
Unsupervised Image-to-Image Translation from MRI-based 
Simulated Images to Realistic Images Reflecting Specific Color 

Characteristics 

Naoya Wada* and Masaya Kobayashi* 
KYOCERA Corporation, 3-7-1 Minatomirai Nishi-ku, Yokohama, Japan 

Keywords: Generative Adversarial Networks (Gans), Image-to-Image Translation, Domain Adaptation, Unsupervised 
Learning, MRI. 

Abstract: In this paper, a new domain adaptation technique is presented for image-to-image translation into the real-
world color domain. Although CycleGAN has become a standard technique for image translation without 
pairing images to train the network, it is not able to adapt the domain of the generated image to small domains 
such as color and illumination. Other techniques require large datasets for training. In our technique, two 
source images are introduced: one for image translation and another for color adaptation. Color adaptation is 
realized by introducing color histograms to the two generators in CycleGAN and estimating losses for color. 
Experiments using simulated images based on the OsteoArthritis Initiative MRI dataset show promising 
results in terms of color difference and image comparisons.  

1 INTRODUCTION 

Image synthesis can now achieve sufficient quality 
for practical use thanks to the progress of generative 
adversarial networks (GANs) (Goodfellow et al., 
2014). GANs have also been used in various tasks, 
including image-to-image translation (Zhu et al., 
2017; Isola et al., 2017), image interpolation (Yu et 
al., 2018), and data synthesis other than images (Yu 
et al., 2017). While GANs now have a wide range of 
applications, image synthesis to realize specific 
characteristics is one of the main tasks for practical 
use, and the demand for image synthesis has grown 
as the quality of the generated images has increased. 
One example is the task of generating images that 
reflect the specific color or other characteristics of a 
person.  

This paper presents a new image-to-image 
translation method that reflects specific color 
characteristics, with the aim of generating a realistic 
image reflecting a person’s characterics from 
simulated images based on MRI data. In conventional 
image translation methods, there are three main 
considerations. The first is how to capture specific 
characteristics of a domain (Karras et al., 2019). The 
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second is the necessary amount of training data (Liu 
et al., 2019). The third is the labeling cost for 
supervised learning, which is required for several 
methods that involve pairing images across the 
domains (Isola et al., 2017). To address these issues, 
we propose a CycleGAN-based network model to 
achieve unsupervised learning that requires a smaller 
amount of data. However, the original CycleGAN 
architecture cannot accept the characteristics of a 
specific target as input and is unable to adapt the 
generated image accordingly. Therefore, we import 
the color characteristics as color histograms to the 
middle layer between the encoder–decoder structures 
of the two generators in the cyclic architecture of 
CycleGAN. Then, color loss is independently 
estimated and combined with other losses such as 
cycle consistency loss and adversarial loss. We also 
performed experiments to demonstrate image-to- 
image translation across two domains. One domain 
consisted of 3D simulated knee images obtained from 
MRI data provided by the OsteoArthritis Initiative 
(OAI). The other domain consisted of real-world knee 
images. Image-to-image translation from MRI to 
realistic knee images would make it easier for non-
healthcare professionals to understand MRI images.  
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Figure 1: Schematic of the image-to-image translation 
network. 

It could also support communication between patients 
and healthcare professionals by aiding in 
explanations of MRI images from other patients. 

In the remainder of this paper, we discuss related 
work in Section 2, introduce our proposed method in 
Section 3, present our experimental methods and 
results in Section 4, and give our conclusions in 
Section 5. 

2 RELATED WORK 

GANs have been used previously for image-to-image 
domain adaptation. Pix2pix (Isola et al., 2017) is an 
early, well-known method for image-to-image 
translation that uses conditional GANs to learn paired 
images. However, Pix2pix uses supervised learning 
and a large number of paired images, so some 
labeling cost is required. CycleGAN (Zhu et al., 
2017) is a method for image-to-image translation 
without learning paired images. The model has a 
cycle architecture that consists of two generators and 
two discriminators and cycle consistency loss for 
unsupervised learning. CycleGAN requires a 
relatively small number of unpaired images for 
training. However, it is difficult to adapt the 
generated image to specific characteristics (color, 
illumination, etc.) in a dataset. Recently, StarGAN-v2 
(Choi et al., 2018; Choi et al., 2020) has been 
proposed for image-to-image translation across 
domains and can reflect styles by obtaining style 
codes from datasets automatically. However, it 
requires a large dataset for training, and it is difficult 
to specify a specific style in a non-biased dataset 
because style codes are automatically obtained by 
capturing bias in a training dataset. DeepHist (Avi-
Aharon et al., 2020) can reflect specific color 
characteristics in generated images by using a 
differentiable network with kernel density estimation 
of color histograms from the generated image. 
However, paired images are required for training. 

3 PROPOSED METHOD 

Here we propose a network model for image-to-image 
translation that is based on the cyclic architecture of 
CycleGAN and is able to reflect target color 
characteristics. For training, our method requires only 
a relatively small amount of data and does not require 
pairing images. Furthermore, we introduced an archite-
cture to accept color histograms for the target domain. 
This section describes the details of this architecture 
and the estimation of losses during training. 

3.1 Overview of the Network 

The network consists of two generators and two 
discriminators as shown in Figure 1. 𝑋 and 𝑌 denote 
the domains in image-to-image translation. 𝐺 and 𝐹 
denote the generator from 𝑋  to 𝑌  and 𝑌  to 𝑋 
respectively. Each of them generates a synthetic 
image (𝑋௦௬௡௧௛ and 𝑌௦௬௡௧௛) in the target domain from 
a real image (𝑋௥௘௔௟ and 𝑌௥௘௔௟) in the source domain. 𝐷௑  and 𝐷௒  denote the discriminators and 𝑋௛௜௦௧  and 𝑌௛௜௦௧  denote the color histograms for 𝑋  and 𝑌 , 
respectively. These histograms are input into 𝐹 and 𝐺, respectively, so that the generated synthetic images 
reflect the color characteristics obtained from 
reference images (𝑋௥௘௙  and 𝑌௥௘௙ ) in the respective 
target domains. Spectral normalization (Miyato et al., 
2018) is adopted for both generators and 
discriminators to stabilize training of this network. 

3.2 Importing Color Characteristics 

The architecture adopted for 𝐺  and 𝐹  is shown in 
Figure 2. The color distribution is imported with 
reference to previous methods. First, an RGB 
histogram is obtained from an image in the target 
domain. Histograms for each color are concatenated 
and imported to the middle layer between the encoder 
and the decoder of the generator. The purpose of 
importing the histograms is to import color 
information after spatial features have been 
convoluted. A translated image is output from the 
decoder. To evaluate the color of the output image, 
L2 loss between histograms of the source and output 
images is obtained. The histograms of the output 
image are obtained by kernel density estimation 
because it enables backpropagation and updating of 
the network. Kernel density estimation is done using 
the following probability density function: 𝑓ூሺ𝑔ሻ ൌ 1𝑁𝐵 ෍ Κ ቆ𝐼ሺ𝑥ሻ െ 𝑔𝐵 ቇ௫∈ஐ , (1)
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Figure 2: Architecture of the generators (KDE: kernel 
density estimation). 

Here, 𝑥  denotes the pixel position, 𝑔 ∈ ሾെ1, 1ሿ 
denotes the pixel value, 𝐵  denotes the bandwidth, 𝑁 ൌ |Ω|  denotes the number of pixels, 𝐼ሺ𝑥ሻ ∈ሾെ1, 1ሿ denotes the luminance, and Κሺ∙ሻ denotes the 
kernel function, which is defined as Κሺ𝑧ሻ ൌ  ௗௗ௭ 𝜎ሺ𝑧ሻ ൌ  𝜎ሺ𝑧ሻ𝜎ሺെ𝑧ሻ. (2)

Here, K(z) is the derivative of the sigmoid function 𝜎(z). Using 𝑓ூሺ𝑔ሻ, each pixel in an image is assigned 
to a histogram bin according to 

𝑃ூሺ𝑘ሻ ൌ ׬  𝑓ூሺ𝑔ሻ𝑑𝑔 ఓೖାಽమఓೖିಽమ , (3)

where 𝐿 ൌ  ଶ௄  denotes the bin width and 𝜇௞ ൌ െ1 ൅ 𝐿 ቀ𝑘 ൅ ଵଶቁ denotes the center of the 𝑘 -th bin 
when normalized pixel values [−1, 1] are divided into 𝐾 bins ሼ𝐵௞ሽ଴௄ିଵ . Equation (3) can be developed by 
using (2) to give 

𝑃ூሺ𝑘ሻ ൌ 1𝑁 ෍ Π௞ሺ𝐼ሺ𝑥ሻሻ௫∈ஐ  (4)

where Π௞ሺ𝑧ሻ is defined as 

Π௞ሺ𝑧ሻ ≜  𝜎 ቆூሺ௫ሻିఓೖାಽమ஻ ቇ െ  𝜎 ቆூሺ௫ሻିఓೖିಽమ஻ ቇ. (5)

Thus, 𝑃ூሺ𝑘ሻ gives the value of the k-th bin of the color 
histograms. 

3.3 Loss Function 

The loss function for the entire network is defined as ℒ ൌ 𝜆ୋ୅୒ℒୋ୅୒ ൅ 𝜆େଢ଼େℒେଢ଼େ ൅ 𝜆୍ୈ୘ℒ୍ୈ୘ ൅𝜆ୌ୍ୗ୘ℒୌ୍ୗ୘, (6)

where ℒୋ୅୒  denotes the adversarial loss, ℒେଢ଼େ 
denotes the cycle consistency loss, ℒ୍ୈ୘ denotes the 
identity mapping loss, and ℒୌ୍ୗ୘  denotes the color 
loss. ℒୌ୍ୗ୘ is defined by using L2 losses as ℒୌ୍ୗ୘ ൌ ห𝒉୓୙୘ୖ െ 𝒉ୖ୉୊ୖ หଶ ൅ ห𝒉୓୙୘ୋ െ 𝒉ୖ୉୊ୋ หଶ ൅ห𝒉୓୙୘୆ െ 𝒉ୖ୉୊୆ หଶ, 

(7)

where 𝒉୓୙୘ୖ , 𝒉୓୙୘ୋ , and 𝒉୓୙୘୆  denote the histograms 
of each RBG color estimated from the generated 
image and 𝒉ୖ୉୊ୖ , 𝒉ୖ୉୊ୋ  and 𝒉ୖ୉୊୆  denote the 
histograms of each color estimated from the imported 
reference images.  

4 EXPERIMENTS 

Image-to-image translation experiments were 
performed to evaluate the proposed method. The task 
is to translate images across two domains. 

4.1 Dataset 

One domain consisted of 3D simulated knee images 
generated from OAI MRI data. MRI data were 
converted to 3D structure and a front-view image was 
obtained as a 3D simulated knee image by using the 
3D medical imaging software InVesalius 3.1. The 
other domain consisted of real-world knee images 
(the color source) obtained from several datasets 
including the Fashion Product Images Dataset 
provided by Kaggle. The resolution of both input and 
output images was 256 × 256 pixels. The training 
dataset consists of 477 3D simulated images and 438 
real-world images because we sought to consider the 
situation with a relatively small training dataset. For 
learning, the network was trained for 400 epochs. The 
test dataset consists of 28 images from each domain, 
and image translation was performed from the MRI-
based 3D simulation domain to the real-world domain 
to reflect the color characteristics of an input real-
world knee image. As a result, 784 images were 
generated for each input combination comprising a 
3D simulated image and a real-world image (28 × 28 
images) in round-robin manner. 
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Figure 3: Comparison of images generated by the six methods shown in Table 1. 

4.2 Evaluation 

To evaluate how well the color characteristics in the 
generated output images reflected those in the input 
source images, their mean colors were compared.  
The color difference ∆𝐸௔௕∗  was calculated using 
CIE76 to compare the mean colors in the L*a*b* 
color space: ∆𝐸௔௕∗ ൌ ඥሺ∆𝐿∗ሻଶ ൅ ሺ∆𝑎∗ሻଶ ൅ ሺ∆𝑏∗ሻଶ. (8)

We compared the color difference among 
conventional CycleGAN, the proposed method, and 
some incomplete methods based on the proposed 
method but with the omission of some of its 
techniques. These incomplete methods are intended 
to evaluate the effect of each technique. The 
evaluated methods are summarized in Table 1. 

4.3 Results 

Figure 3 shows representative examples of images 
generated by the evaluated methods for five 
combinations of source MRI-simulation and real-
world images, and their color differences are 
summarized in Table 1. Note that Methods 1-3 do not 
have an architecture to accept input color histograms; 
thus, unspecified color characteristics extracted from 
whole dataset during training are reflected in the 
generated images and cause the differences from the 
color source images. The images generated by 
methods 1 and 2 all have the same color 
 

Table 1: Summary of methods and color differences. 

No. Method Description Color 
Diff. 

1 CycleGAN Original CycleGAN 14.1 

2 CycleGAN 
+SN 

Spectral normalization is 
applied to method 1. 

13.7 

3 CycleGAN 
+SN+Loss 

Loss function considering 
colors (6) is applied to 

method 2. 

13.0 

4 CycleGAN 
+SN+Hist 

Color histograms are 
applied to method 2. 

8.9 

5 Proposed
(outbound 

only) 

Loss function (6) and 
color histograms are 

applied to generator 𝐺 
(MRI to real-world) only. 

5.0 

6 Proposed 
(round trip) 

Proposed method (the 
method applied to 𝐺 in 

method 5 is also applied 
to 𝐹) 

4.6 

characteristics. The result for method 3 shows that it 
is not very effective on its own. On the other hand, 
methods 4-6 which accept input color histograms 
improve the color differences. The effect of using 
color histograms as input and evaluating losses for 
color can be clearly seen. Especially, the result for 
method 6 achieving ∆𝐸௔௕∗ ൏ 5.0 is promising because 
this threshold is same as the color tolerance of printed 
solids defined in ISO 12647-2. The improvement in 
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color difference between methods 5 and 6 seems not 
large. However, the images generated by method 6 
show clear differences in brightness within each 
image, whereas the images generated by method 5 are 
slightly blurry. More examples of images generated 
by method 6 are shown in Figure 4, which gives an 
overview of the relationships between the source 3D 
simulated images and the source colors. We can see 
that the generated images change according to the 
source model and color source. 

4.4 Discussion 

In this section, we discuss the importance on 
incorporating color histograms and the loss function 
considering color loss into CycleGAN. Method 5 
incorporated loss function (6) and color histograms 
into only generator 𝐺 (for translating MRI-simulation 
images into realistic images), where the aim is to 
reflect the color characteristics of an input image. On 
the other hand, method 6 incorporated them into not 
only 𝐺 but also 𝐹, where the color characteristics of 
the MRI-simulation images are reflected. The 
surfaces of MRI-simulation images are colorized by 
the medical imaging software with a certain fixed 
color and brightness as shown in Figure 3 because the 
source MRI data does not include the surface colors 
of the scanned individual. Therefore, color 
histograms input to the generator 𝐹 mainly reflect the 
contrast of brightness rather than the color of the 
person’s skin. The detailed characteristics of the  
 

 
Figure 4: Examples of generated images for 25 
combinations of source 3D simulated images and source 
real-world images. The first column and first row show the 
respective source images.  

images generated by method 6 are attributable to the 
architecture of the proposed method. In other words, 
incorporating color histograms into CycleGAN was 
effective not only for reflecting color characteristics 
of the source image, but also for better representing 
contrasts, unevenness, and other characteristics.  

5 SUMMARY 

In this paper, a new technique for image-to-image 
translation reflecting specific color characteristics 
was presented. That technique was intended to 
translate MRI-based 3D simulated images to realistic 
images reflecting the characteristics of a specific 
person’s appearance. In our image-to-image 
translation network, which was based on CycleGAN, 
color histograms of an input image were concatenated 
to the input vector as reference color characteristics 
and the generated image was evaluated with a loss 
function considering color loss. The experimental 
results showed that the presented technique was 
effective not only for reflecting the color 
characteristics of the input source image but also for 
better representing contrasts, unevenness, and other 
characteristics.  

Topics for future work include realizing more 
useful image-to-image translation with representation 
of various lighting environments. In the 3D simulated 
image domain, it is easy to obtain images under many 
different lighting conditions. If this can be reflected 
in the generated image along with color 
characteristics, then image translation to the real-
world image domain would be more flexible and 
useful. 
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