imperative
statement in the target pattern. Note that is also pos-
sible to specify identifiers for the matching elements
in the source pattern, e.g. identifier bicycle s refers to
the matching inclusive refinements of Bicycle entity.

rule AddPriceSlot
{
from {

entity bicycle_s:| Bicycle {}
}

to {
@Type: Number
@Cardinality: 0..1
new slot Price: ComplexEntity.
Fields;

add Price to bicycle_s;
}

}

Listing 1: Add Price slot to Bicycle.

REQ2: The introduction of new features is no
longer allowed in Bicycle refinements.

According to this requirement, we should deny the
introduction of new features by omitting Complex-
Entity.Fields and its direct slots. By omitting these
slots, refinements deny the ability to introduce any
further slots. Note that we also formulate additional
conditions for the matching slot: only slots that have
Base as their type constraint will be matched. Listing
2 depicts the transformation rule for deleting direct
Fields elements from inclusive transitive Bicycle re-
finements.
rule DeleteDirectFieldsElements
{
from {

entity bicycle_s:| Bicycle
{
slot matchingSlot:

ComplexEntity.Fields {
constraint t1:| TypeConstraint
{ slot .Type = Base }

}}}

to { delete bicycle_s.matchingSlot; }
}

Listing 2: Delete direct Fields elements.

REQ3: Race bike models are no longer sup-
ported. From now on, Challengers can be considered
Bicycle models.

Listing 3 depicts the transformation rule for
changing the meta of Challenger to Bicycle. We
search challenger as the direct refinement of Race-
Bike and bicycle as the direct refinement of Configu-
ration. Then, meta of challenger is set to bicycle.
rule ModifyMetaOfChallenger
{
from {

entity challenger: RaceBike {}
entity bicycle: Configuration {}

}
to { challenger.meta = bicycle; }

}

Listing 3: Change meta of Challenger.
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6 CONCLUSIONS

In this paper, we presented DTL, our work-in-
progress multi-layer transformation language, high-
lighting its features regarding capturing level-
spanning model elements. Although the paper fo-
cused on the level-blind setup provided by DMLA,
we believe that our experiences and conclusions are
worthy of general discussion. Even though the DTL
language is in explanatory phase, we have presented
simplified transformation rules to illustrate the fore-
seen language mechanisms. Currently, we are de-
veloping an ANTLR-based implementation of DTL
and also working on more complex case studies in
order to demonstrate the feasibility of our level-
spanning transformation approach. From a techno-
logical perspective, the significance of our research
lies in the usage of a modeling language which is
based on a refinement relation and not on the classi-
cal object-oriented specialization or instantiation rela-
tions. Thus,DTL can capture domain concepts across
multiple abstraction levels, where the elements can
refer to each other independently of their abstraction
level. We believe that apart from the technological
concepts of DTL, future research should certainly fur-
ther examine whether DMLA models could be for-
mally represented by multi-level typed graphs, whose
manipulation and transformation could be carried out
by multi-level typed graph transformation rules.
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Atkinson, C., Gerbig, R., and Kühne, T. (2014). Comparing
multi-level modeling approaches. In CEUR Workshop
Proceedings, volume 1286.

Atkinson, C., Gerbig, R., and Tunjic, C. (2013). Enhanc-
ing classic transformation languages to support multi-
level modeling. Software and Systems Modeling, 14.

Atkinson, C. and Kühne, T. (2001). The essence of multi-
level metamodeling. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
pages 19–33, Berlin, Heidelberg. Springer-Verlag.

Atkinson, C. and Kühne, T. (2008). Reducing accidental
complexity in domain models. Software & Systems
Modeling, 7(3):345–359.

Coad, P. (1992). Object-oriented patterns. Communications
of the ACM, 35(9):152–159.

de Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Objects, Models, Components,
Patterns, pages 1–20, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Frank, U. (2014). Multilevel modeling: Toward a new
paradigm of conceptual modeling and information
systems design. Business & Information Systems En-
gineering, 6(6):319–337.
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